Model Predictive Control of Aircraft Braking System Under Asymmetric Motion Based on Disturbance Estimation
-
摘要: 针对飞机在非对称运动下的双侧机轮协调控制问题, 提出一种基于滑模干扰估计的模型预测控制方法. 首先, 通过对飞机制动过程横纵方向力矩机理分析并分别考虑左右机轮对刹车性能的影响, 建立全面刻画系统动态的地面滑跑动力学模型. 在此基础上, 设计滑模观测器对侧风干扰进行实时估计, 利用补偿机制实现对侧风扰动的有效抑制. 此外, 提出基于前轮荷载状态门限特征和结合系数阈值范围特征的分析方法, 解决切换跑道环境辨识问题. 设计非线性模型预测算法, 实现飞机纵向防滑刹车和横向跑道纠偏的协调控制. 最后, 在侧风干扰、跑道切换以及不对称着陆等情况下进行仿真实验, 验证了所提出的控制策略能够有效提升刹车系统的防滑效率及纠偏性能.Abstract: In this paper, a model predictive control method based on sliding mode disturbance estimation is proposed to solve the problem of bilateral wheel coordinated control of aircraft in asymmetric motion. Firstly, by analyzing the mechanism of transverse and longitudinal torque in aircraft braking process and considering the influence of left and right wheel pairs on braking performance, a ground taxiing dynamic model is established which can comprehensively describe the system dynamics. Then, a sliding mode observer is designed to estimate the crosswind disturbance in real time, and the compensation mechanism is utilized to suppress the crosswind disturbance effectively. In addition, an analysis method based on the threshold characteristics of front wheel load state and the threshold range characteristics of adhesion coefficient is proposed to solve identification problem of switching runway environment. A nonlinear model prediction algorithm is designed to realize the coordinated control of aircraft longitudinal anti-skid braking and lateral runway deviation correction. Finally, simulation experiments are carried out under the conditions of crosswind disturbance, runway switching, and asymmetric landing. It is verified that the control strategy proposed in this paper can effectively improve the anti-skid efficiency and deviation correction performance of the braking system.
-
表 1 飞机刹车系统参数
Table 1 Aircraft braking system parameters
物理含义 符号 飞机质量 (kg) $ m $ 重力加速度 (m/s2) $ g $ 前轮到飞机重心的投影距离 (m) $ a $ 左右机轮到飞机重心的投影距离 (m) $ b $ 飞机左右机轮之间投影距离 (m) $ c $ 偏航力矩惯性积 (kg·m2) $ J $ 飞机高度 (m) $ h $ 飞机重心 $ cg $ 偏航角 (°) $ \psi $ 飞机重力 (N) $ G $ 侧风干扰力 (N) $ Z $ 飞机剩余推力 (kg) $ {T_o} $ 飞机偏航距离 (m) $ {d_y} $ 飞机纵向阻力系数 $ {\rho _D} $ 飞机偏航系数 $ {\rho _\delta } $ 飞机升力系数 $ {\rho _L} $ 发动机到飞机重心的距离 (m) $ {b_T} $ 尾舵到飞机重心的投影距离 (m) $ {b_\delta } $ 左右机轮角速度 (rad/s) $ {\omega _l} $,$ {\omega _r} $ 表 2 结合系数模型参数
Table 2 Parameters of adhesion coefficient model
跑道状态 $ D $ $ C $ $ B $ $ Sp $ 干跑道 0.8 1.5344 14.0326 0.117 湿跑道 0.4 2.0192 8.2098 0.120 积雪跑道 0.2 2.0875 7.2017 0.130 表 3 典型跑道特征值门限
Table 3 Threshold of characteristic value of typical runway
跑道状态 $ Sp $ $ \mu $ $ {N_2} $ 干跑道 0.117 0.8 100000 湿跑道 0.120 0.4 70000 积雪跑道 0.130 0.2 30000 表 4 典型跑道切换对应的结合系数变化量
Table 4 Variation of adhesion coefficient corresponding to typical runway switching
跑道状态 干跑道 湿跑道 积雪跑道 干跑道 — $ \left[ { - 0.39, - 0.41} \right] $ $ \left[ { - 0.61, - 0.59} \right] $ 湿跑道 $ \left[ {0.39,0.41} \right] $ — $ \left[ { - 0.21, - 0.19} \right] $ 积雪跑道 $ \left[ {0.59,0.61} \right] $ $ \left[ {0.19,0.21} \right] $ — 表 5 侧风干扰数据参数
Table 5 Crosswind disturbance data parameters
参数 值 侧风角度 90 ° 空气密度$ \rho $ 1.225 kg/m3 机翼面积$ {S_w} $ 121.86 m2 侧力系数$ {C_Y} $ 0.94 侧风幅度$ {V_m} $ 15 m/s 侧风时间$ {t_m} $ 3 s 表 6 飞机防滑刹车性能指标
Table 6 Performance index of aircraft anti-skid braking
性能指标 仿真 3 仿真 4 左机轮结合系数效率 (%) 99.85 99.81 右机轮结合系数效率 (%) 99.85 99.84 刹车距离 (m) 699.20 700.51 刹车时间 (s) 15.90 15.95 最终偏航距离 (m) 0 0.56 最终偏航角度 (°) 0 0 -
