2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干扰估计的非对称运动下飞机刹车系统模型预测控制

李繁飙 杨皓月 王鸿鑫 阳春华 廖力清

李繁飙, 杨皓月, 王鸿鑫, 阳春华, 廖力清. 基于干扰估计的非对称运动下飞机刹车系统模型预测控制. 自动化学报, 2022, 48(7): 1690−1703 doi: 10.16383/j.aas.c210852
引用本文: 李繁飙, 杨皓月, 王鸿鑫, 阳春华, 廖力清. 基于干扰估计的非对称运动下飞机刹车系统模型预测控制. 自动化学报, 2022, 48(7): 1690−1703 doi: 10.16383/j.aas.c210852
Li Fan-Biao, Yang Hao-Yue, Wang Hong-Xin, Yang Chun-Hua, Liao Li-Qing. Model predictive control of aircraft braking system under asymmetric motion based on disturbance estimation. Acta Automatica Sinica, 2022, 48(7): 1690−1703 doi: 10.16383/j.aas.c210852
Citation: Li Fan-Biao, Yang Hao-Yue, Wang Hong-Xin, Yang Chun-Hua, Liao Li-Qing. Model predictive control of aircraft braking system under asymmetric motion based on disturbance estimation. Acta Automatica Sinica, 2022, 48(7): 1690−1703 doi: 10.16383/j.aas.c210852

基于干扰估计的非对称运动下飞机刹车系统模型预测控制

doi: 10.16383/j.aas.c210852
基金项目: 国家自然科学基金(61973319), 湖南省优秀青年基金(2019JJ30032), 111计划(B17048), 鹏城实验室重点项目(PCL2021A09)资助
详细信息
    作者简介:

    李繁飙:中南大学自动化学院教授. 2015年获得哈尔滨工业大学博士学位. 主要研究方向为复杂工业过程智能控制与优化, 非连续控制理论及其在飞机起落架系统中的应用. 本文通信作者. E-mail: fanbiaoli@csu.edu.cn

    杨皓月:中南大学自动化学院硕士研究生. 主要研究方向为飞机刹车系统建模与控制. E-mail: haoyueyang@csu.edu.cn

    王鸿鑫:中南大学自动化学院博士研究生. 2015年获得西北工业大学航空工程硕士学位. 主要研究方向为基于模型的系统工程和基于模型的设计在飞机研制领域的应用, 民用飞机数字孪生建模和机载系统集成仿真. E-mail: wanghongxin@csu.edu.cn

    阳春华:中南大学自动化学院教授. 2002年获得中南大学博士学位. 主要研究方向为复杂工业过程建模与优化, 故障诊断和智能系统. E-mail: ychh@csu.edu.cn

    廖力清:中南大学自动化学院教授. 2010年获得中南大学博士学位. 主要研究方向为电力电子与电力传动, 电力系统自动化和飞机起飞着陆系统智能控制. E-mail: zdh-dqkz@csu.edu.cn

Model Predictive Control of Aircraft Braking System Under Asymmetric Motion Based on Disturbance Estimation

Funds: Supported by National Natural Science Foundation of China (61973319), Excellent Youth Natural Science Foundation of Hunan Province (2019JJ30032), the 111 Project of China (B17048), and the Major Key Project of Peng Cheng Laboratory (PCL2021A09)
More Information
    Author Bio:

    LI Fan-Biao Professor at the School of Automation, Central South University. He received his Ph.D. degree from Harbin Institute of Technology in 2015. His research interest covers intelligent control and optimization of complex industrial processes, discontinuous control theory and its application for aircraft landing gear systems. Corresponding author of this paper

    YANG Hao-Yue Master student at the School of Automation, Central South University. His main research interest is aircraft braking system modeling and control

    WANG Hong-Xin Ph.D. candidate at the School of Automation, Central South University. He received his master degree in Aeronautical Engineering from Northwestern Polytechnical University in 2015. His research interest covers model-based systems engineering (MBSE) and model-based design (MBD) interaction for aircraft design, civil aircraft digital twin modeling, and aircraft airborne systems integration simulation

    YANG Chun-Hua Professor at the School of Automation, Central South University. She received her Ph.D. degree from Central South University in 2002. Her research interest covers complex industrial process modeling and optimization, fault diagnosis, and intelligent system

    LIAO Li-Qing Professor at the School of Automation, Central South University. He received his Ph.D. degree from Central South University in 2010. His research interest covers power electronics and power transmission, power system automation, and intelligent control of aircraft take-off and landing system

