[1]
|
Tomazi K G, Linninger A A, Daniel J R. Batch processing industries. Batch Processes. Boca Raton, FL: CRC Press, 2006. 7−39
|
[2]
|
Myerson A S. Handbook of Industrial Crystallization. London, UK: Butterworths-Heinemann, 2001.
|
[3]
|
Tchobanoglous G, Burton F L, Stensel H D. Wastewater Engineering: Treatment and Reuse (4th edition). New York: McGraw-Hill, 2003.
|
[4]
|
Liu T, Gao F R. Industrial Process Identification and Control Design. London: Springer-Verlag, 2012.
|
[5]
|
McCormick K. Manufacturing in Global Pharmaceutical Industry. London: Urch, 2003.
|
[6]
|
Schmidt E, Winkelbauer J, Puchas G, Henrich D, Krenkel W. Robot-based fiber spray process for small batch production. Annals of Scientific Society for Assembly, Handling and Industrial Robotics. Berlin, Heidelberg: Springer Vieweg, 2020. 295−305
|
[7]
|
Mazurek J, Ashford N A. Making Microchips: Policy, Globalization, and Economic Restructuring in the Semiconductor Industry. Cambridge, MA: MIT Press, 1998.
|
[8]
|
卢静宜, 曹志兴, 高福荣. 批次过程控制: 回顾与展望. 自动化学报, 2017, 43(6): 933-943Lu Jing-Yi, Cao Zhi-Xing, Gao Fu-Rong. Batch process control--overview and outlook. Acta Automatica Sinica, 2017, 43(6): 933-943
|
[9]
|
Yang Y, Gao F R. Injection velocity control using a self-tuning adaptive controller. International Polymer Processing, 1999, 14(2): 196-204 doi: 10.3139/217.1537
|
[10]
|
Yang Y, Gao F R. Adaptive control of the filling velocity of thermoplastics injection molding. Control Engineering Practice, 2000, 8(11): 1285-1296 doi: 10.1016/S0967-0661(00)00060-5
|
[11]
|
Nagy Z, Agachi S. Model predictive control of a PVC batch reactor. Computer & Chemical Engineering, 1997, 21(6): 571-591
|
[12]
|
Nagy Z K, Braatz R D. Robust nonlinear model predictive control of batch processes. AIChE Journal, 2003, 49(7): 1776-1786 doi: 10.1002/aic.690490715
|
[13]
|
Stenz R, Kuhn U. Automation of a batch distillation column using fuzzy and conventional control. IEEE Transactions on Control Systems Technology, 1995, 3(2): 171-176 doi: 10.1109/87.388125
|
[14]
|
Frey C W, Kuntze H B. A neuro-fuzzy supervisory control system for industrial batch processes. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 570-577 doi: 10.1109/91.940969
|
[15]
|
Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140 doi: 10.1002/rob.4620010203
|
[16]
|
Lee K S, Bang S H, Yi S, Son J S, Yoon S C. Iterative learning control of heat-up phase for a batch polymerization reactor. Journal of Process Control, 1996, 6(4): 255-262 doi: 10.1016/0959-1524(96)00048-0
|
[17]
|
Lee J H, Lee K S. Iterative learning control applied to batch processes: An overview. Control Engineering Practice, 2007, 15(10): 1306-1318 doi: 10.1016/j.conengprac.2006.11.013
|
[18]
|
Liu T, Gao F R. Robust two-dimensional iterative learning control for batch processes with state delay and time-varying uncertainties. Chemical Engineering Science, 2010, 65(23): 6134-6144 doi: 10.1016/j.ces.2010.08.031
|
[19]
|
Gao F R, Yang Y, Shao C. Robust iterative learning control with applications to injection molding process. Chemical Engineering Science, 2001, 56(24): 7025-7034 doi: 10.1016/S0009-2509(01)00339-6
|
[20]
|
Shi J, Gao F R, Wu T J. Robust iterative learning control design for batch processes with uncertain perturbations and initialization. AIChE Journal, 2006, 52(6): 2171-2187 doi: 10.1002/aic.10835
|
[21]
|
Hao S L, Liu T, Paszke W, Galkowski K. Robust iterative learning control for batch processes with input delay subject to time-varying uncertainties. IET Control Theory & Applications, 2016, 10(15): 1904-1915
|
[22]
|
Chi R H, Hou Z S, Xu J X. Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition. Automatica, 2008, 44(8): 2207-2213 doi: 10.1016/j.automatica.2007.12.004
|
[23]
|
Tayebi A. Adaptive iterative learning control for robot manipulators. Automatica, 2004, 40(7): 1195-1203 doi: 10.1016/j.automatica.2004.01.026
