Demand Response Scheduling of Major Energy-consuming Enterprises Based on a High Proportion of Renewable Energy Power Grid
-
摘要: 随着国家“双碳”重大战略的提出, 高比例新能源并网将成为我国电力能源转型的重要态势. 针对火电机组、配电网和需求侧关联的系列运行约束制约了电网对高比例新能源的有效消纳这一问题, 本文提出重大耗能企业这一主要电力负荷参与网需求响应(Demand response, DR)的研究思路, 通过重大耗能企业与电网协调调度促进新能源消纳, 并获得经济补偿以减少运行成本. 研究首先基于混合需求侧响应机制, 提出以重大耗能企业、新能源、火电机组为核心的协调调度方法, 并根据新能源预测值−预测误差的信息依存顺序提出了两步调度策略. 在此基础上, 进行生产过程行为建模以实现重大耗能企业需求侧响应决策描述, 并建立高比例新能源并网的重大耗能企业需求响应与电网协调调度优化模型. 最后, 基于烟台电网实际系统进行算例分析, 验证了重大耗能企业通过需求响应参与电网协调调度以及两步调度策略的有效性.Abstract: With the proposal of the national “double carbon” major strategy, the high proportion of renewable energy grid-connection becomes an important trend of China's power energy transformation. However, a number of operational constraints related to thermal power units, distribution networks and demand sides limit the efficient absorption of renewable energy. This paper considers the idea in which major energy-consuming enterprises, the main power load, participate in the grid demand response (DR), promotes renewable energy consumption through coordinated scheduling between major energy-consuming enterprises and the power grid, and obtains economic compensation to reduce operating costs. Based on a hybrid demand-side response mechanism, this paper proposes a coordinated scheduling method with the major energy-consuming enterprises, renewable energy and thermal power units as the core. After that, a two-step scheduling strategy is proposed according to the information dependence order of the forecast value and forecast error of renewable energy. On this basis, the production process behavior modelling is carried out to realize the description of the demand response of major energy-consuming enterprises, and the optimization model of the demand response and grid coordination scheduling of major energy-consuming enterprises with a high proportion of renewable energy grid-connection is established. Finally, an example analysis is carried out based on the actual system power grid system in Yantai, which verifies the effectiveness of the major energy-consuming enterprises participating in the coordination scheduling of the power grid through demand response and the two-step dispatch strategy.1) 1 由于所证明的命题与时段
$ t $ 无关, 因此为了简化标记将下标$ t $ 省略. -
表 1 发电机组相关参数
Table 1 Related coefficients of thermal generators
节点 最小时间 (h) 耗量系数 启动 停止 $a$ $b$ $c$ $\alpha$ $\beta$ $\gamma$ 1 0 0 0.077 242.20 759.49 129.0 129.0 2 4 0 0 0.084 242.91 761.81 129.0 129.0 2 9 0 0 0.181 167.25 159.70 64.5 64.5 1 21 0 0 0.187 168.09 160.54 64.5 64.5 1 25 5 3 0.032 68.95 920.61 967.5 967.5 6 表 2 PMP网络结构参数
Table 2 Parameters of PMP system
单元编号 最大加工容量 (个) 功率 (kW/个) $M_1$ 2 48 $B_1$ 4 4 $M_2$ 2 32 $B_2$ 4 4 $M_3$ 2 12 $B_3$ 4 4 $M_4$ 2 36 $B_4$ 4 4 $M_5$ 2 32 $B_5$ 4 4 $M_6$ 2 21 表 3 分时定价策略表
Table 3 Time-of-use price strategy
用电场景 用电时段 消耗电价($\yen$/kWh) 需求电价($\yen$/kWh) 固定费用($\yen$) 高峰期 2 am, 7 ~ 12 am, 5 ~ 7 pm 1.08296 121.26 331.66 低峰期 0 ~ 1 am, 3 ~ 6 am, 1 ~ 4 pm, 8 ~ 12 pm 0.53367 0 表 4 三个算例对应目标函数值及相关功率
Table 4 Objective values and corresponding power information of three cases