  • 摘要: 针对飞机在非对称运动下的双侧机轮协调控制问题, 提出一种基于滑模干扰估计的模型预测控制方法. 首先, 通过对飞机制动过程横纵方向力矩机理分析并分别考虑左右机轮对刹车性能的影响, 建立全面刻画系统动态的地面滑跑动力学模型. 在此基础上, 设计滑模观测器对侧风干扰进行实时估计, 利用补偿机制实现对侧风扰动的有效抑制. 此外, 提出基于前轮荷载状态门限特征和结合系数阈值范围特征的分析方法, 解决切换跑道环境辨识问题. 设计非线性模型预测算法, 实现飞机纵向防滑刹车和横向跑道纠偏的协调控制. 最后, 在侧风干扰、跑道切换以及不对称着陆等情况下进行仿真实验, 验证了所提出的控制策略能够有效提升刹车系统的防滑效率及纠偏性能.
  • 图  1  飞机高速滑跑阶段受力分析图

    Fig.  1  Force analysis diagram of aircraft during high speed landing

    图  2  飞机滑跑轮胎侧偏角及受力分析图

    Fig.  2  Tire sideslip angle and stress analysis diagram during aircraft landing

    图  3  飞机滑跑中左机轮受力分析图

    Fig.  3  Force analysis diagram of left wheel during aircraft landing

    图  4  滑移率−结合系数变化曲线图

    Fig.  4  Variation curve of slip ratio and adhesion coefficient

    图  5  跑道切换时结合系数变化示意图

    Fig.  5  Schematic diagram of adhesion coefficient change during runway switching

    图  6  飞机防滑刹车及纠偏控制架构

    Fig.  6  Aircraft anti-skid braking and deviation correction control architecture

    图  7  侧风干扰观测器仿真结果

    Fig.  7  Simulation results of crosswind disturbance observer

    图  8  跑道辨识仿真结果

    Fig.  8  Simulation results of runway identification

    图  9  无侧风、偏航状态下飞机防滑刹车及纠偏仿真结果

    Fig.  9  Simulation results of aircraft anti-skid braking and deviation correction under no crosswind and yaw conditions

    图  10  有侧风及偏航情况下飞机防滑刹车及纠偏仿真结果

    Fig.  10  Simulation results of aircraft anti-skid braking and deviation correction under crosswind and yaw conditions

    表  1  飞机刹车系统参数

    Table  1  Aircraft braking system parameters

    物理含义符号
    飞机质量 (kg)$ m $
    重力加速度 (m/s2)$ g $
    前轮到飞机重心的投影距离 (m)$ a $
    左右机轮到飞机重心的投影距离 (m)$ b $
    飞机左右机轮之间投影距离 (m)$ c $
    偏航力矩惯性积 (kg·m2)$ J $
    飞机高度 (m)$ h $
    飞机重心$ cg $
    偏航角 (°)$ \psi $
    飞机重力 (N)$ G $
    侧风干扰力 (N)$ Z $
    飞机剩余推力 (kg)$ {T_o} $
    飞机偏航距离 (m)$ {d_y} $
    飞机纵向阻力系数$ {\rho _D} $
    飞机偏航系数$ {\rho _\delta } $
    飞机升力系数$ {\rho _L} $
    发动机到飞机重心的距离 (m)$ {b_T} $
    尾舵到飞机重心的投影距离 (m)$ {b_\delta } $
    左右机轮角速度 (rad/s)$ {\omega _l} $,$ {\omega _r} $
    下载: 导出CSV

    表  2  结合系数模型参数

    Table  2  Parameters of adhesion coefficient model

    跑道状态$ D $$ C $$ B $$ Sp $
    干跑道0.81.534414.03260.117
    湿跑道0.42.01928.20980.120
    积雪跑道0.22.08757.20170.130
    下载: 导出CSV

    表  3  典型跑道特征值门限

    Table  3  Threshold of characteristic value of typical runway

    跑道状态$ Sp $$ \mu $$ {N_2} $
    干跑道0.1170.8100000
    湿跑道0.1200.470000
    积雪跑道0.1300.230000
    下载: 导出CSV

    表  4  典型跑道切换对应的结合系数变化量

    Table  4  Variation of adhesion coefficient corresponding to typical runway switching

    跑道状态干跑道湿跑道积雪跑道
    干跑道$ \left[ { - 0.39, - 0.41} \right] $$ \left[ { - 0.61, - 0.59} \right] $
    湿跑道$ \left[ {0.39,0.41} \right] $$ \left[ { - 0.21, - 0.19} \right] $
    积雪跑道$ \left[ {0.59,0.61} \right] $$ \left[ {0.19,0.21} \right] $
    下载: 导出CSV

    表  5  侧风干扰数据参数

    Table  5  Crosswind disturbance data parameters

    参数
    侧风角度90 °
    空气密度$ \rho $1.225 kg/m3
    机翼面积$ {S_w} $121.86 m2
    侧力系数$ {C_Y} $0.94
    侧风幅度$ {V_m} $15 m/s
    侧风时间$ {t_m} $3 s
    下载: 导出CSV