|
[24]
|
Li X D, Xiao T F, Zheng H X. Adaptive discrete-time iterative learning control for non-linear multiple input multiple output systems with iteration-varying initial error and reference trajectory. IET Control Theory & Applications, 2011, 5(9): 1131-1139
|
[25]
|
Chi R H, Hou Z S, Jin S T. A data-driven adaptive ILC for a class of nonlinear discrete-time systems with random initial states and iteration-varying target trajectory. Journal of the Franklin Institute, 2015, 352(6): 2407-2424 doi: 10.1016/j.jfranklin.2015.03.014
|
[26]
|
Márquez-Vera M A, Ramos-Velasco L E, Suárez-Cansino J, Márquez-Vera C A. Fuzzy iterative learning control applied in a biological reactor using a reduced number of measures. Applied Mathematics and Computation, 2014, 246: 608-618 doi: 10.1016/j.amc.2014.08.072
|
[27]
|
Jia L, Shi J P, Chiu M S. Integrated neuro-fuzzy model and dynamic R-parameter based quadratic criterion-iterative learning control for batch process. Neurocomputing, 2012, 98: 24-33 doi: 10.1016/j.neucom.2011.05.046
|
[28]
|
Wang Y C, Chien C J, Teng C C. Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(3): 1348-1359 doi: 10.1109/TSMCB.2004.824525
|
[29]
|
Xiong Z H, Zhang J. A batch-to-batch iterative optimal control strategy based on recurrent neural network models. Journal of Process Control, 2005, 15(1): 11-21 doi: 10.1016/j.jprocont.2004.04.005
|
[30]
|
Li D W, He S Y, Xi Y G, Liu T, Gao F R, Wang Y Q, et al. Synthesis of ILC-MPC controller with data-driven approach for constrained batch processes. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3116-3125 doi: 10.1109/TIE.2019.2910034
|
[31]
|
Chi R H, Hou Z S, Jin S T, Huang B. An improved data-driven point-to-point ILC using additional on-line control inputs with experimental verification. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(4): 687-696 doi: 10.1109/TSMC.2017.2693397
|
[32]
|
Wang Y Q, Liu T, Zhao Z. Advanced PI control with simple learning set-point design: Application on batch processes and robust stability analysis. Chemical Engineering Science, 2012, 71: 153-165 doi: 10.1016/j.ces.2011.12.028
|
[33]
|
Liu T, Wang X Z, Chen J H. Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties. Journal of Process Control, 2014, 24(12): 95-106 doi: 10.1016/j.jprocont.2014.07.002
|
[34]
|
Shen C, Shi Y, Buckham B. Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5796-5805 doi: 10.1109/TIE.2017.2779442
|
[35]
|
Yue M, An C, Li Z J. Constrained adaptive robust trajectory tracking for WIP vehicles using model predictive control and extended state observer. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(5): 733-742 doi: 10.1109/TSMC.2016.2621181
|
[36]
|
Bone G M. A novel iterative learning control formulation of generalized predictive control. Automatica, 1995, 31(10): 1483-1487 doi: 10.1016/0005-1098(95)00051-W
|
[37]
|
Lee K S, Chin I S, Lee H J, Lee J H. Model predictive control technique combined with iterative learning for batch processes. AIChE Journal, 1999, 45(10): 2175-2187 doi: 10.1002/aic.690451016
|
[38]
|
Lee K S, Lee J H. Convergence of constrained model-based predictive control for batch processes. IEEE Transactions on Automatic Control, 2000, 45(10): 1928-1932 doi: 10.1109/TAC.2000.881002
|
[39]
|
Chin I, Qin S J, Lee K S, Cho M. A two-stage iterative learning control technique combined with real-time feedback for independent disturbance rejection. Automatica, 2004, 40(11): 1913-1922 doi: 10.1016/j.automatica.2004.05.011
|
[40]
|
Xiong Z H, Zhang J, Wang X, Xu Y M. Tracking control for batch processes through integrating batch-to-batch iterative learning control and within-batch on-line control. Industrial & Engineering Chemistry Research, 2005, 44(11): 3983-3992
|
[41]
|
