2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切换拓扑下动态事件触发多智能体系统固定时间一致性

孙梦薇 任璐 刘剑 孙长银

孙梦薇, 任璐, 刘剑, 孙长银. 切换拓扑下动态事件触发多智能体系统固定时间一致性. 自动化学报, 2023, 49(6): 1295−1305 doi: 10.16383/j.aas.c211123
引用本文: 孙梦薇, 任璐, 刘剑, 孙长银. 切换拓扑下动态事件触发多智能体系统固定时间一致性. 自动化学报, 2023, 49(6): 1295−1305 doi: 10.16383/j.aas.c211123
Sun Meng-Wei, Ren Lu, Liu Jian, Sun Chang-Yin. Dynamic event-triggered fixed-time consensus control of multi-agent systems under switching topologies. Acta Automatica Sinica, 2023, 49(6): 1295−1305 doi: 10.16383/j.aas.c211123
Citation: Sun Meng-Wei, Ren Lu, Liu Jian, Sun Chang-Yin. Dynamic event-triggered fixed-time consensus control of multi-agent systems under switching topologies. Acta Automatica Sinica, 2023, 49(6): 1295−1305 doi: 10.16383/j.aas.c211123

切换拓扑下动态事件触发多智能体系统固定时间一致性

doi: 10.16383/j.aas.c211123
基金项目: 国家自然科学基金 (61921004, 62103099, 62003044), 江苏省前沿引领技术基础研究专项 (BK20202006) 资助
详细信息
    作者简介:

    孙梦薇:安徽大学物质科学与信息技术研究院博士研究生. 主要研究方向为多智能体系统, 固定时间控制和事件触发控制. E-mail: q21101014@stu.ahu.edu.cn

    任璐:安徽大学人工智能学院讲师. 2021年获得东南大学控制科学与工程博士学位. 主要研究方向为多智能体系统一致性控制, 复杂动态网络同步. 本文通信作者. E-mail: penny_lu@ahu.edu.cn

    刘剑:东南大学自动化学院副研究员. 分别于2015年, 2020年获得北京科技大学学士和博士学位. 主要研究方向为多智能体系统, 非线性控制, 事件触发控制和固定时间控制. E-mail: bkliujian@163.com

    孙长银:东南大学自动化学院教授. 1996年获得四川大学应用数学专业理学学士学位. 分别于2001年, 2004年获得东南大学电子工程专业硕士和博士学位. 主要研究方向为智能控制, 飞行器控制, 模式识别和优化理论. E-mail: cysun@seu.edu.cn

Dynamic Event-triggered Fixed-time Consensus Control of Multi-agent Systems Under Switching Topologies

Funds: Supported by National Natural Science Foundation of China (61921004, 62103099, 62003044) and Natural Science Foundation of Jiangsu Province of China (BK20202006)
More Information
    Author Bio:

    SUN Meng-Wei Ph.D. candidate at the Institutes of Physical Science and Information Technology, Anhui University. Her research interest covers multi-agent systems, fixed-time control, and event-triggered control

    REN Lu Lecturer at the School of Artificial Intelligence, Anhui University. She received her Ph.D. degree in control science and engineering from Southeast University in 2021. Her research interest covers consensus control of multi-agent systems, and synchronization of complex dynamical networks. Corresponding author of this paper

    LIU Jian Associate professor at the School of Automation, Southeast University. He received his bachelor and Ph.D. degrees from University of Science and Technology Beijing in 2015 and 2020, respectively. His research interest covers multi-agent systems, nonlinear control, event-triggered control, and fixed-time control

    SUN Chang-Yin Professor at the School of Automation, Southeast University. He received his bachelor degree in applied mathematics from Sichuan University in 1996, and his master and Ph.D. degrees in electrical engineering from Southeast University in 2001 and 2004, respectively. His research interest covers intelligent control, flight control, pattern recognition, and optimal theory