[1] 宫綦, 张东辉. 基于ARP 4754A的民用飞机研制过程符合性应用实施研究. 航空科学技术, 2021, 32(11): 45−49Gong Qi, Zhang Dong-Hui. Research on compliance application implementation of civil aircraft development process based on ARP 4754A. Aeronautical Science & Technology, 2021, 32(11): 45−49 [2] Shang Y X, Liu X C, Jiao Z X, Wu S. A novel integrated self-powered brake system for more electric aircraft. Chinese Journal of Aeronautics, 2018, 31(5): 976−989 doi: 10.1016/j.cja.2017.11.015 [3] Mahvelatishamsabadi P, Emadi A. Electric propulsion system for exceptionally short takeoff and landing electric air vehicles. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1562−1576 doi: 10.1109/TTE.2020.2993609 [4] 李繁飙, 黄培铭, 阳春华, 廖力清, 桂卫华. 基于非线性干扰观测器的飞机全电刹车系统滑模控制设计. 自动化学报, 2021, 47(11): 2557−2569Li Fan-Biao, Huang Pei-Ming, Yang Chun-Hua, Liao Li-Qing, Gui Wei-Hua. Sliding mode control design of aircraft electric brake system based on nonlinear disturbance observer. Acta Automatica Sinica, 2021, 47(11): 2557−2569 [5] Shang Y X, Li X B, Qian H, Wu S, Pan Q X, Huang L G, Jiao Z X. A novel electro hydrostatic actuator system with energy recovery module for more electric aircraft. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2991−2999 doi: 10.1109/TIE.2019.2905834 [6] Huang L G, Yu T, Jiao Z X, Li Y P. Active load-sensitive electro-hydrostatic actuator for more electric aircraft. Applied Sciences-Basel, 2020, 10(19): Article No. 6918 [7] Barelli L, Bidini G, Bonucci F. An anti-skid controller for aircraft applications based on computational intelligence. International Journal of Automation and Control Engineering, 2013, 2(3): 101−112 [8] 朱斌, 陈庆伟. 垂直/短距起降飞机的轨迹跟踪控制器设计. 自动化学报, 2019, 45(6): 1116−1176Zhu Bin, Chen Qing-Wei. Trajectory tracking controller design of vertical or short take off and landing aircraft. Acta Automatica Sinica, 2019, 45(6): 1116−1176 [9] Jiao Z X, Liu X C, Li F Y, Shang Y X. Aircraft antiskid braking control method based on tire-runway friction model. Journal of Aircraft, 2017, 54(1): 75−84 doi: 10.2514/1.C033563 [10] D’Avico L, Tanelli M, Savaresi S M. Tire-wear control in aircraft via active braking. IEEE Transactions on Control Systems Technology, 2020, 29(3): 984−995 [11] Dai Y Q, Song J, Yu L Y, Lu Z H, Zheng S, Li F. The lateral control during aircraft-on-ground deceleration phases. Aerospace Science and Technology, 2019, 95: Article No. 105482 [12] Chen B H, Jiao Z X, Shuzhi S G. Aircraft-on-ground path following control by dynamical adaptive backstepping. Chinese Journal of Aeronautics, 2013, 26(3): 668−675 doi: 10.1016/j.cja.2013.05.003 [13] Bian Q, Nener B, Wang X. Control parameter tuning for aircraft crosswind landing via multi-solution particle swarm optimization. Engineering Optimization, 2018, 50(11): 1914−1925 doi: 10.1080/0305215X.2018.1435646 [14] Xu B, Wang D W, Zhang Y M, Shi Z K. DOB-based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8678−8685 [15] Jiao Z X, Wang Z Z, Sun D, Liu X C, Shang Y X, Wu S. A novel aircraft anti-skid brake control method based on runway maximum friction tracking algorithm. Aerospace Science and Technology, 2021, 110: Article No. 106482 [16] Jiao Z X, Sun D, Shang Y X, Liu X C, Wu S. A high efficiency aircraft anti-skid brake control with runway identification. Aerospace Science and Technology, 2019, 91: 82−95 doi: 10.1016/j.ast.2019.05.001 [17] Romulus L, Mihai L. Automatic control of aircraft