Wang L M, Zhang R D, Gao F R. Iterative learning predictive control for batch processes. Iterative Learning Stabilization and Fault-Tolerant Control for Batch Processes. Singapore: Springer, 2020. 189−214
|
[42]
|
Mo S Y, Wang L M, Yao Y, Gao F R. Two-time dimensional dynamic matrix control for batch processes with convergence analysis against the 2D interval uncertainty. Journal of Process Control, 2012, 22(5): 899-914 doi: 10.1016/j.jprocont.2012.03.002
|
[43]
|
Shi J, Gao F R, Wu T J. Single-cycle and multi-cycle generalized 2D model predictive iterative learning control (2D-GPILC) schemes for batch processes. Journal of Process Control, 2007, 17(9): 715-727 doi: 10.1016/j.jprocont.2007.02.002
|
[44]
|
Shi J, Zhou H, Cao Z K, Jiang Q Y. A design method for indirect iterative learning control based on two-dimensional generalized predictive control algorithm. Journal of Process Control, 2014, 24(10): 1527-1537 doi: 10.1016/j.jprocont.2014.07.004
|
[45]
|
Shi J, Yang B, Cao Z K, Zhou H, Yang Y. Two-dimensional generalized predictive control (2D-GPC) scheme for the batch processes with two-dimensional (2D) dynamics. Multidimensional Systems and Signal Processing, 2015, 26(4): 941-966 doi: 10.1007/s11045-015-0336-5
|
[46]
|
Liu X J, Kong X B. Nonlinear fuzzy model predictive iterative learning control for drum-type boiler-turbine system. Journal of Process Control, 2013, 23(8): 1023-1040 doi: 10.1016/j.jprocont.2013.06.004
|
[47]
|
Wang Y Q, Zhou D H, Gao F R. Iterative learning model predictive control for multi-phase batch processes. Journal of Process Control, 2008, 18(6): 543-557 doi: 10.1016/j.jprocont.2007.10.014
|
[48]
|
Oh S K, Lee J M. Iterative learning model predictive control for constrained multivariable control of batch processes. Computers & Chemical Engineering, 2016, 93: 284-292
|
[49]
|
Oh S K, Lee J M. Iterative learning control integrated with model predictive control for real-time disturbance rejection of batch processes. Journal of Chemical Engineering of Japan, 2017, 50(6): 415-421 doi: 10.1252/jcej.16we333
|
[50]
|
Zhang R D, Gao F R. Two-dimensional iterative learning model predictive control for batch processes: A new state space model compensation approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 833-841 doi: 10.1109/TSMC.2018.2883754
|
[51]
|
Oh S K, Park B J, Lee J M. Point-to-point iterative learning model predictive control. Automatica, 2018, 89: 135-143 doi: 10.1016/j.automatica.2017.11.010
|
[52]
|
Li D W, Xi Y G, Lu J Y, Gao F R. Synthesis of real-time-feedback-based 2D iterative learning control-model predictive control for constrained batch processes with unknown input nonlinearity. Industrial & Engineering Chemistry Research, 2016, 55(51): 13074-13084
|
[53]
|
Zhang R D, Xue A K, Wang J Z, Wang S Q, Ren Z Y. Neural network based iterative learning predictive control design for mechatronic systems with isolated nonlinearity. Journal of Process Control, 2009, 19(1): 68-74 doi: 10.1016/j.jprocont.2008.01.008
|
[54]
|
Lu J Y, Cao Z X, Gao F R. Multipoint iterative learning model predictive control. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6230-6240 doi: 10.1109/TIE.2018.2873133
|
[55]
|
Jia L, Han C, Chiu M S. Dynamic R-parameter based integrated model predictive iterative learning control for batch processes. Journal of Process Control, 2017, 49: 26-35 doi: 10.1016/j.jprocont.2016.11.003
|
[56]
|
Ma L L, Liu X J, Kong X B, Lee K Y. Iterative learning model predictive control based on iterative data-driven modeling. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3377-3390 doi: 10.1109/TNNLS.2020.3016295
|
[57]
|
Guo H Q, Liu C Z, Yong J W, Cheng X Q, Muhammad F. Model predictive iterative learning control for energy management of plug-In hybrid electric vehicle. IEEE Access, 2019, 7: 71323-71334 doi: 10.1109/ACCESS.2019.2919684
|
[58]
|
