2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向航空母舰甲板运动状态预估的鲁棒学习模型

王可 徐明亮 李亚飞 姜晓恒 鲁爱国 李鉴

王卓, 王成红. 复杂无向图的同构判定方法. 自动化学报, 2024, 50(6): 1143−1150 doi: 10.16383/j.aas.c230612
引用本文: 王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴. 一种面向航空母舰甲板运动状态预估的鲁棒学习模型. 自动化学报, 2024, 50(9): 1785−1793 doi: 10.16383/j.aas.c210664
Wang Zhuo, Wang Cheng-Hong. Isomorphism determination methods for complex undirected graphs. Acta Automatica Sinica, 2024, 50(6): 1143−1150 doi: 10.16383/j.aas.c230612
Citation: Wang Ke, Xu Ming-Liang, Li Ya-Fei, Jiang Xiao-Heng, Lu Ai-Guo, Li Jian. A robust learning model for deck motion prediction of aircraft carrier. Acta Automatica Sinica, 2024, 50(9): 1785−1793 doi: 10.16383/j.aas.c210664

一种面向航空母舰甲板运动状态预估的鲁棒学习模型

doi: 10.16383/j.aas.c210664 cstr: 32138.14.j.aas.c210664
基金项目: 国家自然科学基金 (62036010, 61972362, 61802351), 中国博士后科学基金 (2020M682348), 海洋防务技术创新中心创新基金 (JJ-2022-709-01), 河南省自然科学基金 (232300421235)资助
详细信息
    作者简介:

    王可:郑州大学计算机与人工智能学院讲师. 主要研究方向为基于计算智能的优化与学习. E-mail: iekwang@zzu.edu.cn

    徐明亮:郑州大学计算机与人工智能学院教授. 主要研究方向为计算机图形学, 人工智能. 本文通信作者. E-mail: iexumingliang@zzu.edu.cn

    李亚飞:郑州大学计算机与人工智能学院教授. 主要研究方向为群体智能与机器学习.E-mail: ieyfei@zzu.edu.cn

    姜晓恒:郑州大学计算机与人工智能学院副教授. 主要研究方向为深度学习, 机器视觉.E-mail: jiangxiaoheng@zzu.edu.cn

    鲁爱国:武汉数字工程研究所研究员. 主要研究方向为信息系统与软件, 人机交互.E-mail: aigwx@163.edu.com

    李鉴:武汉数字工程研究所研究员. 主要研究方向为信息系统与软件. E-mail: lij1015@sina.com

A Robust Learning Model for Deck Motion Prediction of Aircraft Carrier

Funds: Supported by National Natural Science Foundation of China (62036010, 61972362, 61802351), China Postdoctoral Science Foundation (2020M682348), Innovation Foundation of Ocean Defense Technology Innovation Center (JJ-2022-709-01), and Natural Science Foundation of Henan Province (232300421235)
More Information
    Author Bio:

    WANG Ke Lecturer at the School of Computer and Artificial Intelligence, Zhengzhou University. His research interest covers computational intelligence based optimization and learning

    XU Ming-Liang Professor at the School of Computer and Artificial Intelligence, Zhengzhou University. His research interest covers computer graphics and artificial intelligence. Corresponding author of this paper

    LI Ya-Fei Professor at the School of Computer and Artificial Intelligence, Zhengzhou University. His research interest covers swarm intelligence and machine learning

    JIANG Xiao-Heng Associate professor at the School of Computer and Artificial Intelligence, Zhengzhou University. His research interest covers deep learning and computer vision

    LU Ai-Guo Professor at Wuhan Digital Engineering Institute. His research interest covers information system and software, and human-computer interaction

    LI Jian Professor at Wuhan Digital Engineering Institute. His research interest covers information system and software