算例 调度步骤 发电成本 ($\yen$) 生产成本 ($\yen$/单位) 风电消纳量 (MWh) 系统负荷 (MWh) 火电发电量 (MWh) 外部备用 (MWh) 算例1 ~ 3 第1步 208110.02 3528.41 2531.54 5083.35 2551.81 — 算例1 第2步 244436.30 3478.16 2738.45 5038.90 2454.23 268.00 算例2 256888.21 3528.41 2826.61 5087.74 2479.80 333.46 算例3-1 187535.17 3493.58 2528.95 5031.14 2446.30 55.89 算例3-2 187862.76 3492.16 2527.15 5032.68 2448.78 56.75 算例3-3 243154.81 3469.97 2871.31 5027.01 2445.36 401.30 算例3-4 187717.58 3492.03 2529.73 5033.88 2447.81 56.34 算例3-5 242932.61 3469.97 2871.31 5035.34 2448.59 398.39 算例3-6 242928.22 3469.97 2871.31 5035.15 2448.35 398.55 -
[1] 赵紫原. 高耗能行业用电戴上“紧箍咒”. 中国能源报, 2021-10-18 (019)Zhao Zi-Yuan. High-energy-consuming industries wear a “tightening spell” on electricity. China Energy News, 2021-10-18 (019) [2] 柴天佑. 工业过程控制系统研究现状与发展方向. 中国科学: 信息科学, 2016, 46(8): 1003-1015 doi: 10.1360/N112016-00062Chai Tian-You. Industrial process control systems: Research status and development direction. Scientia Sinica Informationis, 2016, 46(8): 1003-1015 doi: 10.1360/N112016-00062 [3] 刘青, 张成龙, 熊华文, 翁玉艳, 王红, 谭清坤, 等. 基于技术分析的主要高耗能产品单耗预测方法及展望 [Online], available: http://kns.cnki.net/kcms/detail/11.3265.TM.20211126.1851.002.html, 2021-11-29Liu Qing, Zhang Cheng-Long, Xiong Hua-Wen, Weng Yu-Yan, Wang Hong, Tan Qing-Kun, et al. Prediction method and prospect of unit consumption of main high energy consuming products based on technical analysis [Online], available: http://kns.cnki.net/kcms/detail/11.3265.TM.20211126.1851.002.html, November 29, 2021 [4] 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 43(2): 176-194Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 43(2): 176-194 [5] 平作为, 何维, 李俊林, 杨涛. 基于稀疏学习的微电网负载建模. 自动化学报, 2020, 46(9): 1798-1808Ping Zuo-Wei, He Wei, Li Jun-Lin, Yang Tao. Sparse learning for load modeling in microgrids. Acta Automatica Sinica, 2020, 46(9): 1798-1808 [6] 中华人民共和国国家能源局. 2018 年风电并网运行情况 [Online], available: http://www.nea.gov.cn/2019-01/28/c_137780779.htm, 2022-06-01National Energy Administration of the People's Republic of China. Grid-connected operation of wind power in 2018 [Online], available: http://www.nea.gov.cn/2019-01/28/c_137780779.htm, June 1, 2022 [7] 中华人民共和国国家发展和改革委员会能源研究所. 中国 2050 高比例可再生能源发展情景暨路径研究 [Online], available: https://www.efchina.org/Attachments/Report, 2022-06-11Energy Research Institute of the National Development and Reform Commission of the People's Republic of China. China 2050 high renewable energy penetration scenario and roadmap study [Online], available: https://www.efchina.org/Attachments/Report, June 1, 2022 [8] Partha P, Gehan A J. Optimal power flow solution incorporating stochastic wind and solar power. Energy Conversion & Management, 2017, 148: 1194-1207 [9] Zhang L D, Yuan Y, Chen B. Cost-benefit analysis method for optimizing spinning reserve requirements with consideration of wind power generation under carbon trading environment. In: Proceedings of the IEEE International Conference on Energy Internet. Beijing, China: IEEE, 2017. 182−187 [10] Yang T, Yi X L, Lu S W, Johansson K H, Chai T Y. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering, 2021, 7(9): 1224-1230 doi: 10.1016/j.eng.2021.04.023 [11] 祁兵, 曾璐琨, 叶秋子, 孙毅, 李彬, 陈宋宋, 等. 面向新能源消纳的需求侧聚合负荷协同控制. 