Wu S, Jin Q B, Zhang R D, Zhang J F, Gao F R. Improved design of constrained model predictive tracking control for batch processes against unknown uncertainties. ISA Transactions, 2017, 69: 273-280 doi: 10.1016/j.isatra.2017.04.006
|
[59]
|
Lu J Y, Cao Z X, Gao F R. Ellipsoid invariant set-based robust model predictive control for repetitive processes with constraints. IET Control Theory & Applications, 2016, 10(9): 1018-1026
|
[60]
|
Park B J, Oh S K, Lee J M. Stochastic iterative learning model predictive control based on stochastic approximation. IFAC-PapersOnLine, 2019, 52(1): 604-609 doi: 10.1016/j.ifacol.2019.06.129
|
[61]
|
Long Y S, Xie L H. Iterative learning stochastic MPC with adaptive constraint tightening for building HVAC systems. IFAC-PapersOnLine, 2020, 53(2): 11577-11582 doi: 10.1016/j.ifacol.2020.12.636
|
[62]
|
Lu J Y, Cao Z X, Wang Z, Gao F R. A two-stage design of two-dimensional model predictive iterative learning control for nonrepetitive disturbance attenuation. Industrial & Engineering Chemistry Research, 2015, 54(21): 5683-5689
|
[63]
|
Lee J H, Lee K S, Kim W C. Model-based iterative learning control with a quadratic criterion for time-varying linear systems. Automatica, 2000, 36(5): 641-657 doi: 10.1016/S0005-1098(99)00194-6
|
[64]
|
Ahn H S, Chen Y Q, Moore K L. Iterative learning control: Brief survey and categorization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(6): 1099-1121 doi: 10.1109/TSMCC.2007.905759
|
[65]
|
Michalska H, Mayne D Q. Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, 1993, 38(11): 1623-1633 doi: 10.1109/9.262032
|
[66]
|
陆宁云, 王福利, 高福荣, 王姝. 间歇过程的统计建模与在线监测. 自动化学报, 2006, 32(3): 400-410Lu Ning-Yun, Wang Fu-Li, Gao Fu-Rong, Wang Shu. Statistical modeling and online monitoring for batch processes. Acta Automatica Sinica, 2006, 32(3): 400-410
|
[67]
|
赵春晖, 王福利, 姚远, 高福荣. 基于时段的间歇过程统计建模、在线监测及质量预报. 自动化学报, 2010, 36(3): 366-374 doi: 10.3724/SP.J.1004.2010.00366Zhao Chun-Hui, Wang Fu-Li, Yao Yuan, Gao Fu-Rong. Phase-based statistical modeling, online monitoring and quality prediction for batch processes. Acta Automatica Sinica, 2010, 36(3): 366-374 doi: 10.3724/SP.J.1004.2010.00366
|
[68]
|
Zhu J L, Wang Y Q, Zhou D H, Gao F R. Batch process modeling and monitoring with local outlier factor. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1552-1565 doi: 10.1109/TCST.2018.2815545
|
[69]
|
孙明轩, 黄宝健. 迭代学习控制. 北京: 国防工业出版社, 1999.Sun Ming-Xuan, Huang Bao-Jian. Iterative Learning Control. Beijing: National Defense Industry Press, 1999.
|
[70]
|
池荣虎, 侯忠生, 黄彪. 间歇过程最优迭代学习控制的发展: 从基于模型到数据驱动. 自动化学报, 2017, 43(6): 917-932Chi Rong-Hu, Hou Zhong-Sheng, Huang Biao. Optimal iterative learning control of batch processes: From model-based to data-driven. Acta Automatica Sinica, 2017, 43(6): 917-932
|
[71]
|
席裕庚. 预测控制. 北京: 国防工业出版社, 1993.Xi Yu-Geng. Predictive Control. Beijing: National Defense Industry Press, 1993.
|
[72]
|
陈虹. 模型预测控制. 北京: 科学出版社, 2013.Chen Hong. Model Predictive Control. Beijing: Science Press, 2013.
|
[73]
|
Yu Q X, Hou Z S, Bu X H, Yu Q F. RBFNN-based data-driven predictive iterative learning control for nonaffine nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(4): 1170-1182 doi: 10.1109/TNNLS.2019.2919441
|
[74]
|
Anand E, Panneerselvam R. A study of crossover operators for genetic algorithm and proposal of a new crossover operator to solve open shop scheduling problem. American Journal of Industrial & Business Management, 2016, 6(6): 774-789
|
[75]
|
Kordestani J K, Rezvanian A, Meybodi M R. An efficient oscillating inertia weight of particle swarm optimisation for tracking optima in dynamic environments. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28(1-2): 137-149
|
[76]
|
Pang C Y, Hu W, Li X, Hu B Q. Apply local clustering method to improve the running speed of ant colony optimization. arXiv preprint arXiv: 0907.1012v2, 2009.
