2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用神经网络的双吊车自适应防摆控制

文天赐 方勇纯 卢彪

文天赐, 方勇纯, 卢彪. 采用神经网络的双吊车自适应防摆控制. 自动化学报, 2023, 49(1): 111−121 doi: 10.16383/j.aas.c211062
引用本文: 文天赐, 方勇纯, 卢彪. 采用神经网络的双吊车自适应防摆控制. 自动化学报, 2023, 49(1): 111−121 doi: 10.16383/j.aas.c211062
Wen Tian-Ci, Fang Yong-Chun, Lu Biao. Adaptive antiswing control for underactuated dual overhead crane system using neural network. Acta Automatica Sinica, 2023, 49(1): 111−121 doi: 10.16383/j.aas.c211062
Citation: Wen Tian-Ci, Fang Yong-Chun, Lu Biao. Adaptive antiswing control for underactuated dual overhead crane system using neural network. Acta Automatica Sinica, 2023, 49(1): 111−121 doi: 10.16383/j.aas.c211062

采用神经网络的双吊车自适应防摆控制

doi: 10.16383/j.aas.c211062
基金项目: 先进计算与关键软件海河实验室基金, 广东省机器人与智能系统重点实验室开放基金资助
详细信息
    作者简介:

    文天赐:南开大学机器人与信息自动化研究所博士研究生. 主要研究方向为欠驱动系统非线性控制. E-mail: wentc@mail.nankai.edu.cn

    方勇纯:南开大学机器人与信息自动化研究所教授. 主要研究方向为非线性控制, 机器人视觉伺服控制, 欠驱动系统控制和基于原子力显微镜的纳米系统. 本文通信作者. E-mail: fangyc@nankai.edu.cn

    卢彪:南开大学机器人与信息自动化研究所讲师. 主要研究方向为欠驱动系统非线性控制. E-mail: lubiao@mail.nankai.edu.cn

Adaptive Antiswing Control for Underactuated Dual Overhead Crane System Using Neural Network

Funds: Supported by Haihe Laboratory Fund of Information Technology Application Innovation and Opening Project of Guangdong Provincial Key Laboratory of Robotics and Intelligent System
More Information
    Author Bio:

    WEN Tian-Ci Ph.D. candidate at the Institute of Robotics and Automatic Information Systems, Nankai University. His main research interest is nonlinear control of underactuated systems

    FANG Yong-Chun Professor at the Institute of Robotics and Automatic Information Systems, Nankai University. His research interest covers nonlinear control, robot visual servoing control, control of underactuated systems and AFM-based nano-systems. Corresponding author of this paper

    LU Biao Lecturer at the Institute of Robotics and Automatic Information System, Nankai University. His main research interest is nonlinear control of underactuated systems

  • 摘要: 由于工业实践对运输能力提出了更高的要求, 双吊车的应用日益广泛. 然而其动力学模型非线性很强, 因此控制器结构十分复杂. 另一方面, 大型货物的摆动很难抑制, 这给双吊车的自动化带来了巨大的挑战. 为了处理以上问题, 首先, 采用神经网络准确地估计了系统的模型, 在此基础上提出了一种自适应防摆控制方法, 很好地实现了双吊车系统的防摆控制; 然后, 采用李雅普诺夫方法, 严格地证明了系统在平衡点的渐近稳定性; 最后, 通过大量的实验结果, 验证了该方法具有良好的性能.
  • 图  1  双吊车系统示意图

    Fig.  1  Illustration of dual overhead crane system

    图  2  实验平台

    Fig.  2  Experimental testbed

    图  3  实验1: 系统状态变量

    Fig.  3  Experiment 1: System state variables

    图  4  实验1: 系统控制输入$F_1$$F_2$和神经网络权值$W_1$$W_2$$V_1$$V_2$的范数

    Fig.  4  Experiment 1: The control input $F_1,\ F_2$ of system and the norm of the NN weights $W_1,\ W_2,\ V_1,\ V_2$

    图  5  实验2: 参数不确定性实验

    Fig.  5  Experiment 2: Test of parameters uncertainty

    图  6  实验2: 初始摆角扰动实验

    Fig.  6  Experiment 2: Test of initial swing disturbances

    图  7  实验2: 不同运输任务实验

    Fig.  7  Experiment 2: Test of different transportation tasks

    表  1  实验1的性能指标

    Table  1  Performance indices of Experiment 1

    性能指标 本文方法 PD LQR PID SMC
    $e_{1xs}\,({\rm{ m}})$ ${\bf{-0.003}}$ −0.028 −0.032 −0.007 0.001
    $e_{2xs}\,({\rm{ m}})$ −0.003 −0.004 −0.004 −0.004 ${\bf{-0.001}}$
    $\theta_{1{\rm{max}}}\,(^\circ)$ ${\bf{0.582}}$ 7.149 3.666 7.746 1.357
    $\theta_{2{\rm{max}}}\,(^\circ)$ ${\bf{0.636}}$ 5.908 4.387 5.401 2.481
    $\theta_{3{\rm{max}}}\,(^\circ)$ ${\bf{0.002}}$ 0.472 0.187 0.452 0.056
    $\theta_{1res}\,(^\circ)$ ${\bf{0.293}}$ 4.160 3.350 1.515 1.274
    $\theta_{2res}\,(^\circ)$ ${\bf{0.000}}$ 2.926 3.053 1.273 1.145
    $\theta_{3res}\,(^\circ)$ ${\bf{0.000}}$ 0.085 0.068 0.016 0.001
    $\Delta_{x{\rm{max}}}\,({\rm{ m} })$ ${\bf{0.905}}$ 0.924 0.994 0.920 0.938
    $\Delta_{x{\rm{min} } }\,({\rm{ m} })$ ${\bf{0.899}}$ 0.749 0.848 0.697 0.894
    下载: 导出CSV
  • [1] Ramli L, Mohamed Z, Abdullahi A M, Jaafar H I, Lazim I M. Control strategies for crane systems: A comprehensive review. Mechanical Systems and Signal Processing, 2017, 95: 1-23 doi: 10.1016/j.ymssp.2017.03.015
    [2] Lu B, Fang Y, Lin J, Hao Y, Cao H. Nonlinear antiswing control for offshore boom cranes subject to ship roll and heave disturbances. Automation in Construction, 2021, 131: 1-13
    [3] Lu B, Fang Y. Gain-adapting coupling control for a class of underactuated mechanical systems. Automatica, 2021, 125: 1-7
    [4] 王岳, 孙宁, 吴易鸣, 梁潇, 陈鹤, 方勇纯. 深海起重机系统的实时轨迹规划方法. 自动化学报, 2021, 47(12): 2761-2770