    表  6  飞机防滑刹车性能指标

    Table  6  Performance index of aircraft anti-skid braking

    性能指标仿真 3仿真 4
    左机轮结合系数效率 (%)99.8599.81
    右机轮结合系数效率 (%)99.8599.84
    刹车距离 (m)699.20700.51
    刹车时间 (s)15.9015.95
    最终偏航距离 (m)00.56
    最终偏航角度 (°)00
    下载: 导出CSV
  • [1] 宫綦, 张东辉. 基于ARP 4754A的民用飞机研制过程符合性应用实施研究. 航空科学技术, 2021, 32(11): 45−49

    Gong Qi, Zhang Dong-Hui. Research on compliance application implementation of civil aircraft development process based on ARP 4754A. Aeronautical Science & Technology, 2021, 32(11): 45−49
    [2] Shang Y X, Liu X C, Jiao Z X, Wu S. A novel integrated self-powered brake system for more electric aircraft. Chinese Journal of Aeronautics, 2018, 31(5): 976−989 doi: 10.1016/j.cja.2017.11.015
    [3] Mahvelatishamsabadi P, Emadi A. Electric propulsion system for exceptionally short takeoff and landing electric air vehicles. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1562−1576 doi: 10.1109/TTE.2020.2993609
    [4] 李繁飙, 黄培铭, 阳春华, 廖力清, 桂卫华. 基于非线性干扰观测器的飞机全电刹车系统滑模控制设计. 自动化学报, 2021, 47(11): 2557−2569

    Li Fan-Biao, Huang Pei-Ming, Yang Chun-Hua, Liao Li-Qing, Gui Wei-Hua. Sliding mode control design of aircraft electric brake system based on nonlinear disturbance observer. Acta Automatica Sinica, 2021, 47(11): 2557−2569
    [5] Shang Y X, Li X B, Qian H, Wu S, Pan Q X, Huang L G, Jiao Z X. A novel electro hydrostatic actuator system with energy recovery module for more electric aircraft. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2991−2999 doi: 10.1109/TIE.2019.2905834
    [6] Huang L G, Yu T, Jiao Z X, Li Y P. Active load-sensitive electro-hydrostatic actuator for more electric aircraft. Applied Sciences-Basel, 2020, 10(19): Article No. 6918
    [7] Barelli L, Bidini G, Bonucci F. An anti-skid controller for aircraft applications based on computational intelligence. International Journal of Automation and Control Engineering, 2013, 2(3): 101−112
    [8] 朱斌, 陈庆伟. 垂直/短距起降飞机的轨迹跟踪控制器设计. 自动化学报, 2019, 45(6): 1116−1176

    Zhu Bin, Chen Qing-Wei. Trajectory tracking controller design of vertical or short take off and landing aircraft. Acta Automatica Sinica, 2019, 45(6): 1116−1176
    [9] Jiao Z X, Liu X C, Li F Y, Shang Y X. Aircraft antiskid braking control method based on tire-runway friction model. Journal of Aircraft, 2017, 54(1): 75−84 doi: 10.2514/1.C033563
    [10] D’Avico L, Tanelli M, Savaresi S M. Tire-wear control in aircraft via active braking. IEEE Transactions on Control Systems Technology, 2020, 29(3): 984−995
    [11] Dai Y Q, Song J, Yu L Y, Lu Z H, Zheng S, Li F. The lateral control during aircraft-on-ground deceleration phases. Aerospace Science and Technology, 2019, 95: Article No. 105482
    [12] Chen B H, Jiao Z X, Shuzhi S G. Aircraft-on-ground path following control by dynamical adaptive backstepping. Chinese Journal of Aeronautics, 2013, 26(3): 668−675 doi: 10.1016/j.cja.2013.05.003
    [13] Bian Q, Nener B, Wang X. Control parameter tuning for aircraft crosswind landing via multi-solution particle swarm optimization. Engineering Optimization, 2018, 50(11): 1914−1925 doi: 10.1080/0305215X.2018.1435646
    [14] Xu B, Wang D W, Zhang Y M, Shi Z K. DOB-based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8678−8685
    [15] Jiao Z X, Wang Z Z, Sun D, Liu X C, Shang Y X, Wu S. A novel aircraft anti-skid brake control method based on runway maximum friction tracking algorithm. Aerospace Science and Technology, 2021, 110: Article No. 106482
    [16] Jiao Z X, Sun D, Shang Y X, Liu X C, Wu S. A high efficiency aircraft anti-skid brake control with runway identification. Aerospace Science and Technology, 2019, 91: 82−95 doi: 10.1016/j.ast.2019.05.001
    [17] Romulus L, Mihai L. Automatic control of aircraft in lateral-directional plane during landing. Asian Journal of Control, 2016, 18(2): 433−446 doi: 10.1002/asjc.1133
    [18] Greer W B, Sultan C. Shrinking horizon model predictive control method for helicopter-ship touchdown. Journal of Guidance Control and Dynamics, 2020, 43(5): 884−900 doi: 10.2514/1.G004374
    [19] Emami S A, Rezaeizadeh A. Adaptive model predictive control-based attitude and trajectory tracking of a VTOL aircraft. IET Control Theory and Applications, 2018, 12(15): 2031−2042 doi: 10.1049/iet-cta.2017.1048
    [20] Greer W B, Sultan C. Infinite horizon model predictive control tracking application to helicopters. Aerospace Science and Technology, 2020, 98: Article No. 105675
    [21] 金鸿章, 王帆, 马玲, 高妍南. 零航速减摇鳍两步主从控制律设计. 自动化学报, 2012, 38(6): 1059−1064 doi: 10.3724/SP.J.1004.2012.01059