|
[77]
|
Chuang L Y, Hsiao C J, Yang C H. Chaotic particle swarm optimization for data clustering. Expert Systems with Applications, 2011, 38(12): 14555-14563 doi: 10.1016/j.eswa.2011.05.027
|
[78]
|
Hu X Q, Beratan D N, Yang W T. A gradient-directed Monte Carlo approach to molecular design. The Journal of Chemical Physics, 2008, 129(6): Article No. 064102
|
[79]
|
Gorski J, Pfeuffer F, Klamroth K. Biconvex sets and optimization with biconvex functions: A survey and extensions. Mathematical Methods of Operations Research, 2007, 66(3): 373-407 doi: 10.1007/s00186-007-0161-1
|
[80]
|
Xu J X, Yan R. On initial conditions in iterative learning control. IEEE Transactions on Automatic Control, 2005, 50(9): 1349-1354 doi: 10.1109/TAC.2005.854613
|
[81]
|
Park K H. An average operator-based PD-type iterative learning control for variable initial state error. IEEE Transactions on Automatic Control, 2005, 50(6): 865-869 doi: 10.1109/TAC.2005.849249
|
[82]
|
Sun M X, Wang D W. Initial condition issues on iterative learning control for non-linear systems with time delay. International Journal of Systems Science, 2001, 32(11): 1365-1375 doi: 10.1080/00207720110052021
|
[83]
|
Fang Y, Chow T W S. 2-D analysis for iterative learning controller for discrete-time systems with variable initial conditions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, 50(5): 722-727 doi: 10.1109/TCSI.2003.811029
|
[84]
|
Meng D Y, Jia Y M, Du J P, Yuan S Y. Robust discrete-time iterative learning control for nonlinear systems with varying initial state shifts. IEEE Transactions on Automatic Control, 2009, 54(11): 2626-2631 doi: 10.1109/TAC.2009.2031564
|
[85]
|
Chi R H, Hou Z S, Jin S T. Data-weighting based discrete-time adaptive iterative learning control for nonsector nonlinear systems with iteration-varying trajectory and random initial condition. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(2): Article No. 021016
|
[86]
|
Oh S K, Lee J M. Stochastic iterative learning control for discrete linear time-invariant system with batch-varying reference trajectories. Journal of Process Control, 2015, 36: 64-78 doi: 10.1016/j.jprocont.2015.09.008
|
[87]
|
Xiao T F, Li X D, Ho J K L. An adaptive discrete-time ILC strategy using fuzzy systems for iteration-varying reference trajectory tracking. International Journal of Control, Automation & Systems, 2015, 13(1): 222-230
|
[88]
|
Li X F, Xu J X, Huang D Q. An iterative learning control approach for linear systems with randomly varying trial lengths. IEEE Transactions on Automatic Control, 2014, 59(7): 1954-1960 doi: 10.1109/TAC.2013.2294827
|
[89]
|
Li X F, Xu J X, Huang D Q. Iterative learning control for nonlinear dynamic systems with randomly varying trial lengths. International Journal of Adaptive Control & Signal Processing, 2015, 29(11): 1341-1353
|
[90]
|
Shi J T, He X, Zhou D H. Iterative learning control for nonlinear stochastic systems with variable pass length. Journal of the Franklin Institute, 2016, 353(15): 4016-4038 doi: 10.1016/j.jfranklin.2016.07.005
|
[91]
|
Liu S D, Wang J R. Fractional order iterative learning control with randomly varying trial lengths. Journal of the Franklin Institute, 2017, 354(2): 967-992 doi: 10.1016/j.jfranklin.2016.11.004
|
[92]
|
Shen D, Zhang W, Wang Y Q, Chien C J. On almost sure and mean square convergence of P-type ILC under randomly varying iteration lengths. Automatica, 2016, 63: 359-365 doi: 10.1016/j.automatica.2015.10.050
|
[93]
|
Shen D, Zhang W, Xu J X. Iterative learning control for discrete nonlinear systems with randomly iteration varying lengths. Systems & Control Letters, 2016, 96: 81-87
|
[94]
|
Wei Y S, Li X D. Robust higher-order ILC for non-linear discrete-time systems with varying trail lengths and random initial state shifts. IET Control Theory & Applications, 2017, 11(15): 2440-2447
|
[95]
|
Meng D Y, Zhang J Y. Deterministic convergence for learning control systems over iteration-dependent tracking intervals. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3885-3892 doi: 10.1109/TNNLS.2017.2734843