电网技术, 2019, 43(1): 324-331Qi Bing, Zeng Lu-Kun, Ye Qiu-Zi, Sun Yi, Li Bin, Chen Song-Song, et al. Cooperative control of aggregated loads at demand side for accommodating new energy. Power System Technology, 2019, 43(1): 324-331 [12] Daraeepour A, Kazempour S J, Pawtiño-echeverr D, Conejo A J. Strategic demand-side response to wind power integration. IEEE Transactions on Power Systems, 2015, 31(5): 3495-3505 [13] 中华人民共和国国家统计局. 年度数据查询 [Online], available: http://data.stats.gov.cn/easyquery.htm?cn=C01, 2022-06-01National Bureau of Statistics of the People's Republic of China. Annual data [Online], available: http://data.stats.gov.cn/easyquery.htm?cn=C01, June 1, 2022 [14] 中国人民共和国工业和信息化部. 工业和信息化部关于印发《工业领域电力需求侧管理工作指南》的通知 [Online], available: https://www.miit.gov.cn/zwgk/zcwj/wjfb/zh/art/2020/art_8484d825f13548cda4e59007bfb85553.html, 2022-06-01Ministry of lndustry and Information Technology of the People's Republic of China. Ministry of industry and information technology on the issuance of “industrial areas of power demand-side management work guidelines” [Online], available: https://www.miit.gov.cn/zwgk/zcwj/wjfb/zh/art/2020/art_8484d825f13548cda4e59007bfb85553.html, June 1, 2022 [15] Bitaraf H, Rahman S. Reducing curtailed wind energy through energy storage and demand response. IEEE Transactions on Sustainable Energy, 2017, 9(1): 228-236 [16] 鞠立伟, 秦超, 吴鸿亮, 何璞玉, 于超, 谭忠富. 计及多类型需求响应的风电消纳随机优化调度模型. 电网技术, 2015, 39(7): 1839-1846Ju Li-Wei, Qin Chao, Wu Hong-Liang, He Pu-Yu, Yu Chao, Tan Zhong-Fu. Wind power accommodation stochastic optimization model with multi-type demand response. Power System Technology, 2015, 39(7): 1839-1846 [17] Kiran B D H, Kumari M S. Demand response and pumped hydro storage scheduling for balancing wind power uncertainties: A probabilistic unit commitment approach. International Journal of Electrical Power & Energy Systems, 2016, 81: 114-122 [18] Jiang Y, Xu J, Sun Y, Wei C, Wang J, Ke D, et al. Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system. Applied Energy, 2017, 190: 1126-1137 doi: 10.1016/j.apenergy.2017.01.030 [19] 汤奕, 鲁针针, 伏祥运. 居民主动负荷促进分布式电源消纳的需求响应策略. 电力系统自动化, 2015, 39(24): 49-55 doi: 10.7500/AEPS20150326003Tang Yi, Lu Zhen-Zhen, Fu Xiang-Yun. Demand response strategies for promoting consumption of distributed power generation with residential active loads. Automation of Electric Power Systems, 2015, 39(24): 49-55 doi: 10.7500/AEPS20150326003 [20] Ali M, Degefa M Z, Humayun M, Safdarian A, Lehtonen M. Increased utilization of wind generation by coordinating the demand response and real-time thermal rating. IEEE Transactions on Power Systems, 2015, 31(5): 3737-3746 [21] Zeng B, Zhang J H, Yang X, Wang J H, Dong J, Zhang Y Y. Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response. IEEE Transactions on Power Systems, 2014, 29(3): 1153-1165 doi: 10.1109/TPWRS.2013.2291553 [22] 杨青. 电力需求侧响应: 动中求静. 国家电网, 2017(1): 48-53 doi: 10.3969/j.issn.1673-4726.2017.01.016Yang Qing. Power demand response: Seek stillness in movement. State Grid, 2017(1): 48-53 doi: 10.3969/j.issn.1673-4726.2017.01.016 [23] 史俊祎, 文福拴, 崔鹏程, 孙磊, 尚金成, 何洋. 参与需求响应的工业用户智能用电管理. 