    Jin Hong-Zhang, Wang Fan, Ma Ling, Gao Yan-Nan. Design a two-step master-slave control law for zero-speed fin stabilizers. Acta Automatica Sinica, 2012, 38(6): 1059−1064 doi: 10.3724/SP.J.1004.2012.01059
    [22] Li H P, Xie P, Yan W S. Receding horizon formation tracking control of constrained underactuated autonomous underwater vehicles. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5004−5013 doi: 10.1109/TIE.2016.2589921
    [23] Yang H L, Deng F, He Y, Jiao D M, Han Z L. Robust nonlinear model predictive control for reference tracking of dynamic positioning ships based on nonlinear disturbance observer. Ocean Engineering, 2020, 215: Article No. 107885
    [24] 付雅婷, 原俊荣, 李中奇, 杨辉. 基于钩缓约束的重载列车驾驶过程优化. 自动化学报, 2019, 45(12): 2355−2365

    Fu Ya-Ting, Yuan Jun-Rong, Li Zhong-Qi, Yang Hui. Optimization of heavy haul train operation process based on coupler constraints. Acta Automatica Sinica, 2019, 45(12): 2355−2365
    [25] Ji J, Khajepour A, Melek W W, Huang Y J. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology, 2017, 66(2): 952−964 doi: 10.1109/TVT.2016.2555853
    [26] 韩月起, 张凯, 宾洋, 秦闯, 徐云霄, 李小川, 等. 基于凸近似的避障原理及无人驾驶车辆路径规划模型预测算法. 自动化学报, 2020, 46(1): 153−167

    Han Yue-Qi, Zhang Kai, Bin Yang, Qin Chuang, Xu Yun-Xiao, Li Xiao-Chuan, et al. Convex approximation based avoidance theory and path planning MPC for driver-less vehicles. Acta Automatica Sinica, 2020, 46(1): 153−167
    [27] 韩吉霞, 马飞越, 佃松宜, 罗连杰, 胡怡. 基于非线性干扰观测器不确定系统的终端滑模控制, 光电与控制, 2020, 27(2): 29−34

    Han Ji-Xia, Ma Fei-Yue, Dian Song-Yi, Luo Lian-Jie, Hu Yi. Terminal sliding mode control for uncertain systems based on nonlinear disturbance observer. Electronic Optics & Control, 2020, 27(2): 29−34
    [28] Levant A. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 2003, 76(9-10): 924−941 doi: 10.1080/0020717031000099029
    [29] 刘晓宇, 荀径, 高士根, 阴佳腾. 高速列车精确停车的鲁棒自触发预测控制. 自动化学报, 2022, 48(1): 171−181

    Liu Xiao-Yu, Xun Jing, Gao Shi-Gen, Yin Jia-Teng. Robust self-triggered model predictive control for accurate stopping of high-speed trains. Acta Automatica Sinica, 2022, 48(1): 171−181
    [30] Chen X, Dai Z, Lin H, Qiu Y N, Liang X G. Asymmetric barrier Lyapunov function-based wheel slip control for antilock braking system. International Journal of Aerospace Engineering, 2015, 2015: 1−10
    [31] 高泽迥. 飞机设计手册第 14 册−起飞着陆系统设计. 北京: 航空工业出版社, 2002.

    Gao Ze-Jiong. Aircraft Design Manual Volume 14 Takeoff and Landing System Design. Beijing: Aviation Industry Press, 2002.
    [32] Dogan A, Lewis T A, Blake W. Flight data analysis and simulation of wind effects during aerial refueling. Journal of Aircraft, 2008, 45(6): 2036−2048 doi: 10.2514/1.36797
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  870
  • HTML全文浏览量:  194
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 录用日期:  2022-02-10
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回