  • 摘要: 针对有扰动的一阶非线性多智能体系统在切换拓扑下的实际固定时间平均一致性问题, 提出了基于动态事件触发机制的固定时间一致性协议. 该一致性协议在节约更多资源的情况下, 使多智能体系统以更快的速度达到一致. 相对于有限时间一致性控制算法, 固定时间一致性控制算法的收敛时间不依赖于初始状态, 并且可以通过选择合适的控制器参数设定相应的收敛时间上界. 通过设计一个包含双曲正切函数的测量误差, 证明系统不存在Zeno行为. 由于内部动态变量的引入, 大量不必要的触发被取消, 从而节省能量损耗. 最后, 通过仿真实验验证算法的可行性和有效性.
  • 图  1  多智能体系统的切换拓扑

    Fig.  1  Switching topologies of the multi-agent system

    图  2  多智能体系统动态事件触发下的系统状态变化、触发时刻、动态变量变化

    Fig.  2  State evolution, triggering instants, and changes of the dynamic variables under dynamic event-triggered mechanism

    图  3  多智能体系统动态事件触发机制下的误差变化

    Fig.  3  Error change under dynamic event-triggered mechanism

    图  4  多智能体系统静态事件触发下的系统状态变化和触发时刻

    Fig.  4  State evolution and triggering instants under static event-triggered mechanism

    图  5  不同参数下系统中各智能体误差的平方和

    Fig.  5  Sum of squares of the errors under different parameters

    图  6  不同参数下多智能体系统触发次数的变化

    Fig.  6  Numbers of triggering instants under different parameters

  • [1] 杨甜甜, 刘志远, 陈虹, 裴润. 多移动机器人避障编队控制. 自动化学报, 2008, 34(5): 588-592 doi: 10.3724/SP.J.1004.2008.00588

    Yang Tian-Tian, Liu Zhi-Yuan, Chen Hong, Pei Run. Formation control and obstacle avoidance for multiple mobile robots. Acta Automatica Sinica, 2008, 34(5): 588-592 doi: 10.3724/SP.J.1004.2008.00588
    [2] 尹瞾, 贺威, 邹尧, 穆新星, 孙长银. 基于“雁阵效应”的扑翼飞行机器人高效集群编队研究. 自动化学报, 2021, 47(6): 1355-1367

    Yin Zhao, He Wei, Zou Yao, Mu Xin-Xing, Sun Chang-Yin. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Automatica Sinica, 2021, 47(6): 1355-1367
    [3] 王帅磊, 周绍磊, 代飞扬, 刘伟, 闫实. 多航天器分布式事件触发分组姿态协同控制. 北京航空航天大学学报, 2021, 47(2): 323-332

    Wang Shuai-Lei, Zhou Shao-Lei, Dai Fei-Yang, Liu Wei, Yan Shi. Distributed event-triggered group attitude coordinated control of multi-spacecraft. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 323-332
    [4] 蔡光斌, 闫杰, 赵玉山, 胡昌华. 具有随机多跳时变时延的多航天器协同编队姿态一致性. 控制理论与应用, 2018, 35(10): 1415-1421

    Cai Guang-Bin, Yan Jie, Zhao Yu-Shan, Hu Chang-Hua. Attitude consensus of multi-spacecraft cooperative formation with stochastic multi-hop time-varying delay. Control Theory & Applications, 2018, 35(10): 1415-1421
    [5] Shobole A A, Wadi M. Multiagent systems application for the smart grid protection. Renewable and Sustainable Energy Reviews, 2021, 149: Article No. 111352 doi: 10.1016/j.rser.2021.111352
    [6] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533 doi: 10.1109/TAC.2004.834113
    [7] 王兴平, 宋艳荣, 程兆林. 切换网络下时变线性多智能体系统的指数同步. 自动化学报, 2015, 41(8): 1528-1532