in lateral-directional plane during landing. Asian Journal of Control, 2016, 18(2): 433−446 doi: 10.1002/asjc.1133 [18] Greer W B, Sultan C. Shrinking horizon model predictive control method for helicopter-ship touchdown. Journal of Guidance Control and Dynamics, 2020, 43(5): 884−900 doi: 10.2514/1.G004374 [19] Emami S A, Rezaeizadeh A. Adaptive model predictive control-based attitude and trajectory tracking of a VTOL aircraft. IET Control Theory and Applications, 2018, 12(15): 2031−2042 doi: 10.1049/iet-cta.2017.1048 [20] Greer W B, Sultan C. Infinite horizon model predictive control tracking application to helicopters. Aerospace Science and Technology, 2020, 98: Article No. 105675 [21] 金鸿章, 王帆, 马玲, 高妍南. 零航速减摇鳍两步主从控制律设计. 自动化学报, 2012, 38(6): 1059−1064 doi: 10.3724/SP.J.1004.2012.01059Jin Hong-Zhang, Wang Fan, Ma Ling, Gao Yan-Nan. Design a two-step master-slave control law for zero-speed fin stabilizers. Acta Automatica Sinica, 2012, 38(6): 1059−1064 doi: 10.3724/SP.J.1004.2012.01059 [22] Li H P, Xie P, Yan W S. Receding horizon formation tracking control of constrained underactuated autonomous underwater vehicles. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5004−5013 doi: 10.1109/TIE.2016.2589921 [23] Yang H L, Deng F, He Y, Jiao D M, Han Z L. Robust nonlinear model predictive control for reference tracking of dynamic positioning ships based on nonlinear disturbance observer. Ocean Engineering, 2020, 215: Article No. 107885 [24] 付雅婷, 原俊荣, 李中奇, 杨辉. 基于钩缓约束的重载列车驾驶过程优化. 自动化学报, 2019, 45(12): 2355−2365Fu Ya-Ting, Yuan Jun-Rong, Li Zhong-Qi, Yang Hui. Optimization of heavy haul train operation process based on coupler constraints. Acta Automatica Sinica, 2019, 45(12): 2355−2365 [25] Ji J, Khajepour A, Melek W W, Huang Y J. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology, 2017, 66(2): 952−964 doi: 10.1109/TVT.2016.2555853 [26] 韩月起, 张凯, 宾洋, 秦闯, 徐云霄, 李小川, 等. 基于凸近似的避障原理及无人驾驶车辆路径规划模型预测算法. 自动化学报, 2020, 46(1): 153−167Han Yue-Qi, Zhang Kai, Bin Yang, Qin Chuang, Xu Yun-Xiao, Li Xiao-Chuan, et al. Convex approximation based avoidance theory and path planning MPC for driver-less vehicles. Acta Automatica Sinica, 2020, 46(1): 153−167 [27] 韩吉霞, 马飞越, 佃松宜, 罗连杰, 胡怡. 基于非线性干扰观测器不确定系统的终端滑模控制, 光电与控制, 2020, 27(2): 29−34Han Ji-Xia, Ma Fei-Yue, Dian Song-Yi, Luo Lian-Jie, Hu Yi. Terminal sliding mode control for uncertain systems based on nonlinear disturbance observer. Electronic Optics & Control, 2020, 27(2): 29−34 [28] Levant A. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control, 2003, 76(9-10): 924−941 doi: 10.1080/0020717031000099029 [29] 刘晓宇, 荀径, 高士根, 阴佳腾. 高速列车精确停车的鲁棒自触发预测控制. 自动化学报, 2022, 48(1): 171−181Liu Xiao-Yu, Xun Jing, Gao Shi-Gen, Yin Jia-Teng. Robust self-triggered model predictive control for accurate stopping of high-speed trains. Acta Automatica Sinica, 2022, 48(1): 171−181 [30] Chen X, Dai Z, Lin H, Qiu Y N, Liang X G. Asymmetric barrier Lyapunov function-based wheel slip control for antilock braking system. International Journal of Aerospace Engineering, 2015, 2015: 1−10 [31] 高泽迥. 飞机设计手册第 14 册−起飞着陆系统设计. 北京: 航空工业出版社, 2002.Gao Ze-Jiong. Aircraft Design Manual Volume 14 Takeoff and Landing System Design. Beijing: Aviation Industry Press, 2002. [32] Dogan A, Lewis T A, Blake W. Flight data analysis and simulation of wind effects during aerial refueling. Journal of Aircraft, 2008, 45(6): 2036−2048 doi: 10.2514/1.36797