    Wang Yue, Sun Ning, Wu Yi-Ming, Liang Xiao, Chen He, Fang Yong-Chun. Real-time motion planning of deep sea-oriented flexible crane systems. Acta Automatica Sinica, 2021, 47(12): 2761-2770
    [5] 曹海昕, 郝运嵩, 林静正, 卢彪, 方勇纯. 绳长时变情况下轮胎式集装箱起重机非线性防摆控制算法. 自动化学报, 2021, 47(8): 1876-1884

    Cao Hai-Xin, Hao Yun-Song, Lin Jing-Zheng, Lu Biao, Fang Yong-Chun. Nonlinear anti-swing control for rubber tyre container gantry crane with rope length variation. Acta Automatica Sinica, 2021, 47(8): 1876-1884
    [6] Vaughan J, Yoo J, Singhose W. Using approximate multi-crane frequencies for input shaper design. In: Proceedings of the International Conference on Control, Automation and Systems. Jeju, South Korea: IEEE, 2012. 639−644
    [7] 卢彪, 吴壮, 方勇纯, 孙宁. 带有完整约束的双吊车系统输入整形控制. 控制理论与应用, 2018, 35(12): 1805-1811

    Lu Biao, Wu Zhuang, Fang Yong-Chun, Sun Ning. Input shaping control for underactuated dual overhead crane system with holonomic constraints. Control Theory & Applications, 2018, 35(12): 1805-1811
    [8] Zhao X, Huang J. Distributed-mass payload dynamics and control of dual cranes undergoing planar motions. Mechanical Systems and Signal Processing, 2019, 126: 636-648 doi: 10.1016/j.ymssp.2019.02.032
    [9] Sun N, Fu Y, Yang T, Zhang J, Fang Y, Xin X. Nonlinear motion control of complicated dual rotary crane systems without velocity feedback: Design, analysis, and hardware experiments. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 1017-1029 doi: 10.1109/TASE.2019.2961258
    [10] Li Y, Xi X, Xie J, Liu C. Study and implementation of a cooperative hoisting for two crawler cranes. Journal of Intelligent & Robotic Systems, 2016, 83(2): 165-178
    [11] Lu B, Fang Y, Sun N. Modeling and nonlinear coordination control for an underactuated dual overhead crane system. Automatica, 2018, 91: 244-255 doi: 10.1016/j.automatica.2018.01.008
    [12] Li D J. Neural network control for a class of continuous stirred tank reactor process with dead-zone input. Neurocomputing, 2014, 131: 453-459 doi: 10.1016/j.neucom.2013.11.006
    [13] Selmic R R, Lewis F L. Deadzone compensation in motion control systems using neural networks. IEEE Transactions on Automatic Control, 2000, 45(4): 602-613 doi: 10.1109/9.847098
    [14] Lewis L F, Yesildirek A, Liu K. Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Transactions on Neural Networks, 1996, 7(2): 388-399 doi: 10.1109/72.485674
    [15] Yang T, Sun N, Chen H, Fang Y. Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(3): 901-914
    [16] 马乐, 闫一鸣, 徐东甫, 李志伟, 孙灵芳. 含未知动态与扰动的非线性系统神经网络嵌入学习控制. 自动化学报, 2021, 47(8): 2016-2028

    Ma Le, Yan Yi-Ming, Xu Dong-Fu, Li Zhi-Wei, Sun Ling-Fang. Neural network embedded learning control for nonlinear system with unknown dynamics and disturbance. Acta Automatica Sinica, 2021, 47(8): 2016-2028
    [17] 章联生, 金耀初, 宋永端. 时滞忆阻神经网络动力学分析与控制综述. 自动化学报, 2021, 47(4): 765-779

    Zhang Lian-Sheng, Jin Yao-Chu, Song Yong-Duan. An overview of dynamics analysis and control of memristive neural networks with delays. Acta Automatica Sinica, 2021, 47(4): 765-779
    [18] 林静正, 方勇纯, 卢彪, 郝运嵩, 曹海昕. 基于迭代学习和神经网络的船用起重机控制. 控制理论与应用, 2022, 39(4): 581–592

    Lin Jing-Zheng, Fang Yong-Chun, Lu Biao, Hao Yun-Song, Cao Hai-Xin. Controller design of an offshore boom crane utilizing iterative learning and neural network. Control Theory & Applications, 2022, 39(4): 581–592
    [19] Lu B, Fang Y, Sun N. Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics, 2017, 47: 116-125 doi: 10.1016/j.mechatronics.2017.09.006
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  733
  • HTML全文浏览量:  192
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 录用日期:  2022-04-12
  • 网络出版日期:  2022-12-21
  • 刊出日期:  2023-01-07

目录

    /

    返回文章
    返回