    Wang Xing-Ping, Song Yan-Rong, Cheng Zhao-Lin. Exponential synchronization of time-varying linear multi-agent systems with switching topology. Acta Automatica Sinica, 2015, 41(8): 1528-1532
    [8] Huang N, Duan Z S, Zhao Y. Consensus of multi-agent systems via delayed and intermittent communications. IET Control Theory & Applications, 2015, 9(1): 62-73
    [9] Wen G X, Chen C L P, Liu Y J, Liu Z. Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems. IEEE Transactions on Cybernetics, 2017, 47(8): 2151-2160 doi: 10.1109/TCYB.2016.2608499
    [10] Bechlioulis C P, Rovithakis G A. Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance. IEEE Transactions on Automatic Control, 2017, 62(1): 123-134 doi: 10.1109/TAC.2016.2535102
    [11] Zhang J X, Yang G H. Distributed fuzzy adaptive output-feedback control of unknown nonlinear multiagent systems in strict-feedback form. IEEE Transactions on Cybernetics, 2022, 52(6): 5607-5617 doi: 10.1109/TCYB.2021.3086094
    [12] Cortés J. Finite-time convergent gradient flows with applications to network consensus. Automatica, 2006, 42(11): 1993-2000 doi: 10.1016/j.automatica.2006.06.015
    [13] Wang L, Xiao F. Finite-time consensus problems for networks of dynamic agents. IEEE Transactions on Automatic Control, 2010, 55(4): 950-955 doi: 10.1109/TAC.2010.2041610
    [14] Zhao L W, Hua C C. Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dynamics, 2014, 75(1-2): 311-318 doi: 10.1007/s11071-013-1067-5
    [15] Tong P, Chen S H, Wang L. Finite-time consensus of multi-agent systems with continuous time-varying interaction topology. Neurocomputing, 2018, 284: 187-193 doi: 10.1016/j.neucom.2018.01.004
    [16] Zuo Z Y, Tie L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Control, 2014, 87(2): 363-370 doi: 10.1080/00207179.2013.834484
    [17] Zhang B, Jia Y M. Fixed-time consensus protocols for multi-agent systems with linear and nonlinear state measurements. Nonlinear Dynamics, 2015, 82(4): 1683-1690 doi: 10.1007/s11071-015-2269-9
    [18] Defoort M, Polyakov A, Demesure G, Djemai M, Veluvolu K. Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics. IET Control Theory & Applications, 2015, 9(14): 2165-2170
    [19] Ning B D, Jin J, Zheng J C. Fixed-time consensus for multi-agent systems with discontinuous inherent dynamics over switching topology. International Journal of Systems Science, 2017, 48(10): 2023-2032 doi: 10.1080/00207721.2017.1308579
    [20] 孙小童, 郭戈, 张鹏飞. 非匹配扰动下的多智能体系统固定时间一致跟踪. 自动化学报, 2021, 47(6): 1368-1376