  • 摘要: 航母甲板在风、浪、流等因素影响下做六自由度不规则运动, 影响舰载机着舰精度. 航母甲板运动预估与补偿是自动着舰系统的重要功能之一, 也是提高舰载机着舰安全性与成功率的关键技术之一. 为此, 提出一种面向甲板运动预估的鲁棒学习模型, 通过基本构建单元自适应演化出复杂学习系统. 构建单元的训练采用非梯度的伪逆学习策略, 提高了训练效率, 简化了学习控制超参数调优; 构建单元的架构设计采用数据驱动的策略, 简化了架构超参数调优; 采用图拉普拉斯正则化方法提高了模型对噪声和意外扰动的鲁棒性. 通过某型航母在中等海况条件下以典型航速巡航时的仿真实验, 验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性.
  • 图的同构判定在有机化学、计算机科学和人工智能(机器学习或模式识别中常使用图的邻接矩阵特征值来判定两个对象是否为同一个对象)等领域有着重要的应用[13]. 上世纪前半叶, 与图同构相关的问题主要围绕图的邻接矩阵特征值及其应用展开[4], 取得若干重要的理论成果和一批应用成果; 其中一个重要的发现是, 两个互不同构的无向图却具有相同的邻接矩阵特征多项式, 即用邻接矩阵特征多项式判定两个无向图是否同构有时会得出错误的结果[4].

    上世纪70年代, Karp和Johnson认为图的同构判定问题是少数几个既不能归类为 P 问题也不能归类为 NP 的问题[1, 3]. 此后, 该问题成为理论计算机领域的公开问题并受到广泛重视. 1982年, Luks给出一个当时最好的两图同构判定算法, 其时间复杂度是$\exp ({\text{O(}}\sqrt {n\log n} {\text{)}}$)[56] ($ n $为图的顶点数). 此后40多年来, 几百篇这方面的文章得以在不同的学术期刊上发表[1]. 2015年, Babai[6]在Luks算法的基础上, 给出两图同构判定问题的拟多项式算法, 其时间复杂度是$ \exp ({(\log n)^{{\text{O(1)}}}}) $. Babai的工作虽然是一个重要进展, 但图的同构判定问题是否在多项式时间内可解仍然悬而未决[1, 3].

    图的同构判定问题的另一研究路径是设计可执行的判定算法, 大致可以分为传统和非传统两类判定算法. 传统判定算法有两类: 1) 针对一些特殊图[78] (如树和极大外平面图)的同构判定算法(如Ullman算法和Schmidt算法等[9]). 2) 针对一般简单图的同构判定算法, 如一些放在因特网上用于测试两图是否同构的程序(如Nauty和Saucy等[3, 6]). 非传统判定算法也有两类: 1) 基于遗传算法和神经网络的智能判定算法. 这些算法将图的同构判定问题转化为一类优化求解问题, 但其判定结果并不完全可靠. 2) 基于DNA计算[9]和量子计算的判定算法. 这类算法虽然高效, 但不能回答图的同构判定是 P 问题还是 NP 问题. 无向连通图的距离矩阵是素矩阵(邻接矩阵一般不是素矩阵), 它具有邻接矩阵所没有的独特性质[10]. 文献[10]揭示了简单无向图同构与距离矩阵同构之间的一般关系, 将基于邻接矩阵的同构判定条件推广到距离矩阵, 给出几个适合一般简单无向图的同构判定条件. 这些条件均是充要条件且均具有多项式时间复杂度. 上述成果是近年来图同构研究方面的一个重要进展.

    简单无向图的同构关系可由其距离矩阵的同构关系确定, 但复杂无向图却不能. 其根本原因在于: 复杂无向图中的自环和顶点间的重边对顶点间的距离没有影响[10]; 换言之, 自环数或重边数不同的复杂无向图可能具有完全相同的距离矩阵. 因文献[10]所给的判定条件不能用于复杂无向图, 故寻找和发现复杂无向图的同构判定条件既是必须的也是重要的. 本文的主要贡献是: 1) 针对一般复杂无向图的同构判定问题, 给出了基于邻接矩阵之和的特征多项式判定条件. 2) 针对复杂无向连通图的同构判定问题, 给出了基于距离矩阵特征多项式和邻接矩阵特征多项式的同构判定条件. 将该条件用于复杂无向不连通图的各个连通子图, 就可解决复杂无向不连通图的同构判定问题. 上述两个判定条件均是充要条件且均具有多项式时间复杂度. 此外, 当复杂无向图退化为简单无向图时, 上述两个判定条件仍然适用.