|
[96]
|
Zeng C, Shen D, Wang J R. Adaptive learning tracking for uncertain systems with partial structure information and varying trial lengths. Journal of the Franklin Institute, 2018, 355(15): 7027-7055 doi: 10.1016/j.jfranklin.2018.07.031
|
[97]
|
Shen D, Xu J X. Adaptive learning control for nonlinear systems with randomly varying iteration lengths. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1119-1132 doi: 10.1109/TNNLS.2018.2861216
|
[98]
|
Yu Q X, Hou Z S. Adaptive fuzzy iterative learning control for high-speed trains with both randomly varying operation lengths and system constraints. IEEE Transactions on Fuzzy Systems, 2021, 29(8): 2408-2418 doi: 10.1109/TFUZZ.2020.2999958
|
[99]
|
Jin X. Iterative learning control for MIMO nonlinear systems with iteration-varying trial lengths using modified composite energy function analysis. IEEE Transactions on Cybernetics, 2021, 51(12): 6080-6090 doi: 10.1109/TCYB.2020.2966625
|
[100]
|
Yin C K, Xu J X, Hou Z S. A high-order internal model based iterative learning control scheme for nonlinear systems with time-iteration-varying parameters. IEEE Transactions on Automatic Control, 2010, 55(11): 2665-2670 doi: 10.1109/TAC.2010.2069372
|
[101]
|
Yin C K, Xu J X, Hou Z S. An ILC scheme for a class of nonlinear continuous-time systems with time-iteration-varying parameters subject to second-order internal model. Asian Journal of Control, 2011, 13(1): 126-135 doi: 10.1002/asjc.320
|
[102]
|
Yu M, Li C Y. Robust adaptive iterative learning control for discrete-time nonlinear systems with time-iteration-varying parameters. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1737-1745 doi: 10.1109/TSMC.2017.2677959
|
[103]
|
Yu M, Chai S. Adaptive iterative learning control for discrete-time nonlinear systems with multiple iteration-varying high-order internal models. International Journal of Robust and Nonlinear Control, 2021, 31(15): 7390-7408 doi: 10.1002/rnc.5690
|
[104]
|
Meng D Y, Moore K L. Robust iterative learning control for nonrepetitive uncertain systems. IEEE Transactions on Automatic Control, 2017, 62(2): 907-913 doi: 10.1109/TAC.2016.2560961
|
[105]
|
Meng D Y, Moore K L. Convergence of iterative learning control for SISO nonrepetitive systems subject to iteration-dependent uncertainties. Automatica, 2017, 79: 167-177 doi: 10.1016/j.automatica.2017.02.009
|
[106]
|
Meng D Y. Convergence conditions for solving robust iterative learning control problems under nonrepetitive model uncertainties. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(6): 1908-1919 doi: 10.1109/TNNLS.2018.2874977
|
[107]
|
Altin B, Willems J, Oomen T, Barton K. Iterative learning control of iteration-varying systems via robust update laws with experimental implementation. Control Engineering Practice, 2017, 62: 36-45 doi: 10.1016/j.conengprac.2017.02.005
|
[108]
|
Hao S L, Liu T, Rogers E. Extended state observer based indirect-type ILC for single-input single-output batch processes with time- and batch-varying uncertainties. Automatica, 2020, 112: Article No. 108673 doi: 10.1016/j.automatica.2019.108673
|
[109]
|
Jin S T, Hou Z S, Chi R H. A novel data-driven terminal iterative learning control with iteration prediction algorithm for a class of discrete-time nonlinear systems. Journal of Applied Mathematics, 2014, 2014: Article No. 307809
|
[110]
|
Yu Q X, Hou Z S. Data-driven predictive iterative learning control for a class of multiple-input and multiple-output nonlinear systems. Transactions of the Institute of Measurement and Control, 2016, 38(3): 266-281 doi: 10.1177/0142331215592692
|
[111]
|
Bigras P, Lambert M, Perron C. Robust force controller for industrial robots: Optimal design and real-time implementation on a KUKA robot. IEEE Transactions on Control Systems Technology, 2012, 20(2): 473-479 doi: 10.1109/TCST.2011.2112661
|
[112]
|
Hwang C L, Hung J Y. Stratified adaptive finite-time tracking control for nonlinear uncertain generalized vehicle systems and its application. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1308-1316 doi: 10.1109/TCST.2018.2810851