    Sun Xiao-Tong, Guo Ge, Zhang Peng-Fei. Fixed-time consensus tracking of multi-agent systems under unmatched disturbances. Acta Automatica Sinica, 2021, 47(6): 1368-1376
    [21] Zuo Z Y, Tian B L, Defoort M, Ding Z T. Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Transactions on Automatic Control, 2018, 63(2): 563-570 doi: 10.1109/TAC.2017.2729502
    [22] Ding L, Han Q L, Ge X H, Zhang X M. An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Transactions on Cybernetics, 2018, 48(4): 1110-1123 doi: 10.1109/TCYB.2017.2771560
    [23] Yu W W, Zheng W X, Chen G R, Ren W, Cao J D. Second-order consensus in multi-agent dynamical systems with sampled position data. Automatica, 2011, 47(7): 1496-1503 doi: 10.1016/j.automatica.2011.02.027
    [24] Wen G H, Duan Z S, Yu W W, Chen G R. Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: A delayed-input approach. International Journal of Robust and Nonlinear Control, 2013, 23(6): 602-619 doi: 10.1002/rnc.2779
    [25] Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems. IEEE Transactions on Automatic Control, 2012, 57(5): 1291-1297 doi: 10.1109/TAC.2011.2174666
    [26] Garcia E, Cao Y C, Casbeer D W. Decentralized event-triggered consensus with general linear dynamics. Automatica, 2014, 50(10): 2633-2640 doi: 10.1016/j.automatica.2014.08.024
    [27] Zhang H P, Yue D, Yin X X, Hu S L, Dou C X. Finite-time distributed event-triggered consensus control for multi-agent systems. Information Sciences, 2016, 339: 132-142 doi: 10.1016/j.ins.2015.12.031
    [28] Liu J, Zhang Y L, Yu Y, Sun C Y. Fixed-time event-triggered consensus for nonlinear multiagent systems without continuous communications. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(11): 2221-2229 doi: 10.1109/TSMC.2018.2876334
    [29] Sharifi A, Pourgholi M. Fixed-time bipartite consensus of nonlinear multi-agent systems using event-triggered control design. Journal of the Franklin Institute, 2021, 358(17): 9178-9198 doi: 10.1016/j.jfranklin.2021.09.023
    [30] Zhou D, Zhang A, Yang P. Fixed-time event-triggered consensus of second-order multi-agent systems with fully continuous communication free. IET Control Theory & Applications, 2020, 14(16): 2385-2394
    [31] 陈世明, 邵赛, 姜根兰. 基于事件触发二阶多智能体系统的固定时间比例一致性. 自动化学报, 2022, 48(1): 261-270 doi: 10.16383/j.aas.c190128

    Chen Shi-Ming, Shao Sai, Jiang Gen-Lan. Distributed event-triggered fixed-time scaled consensus control for second-order multi-agent systems. Acta Automatica Sinica, 2022, 48(1): 261-270 doi: 10.16383/j.aas.c190128
    [32] Liu J, Zhang Y L, Sun C Y, Yu Y. Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control. Information Sciences, 2019, 480: 261-272 doi: 10.1016/j.ins.2018.12.037
    [33] Ran G T, Liu J, Li C J, Chen L M, Li D Y. Event-based finite-time consensus control of second-order delayed multi-agent systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(1): 276-280 doi: 10.1109/TCSII.2020.2999480
    [34] Liu J, Zhang Y L, Yu Y, Sun C Y. Fixed-time leader-follower consensus of networked nonlinear systems via event/self-triggered control. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 5029-5037 doi: 10.1109/TNNLS.2019.2957069
    [35] Ni J K, Shi P, Zhao Y, Pan Q, Wang S Y. Fixed-time event-triggered output consensus tracking of high-order multiagent systems under directed interaction graphs. IEEE Transactions on Cybernetics, 2022, 52(7): 6391-6405 doi: 10.1109/TCYB.2020.3034013
    [36] Ai X L, Wang L. Distributed fixed-time event-triggered consensus of linear multi-agent systems with input delay. International Journal of Robust and Nonlinear Control, 2021, 31(7): 2526-2545 doi: 10.1002/rnc.5404
    [37] Liu J, Yu Y, Xu Y, Zhang Y L, Sun C Y. Fixed-time average consensus of nonlinear delayed MASs under switching topologies: An event-based triggering approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 2721-2733 doi: 10.1109/TSMC.2021.3051156
    [38] Girard A. Dynamic triggering mechanisms for event-triggered control. IEEE Transactions on Automatic Control, 2015, 60(7): 1992-1997 doi: 10.1109/TAC.2014.2366855
    [39] Yi X L, Liu K, Dimarogonas D V, Johansson K H. Dynamic event-triggered and self-triggered control for multi-agent systems. IEEE Transactions on Automatic Control, 2019, 64(8): 3300-3307 doi: 10.1109/TAC.2018.2874703
    [40] Liu J, Ran G T, Wu Y B, Xue L, Sun C Y. Dynamic event-triggered practical fixed-time consensus for nonlinear multiagent systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(4): 2156-2160 doi: 10.1109/TCSII.2021.3128624
  • 加载中
图(6)
计量
  • 文章访问数:  2480
  • HTML全文浏览量:  367
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-27
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回