电力系统自动化, 2017, 41(14): 45-53 doi: 10.7500/AEPS20170203002Shi Jun-Yi, Wen Fu-Shuan, Cui Peng-Cheng, Sun Lei, Shang Jin-Cheng, He Yang. Intelligent energy management of industrial loads considering participation in demand response program. Automation of Electric Power Systems, 2017, 41(14): 45-53 doi: 10.7500/AEPS20170203002 [24] 丁浩, 高峰, 刘坤, 管晓宏, 吴江. 基于鲁棒优化的含风电工业微电网经济调度模型.电力系统自动化, 2015, 39(17): 160-167 doi: 10.7500/AEPS20140320002Ding Hao, Gao Feng, Liu Kun, Guan Xiao-Hong, Wu Jiang. An economic dispatch model in an industrial microgrid with wind power based on robust optimization. Automation of Electric Power Systems, 2015, 39(17): 160-167 doi: 10.7500/AEPS20140320002 [25] Wang Y, Li L. Time-of-use based electricity demand response for sustainable manufacturing systems. Energy, 2013, 63: 233-244 doi: 10.1016/j.energy.2013.10.011 [26] 艾欣, 周树鹏, 赵阅群. 考虑风电不确定性的用户侧分时电价研究. 电网技术, 2016, 40(5): 1529-1535Ai Xin, Zhou Shu-Peng, Zhao Yue-Qun. Study on time of use pricing of user side considering wind power uncertainty. Power System Technology, 2016, 40(5): 1529-1535 [27] Safdarian A, Fotuhifiruzaba M, Lehtonen M. A medium-term decision model for discos: Forward contracting and TOU pricing. IEEE Transactions on Power Systems, 2015, 30(3): 1143-1154 doi: 10.1109/TPWRS.2014.2342373 [28] Bitaraf H, Rahman S. Reducing curtailed wind energy through energy storage and demand response. IEEE Transactions on Sustainable Energy, 2018, 9(1): 228-236 doi: 10.1109/TSTE.2017.2724546 [29] 《纺织行业能源管理体系实施指南》编制小组. 《纺织行业能源管理体系实施指南》编制说明 [Online], availiable: https://www.cnis.ac.cn/ynbm/zhfy/bzyjzq/gbyjzq/201807/P020181229665278846253.pdf, 2022-06-01The Preparation Team of “The Textile Industry Energy Management System Implementation Guide”. “The textile industry energy management system implementation guide” preparation instructions [Online], availiable: https://www.cnis.ac.cn/ynbm/zhfy/bzyjzq/gbyjzq/201807/P020181229665278846253.pdf, June 1, 2022 [30] 中华人民共和国国家市场监督管理总局. 纺织行业能源管理体系实施指南. GB/T 39973-2021, 2021.State Administration for Market Regulation of the People's Republic of China. The textile industry energy management system implementation guide. GB/T 39973-2021, 2021. [31] Bouffard F, Galiana F D. Stochastic security for operations planning with significant wind power generation. IEEE Transactions on Power Systems, 2008, 23(2): 306-316 doi: 10.1109/TPWRS.2008.919318 [32] Santamaríaban G, Reyesballesteros A, Gershenson C. Wind speed forecasting for wind farms: A method based on support vector regression. Renewable Energy, 2016, 85: 790-809 doi: 10.1016/j.renene.2015.07.004 [33] Zhao M, Chen Z, Blaabjer F. Probabilistic capacity of a grid connected wind farm based on optimization method. Renewable Energy, 2006, 31: 2171-2187 doi: 10.1016/j.renene.2005.10.010 [34] Fu Y, Li Z, Wu L. Modeling and solution of the large-scale security-constrained unit commitment. IEEE Transactions on Power Systems, 2013, 28(4): 3524-3533 doi: 10.1109/TPWRS.2013.2272518 [35] 李智, 韩学山, 杨明, 雷宇, 康凯. 计及接纳风电能力的电网调度模型. 电力系统自动化, 2010, 34(19): 15-19Li Zhi, Han Xue-Shan, Yang Ming, Lei Yu, Kang Kai. Power system dispatch considering wind power grid Integration. Automation of Electric Power Systems, 2010, 34(19): 15-19