|
[113]
|
Sahu J N, Gangadharan P, Patwardhan A V, Meikap B C. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction. Industrial & Engineering Chemistry Research, 2009, 48(2): 727-734
|
[114]
|
Zhou L M, Jia L, Wang Y L. Quadratic-criterion-based model predictive iterative learning control for batch processes using just-in-time-learning method. IEEE Access, 2019, 7: 113335-113344 doi: 10.1109/ACCESS.2019.2934474
|
[115]
|
Liu X J, Ma L L, Kong X B, Lee K Y. An efficient iterative learning predictive functional control for nonlinear batch processes. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2020.3021978
|
[116]
|
马乐乐, 刘向杰. 非线性快速批次过程高效迭代学习预测函数控制. 自动化学报, 2022, 48(2): 515-530Ma Le-Le, Liu Xiang-Jie. A high efficiency iterative learning predictive functional control for nonlinear fast batch processes. Acta Automatica Sinica, 2022, 48(2): 515-530
|
[117]
|
Rosolia U, Ames A D. Iterative model predictive control for piecewise systems. IEEE Control Systems Letters, 2022, 6: 842-847 doi: 10.1109/LCSYS.2021.3086561
|
[118]
|
Liang C, Zou Y, Cai C X. Robust predictive iterative learning control for linear time-varying systems. Asian Journal of Control, 2022, 24(1): 333-343 doi: 10.1002/asjc.2477
|
[119]
|
Qiu W W, Xiong Z H, Zhang J, Hong Y D, Li W Z. Integrated predictive iterative learning control based on updating reference trajectory for point-to-point tracking. Journal of Process Control, 2020, 85: 41-51 doi: 10.1016/j.jprocont.2019.11.003
|
[120]
|
Liu X J, Ma L L, Kong X B, Lee K Y. Robust model predictive iterative learning control for iteration-varying-reference batch processes. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4238-4250 doi: 10.1109/TSMC.2019.2931314
|
[121]
|
马乐乐, 刘向杰. 变参考轨迹下的鲁棒迭代学习模型预测控制. 自动化学报, 2019, 45(10): 1933-1945Ma Le-Le, Liu Xiang-Jie. Robust model predictive iterative learning control with iteration-varying reference trajectory. Acta Automatica Sinica, 2019, 45(10): 1933-1945
|
[122]
|
Lin N, Chi R H, Huang B. Auxiliary predictive compensation-based ILC for variable pass lengths. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4048-4056 doi: 10.1109/TSMC.2019.2930670
|
[123]
|
Yang B, Xu Z H, Yang Y, Gao F R. Application of two-dimensional predictive functional control in injection molding. Industrial & Engineering Chemistry Research, 2015, 54(41): 10088-10102
|
[124]
|
李茜, 夏伯锴. 注塑机注射速度的模型预测迭代学习控制. 控制工程, 2009, 16(4): 429-431 doi: 10.3969/j.issn.1671-7848.2009.04.014Li Qian, Xia Bo-Kai. Model prediction iterative learning control of ram velocity for injection molding machines. Control Engineering of China, 2009, 16(4): 429-431 doi: 10.3969/j.issn.1671-7848.2009.04.014
|
[125]
|
Balaji S, Fuxman A, Lakshminarayanan S, Forbes J F, Hayes R E. Repetitive model predictive control of a reverse flow reactor. Chemical Engineering Science, 2007, 62(8): 2154-2167 doi: 10.1016/j.ces.2006.12.082
|
[126]
|
Marquez-Ruiz A, Loonen M, Saltik M B, Özkan L. Model learning predictive control for batch processes: A reactive batch distillation column case study. Industrial & Engineering Chemistry Research, 2019, 58(30): 13737-13749
|
[127]
|
Bo C M, Yang L, Huang Q Q, Li J, Gao F R. 2D multi-model general predictive iterative learning control for semi-batch reactor with multiple reactions. Journal of Central South University, 2017, 24(11): 2613-2623 doi: 10.1007/s11771-017-3675-6
|
[128]
|
Lautenschlager B, Lichtenberg G. Data-driven iterative learning for model predictive control of heating systems. IFAC-PapersOnLine, 2016, 49(13): 175-180 doi: 10.1016/j.ifacol.2016.07.947
|
[129]
|
Wang Y Q, Dassau E, Doyle F J. Closed-loop control of artificial pancreatic β-cell in type 1 diabetes mellitus using model predictive iterative learning control. IEEE Transactions on Biomedical Engineering, 2010, 57(2): 211-219 doi: 10.1109/TBME.2009.2024409
|
[130]
|
Wang Y Q, Zisser H, Dassau E, Jovanovič L, Doyle F J III. Model predictive control with learning-type set-point: Application to artificial pancreatic β-cell. AIChE Journal, 2010, 56(6): 1510-1518 doi: 10.1002/aic.12081
|
[131]
|
杨跃男, 王友清. 内模强化学习型模型预测控制及其在人工胰脏上的应用. 控制理论与应用, 2012, 29(8): 1057-1062Yang Yue-Nan, Wang You-Qing. Internal model control-enhanced learning-type model predictive control: Application to artificial pancreas. Control Theory & Applications, 2012, 29(8): 1057-1062
|
[132]
|
Xie S W, Ren J. High-speed AFM imaging via iterative learning-based model predictive control. Mechatronics, 2019, 57: 86-94 doi: 10.1016/j.mechatronics.2018.11.008
|
[133]
|
Chin I S, Lee K S, Lee J H. A technique for integrated quality control, profile control, and constraint handling for batch processes. Industrial & Engineering Chemistry Research, 2000, 39(3): 693-705
|
[134]
|
Lee K S, Lee J H. A generic framework for integrated quality and profile control for industrial batch processes. IFAC Proceedings Volumes, 2001, 34(25): 53-63 doi: 10.1016/S1474-6670(17)33801-6
|
[135]
|
Lee K S, Lee J H. Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables. Journal of Process Control, 2003, 13(7): 607-621 doi: 10.1016/S0959-1524(02)00096-3
|
[136]
|
Dong C C, Chin I, Lee K S, Rho H, Rhee H, Lee J H. Integrated quality and tracking control of a batch PMMA reactor using a QBMPC technique. Computers & Chemical Engineering, 2000, 24(2-7): 953-958
|
[137]
|
柴天佑, 复杂工业过程运行优化与反馈控制. 自动化学报, 2013, 39(11): 1744-1757 doi: 10.3724/SP.J.1004.2013.01744Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11): 1744-1757 doi: 10.3724/SP.J.1004.2013.01744
|
[138]
|
Chai T Y, Qin S J, Wang H. Optimal operational control for complex industrial processes. Annual Reviews in Control, 2014, 38(1): 81-92 doi: 10.1016/j.arcontrol.2014.03.005
|
[139]
|
Scattolini R. Architectures for distributed and hierarchical Model Predictive Control--a review. Journal of Process Control, 2009, 19(5): 723-731 doi: 10.1016/j.jprocont.2009.02.003
|
[140]
|
邹涛, 潘昊, 丁宝苍, 于海斌. 双层结构预测控制研究进展. 控制理论与应用, 2014, 31(10): 1327-1337 doi: 10.7641/CTA.2014.31295Zou Tao, Pan Hao, Ding Bao-Cang, Yu Hai-Bin. Research development of two-layered predictive control. Control Theory & Applications, 2014, 31(10): 1327-1337 doi: 10.7641/CTA.2014.31295
|
[141]
|
Rawlings J B, Amrit R. Optimizing process economic performance using model predictive control. Nonlinear Model Predictive Control. Berlin Heidelberg: Springer, 2009. 119−138
|
[142]
|
Diehl M, Amrit R, Rawlings J B. A Lyapunov function for economic optimizing model predictive control. IEEE Transactions on Automatic Control, 2011, 56(3): 703-707 doi: 10.1109/TAC.2010.2101291
|
[143]
|
Ellis M, Durand H, Christofides P D. A tutorial review of economic model predictive control methods. Journal of Process Control, 2014, 24(8): 1156-1178 doi: 10.1016/j.jprocont.2014.03.010
|
[144]
|
Cai X, Sun P, Chen J H, Xie L. ILC strategy for progress improvement of economic performance in industrial model predictive control systems. Journal of Process Control, 2014, 24(12): 107-118 doi: 10.1016/j.jprocont.2014.09.010
|
[145]
|
Lu P C, Chen J H, Xie L. Iterative learning control (ILC)-based economic optimization for batch processes using helpful disturbance information. Industrial & Engineering Chemistry Research, 2018, 57(10): 3717-3731
|
[146]
|
Lu P C, Chen J H, Xie L. Disturbance-based alternate feedback control scheme to enhance economic performance of batch processes. Industrial & Engineering Chemistry Research, 2019, 58(10): 4143-4153
|
[147]
|
Long Y S, Xie L H, Liu S. Nontracking type iterative learning control based on economic model predictive control. International Journal of Robust and Nonlinear Control, 2020, 30(18): 8564-8582 doi: 10.1002/rnc.5261
|
[148]
|
Morrison J, Nagamune R, Grebenyuk V. An iterative learning approach to economic model predictive control for an integrated solar thermal system. IFAC-PapersOnLine, 2020, 53(2): 12777-12782 doi: 10.1016/j.ifacol.2020.12.1930
|
[149]
|
Heidarinejad M, Liu J F, Christofides P D. Economic model predictive control of nonlinear process systems using Lyapunov techniques. AIChE Journal, 2012, 58(3): 855-870 doi: 10.1002/aic.12672
|