    定义1[4, 1112]. 图$ G $是一个二元组, 记作$ G = \langle V, E \rangle $, 其中:

    1) $ V = \{ {v_1},\;{v_2},\; \cdots ,\;{v_n}\left| {\left| V \right| = n,\;{\text{ 1}} \le n < \infty } \right.\} $, $ {v_i} \in V $称为$ G $的顶点, $ V $称为$ G $的顶点集.

    2) $ E = \{ {e_1},\;{e_2},\; \cdots ,\;{e_m}\left| {\left| E \right| = m,\;{\text{ 0}} \le m < \infty } \right.\} $, $ {e_j} \in E $称为$ G $的边, $ E $称为$ G $的边集.

    3) $ \forall {e_j} \in E $: $ {e_j} $为无向边时, 称$ G $为无向图, $ {e_j} $为有向边时, 称$ G $为有向图.

    4) 连接同一顶点的边称为自环, 两顶点间的多条无向边或多条方向相同的有向边称为重边. 既无自环也无重边的图称为简单图, 否则称为复杂图.

    在现有文献报道的复杂无向图中, 每个顶点最多有一个自环. 若无特别声明, 本文讨论的均是顶点最多有一个自环的复杂无向图.

    定义2[1113]. 设$ G = \left\langle {V,\;E} \right\rangle $是无向图, $ V = \{ {v_1}, {v_2},\; \cdots ,\;{v_n}\} $. 若$ {v_i} $和$ {v_j} $之间有$ k $ ($ k = 0,\;1,\; \cdots $)条边, 令$ {a_{ij}} = k $; 称由元素$ {a_{ij}} $构成的矩阵$ A({a_{ij}}) \in {{\bf{R}}^{n \times n}} $为无向图$ G $的邻接矩阵.

    定义2既适合简单无向图也适合复杂无向图($ {a_{ij}} \in \{ 0,\;1,\;2,\; \cdots \} $). 无向图的邻接矩阵是非负整数对称矩阵.

    定义3[14]. 设$ {I_n} \in {{\bf{R}}^{n \times n}} $为单位矩阵, 交换$ {I_n} $的第$ i $行和第$ j $行(或第$ i $列与第$ j $列)所得的矩阵$ P(i,\;j) $称为对换矩阵, 对换矩阵的乘积称为置换矩阵.

    引理1[14]. 对换矩阵和置换矩阵具有如下性质:

    1) 置换矩阵的乘积仍是置换矩阵;

    2) 设$ Q $是置换矩阵, 则$ \det (Q) = \pm 1 $;

    3) 设$ Q $是置换矩阵, 则$ {Q^{\text{T}}} $和$ {Q^{ - 1}} $也是置换矩阵, 且$ {Q^{\text{T}}} = {Q^{ - 1}} $;

    4) 置换矩阵是正交矩阵;

    5) 置换矩阵是幂幺矩阵, 即若$ Q $是置换矩阵, 则$ {Q^m} = {I_n} $, $ m $是某自然数.

    由定义3和引理1可知, 对换矩阵和$ {I_n} $也是置换矩阵.

    定义4[10]. 设$ A,\;B \in {{\bf{R}}^{n \times n}} $, $ \Omega \subset {{\bf{R}}^{n \times n}} $为全体$ n $阶置换矩阵的集合. 若存在置换矩阵$ Q \in \Omega $, 使得$ A = {Q^{\text{T}}}BQ $, 则称$ A $与$ B $同构, 记作$ A \cong B $; 此外, 称$ {Q^{\text{T}}}BQ $是对$ B $的同构变换.

    图的同构问题可以这样表述: 给定两个图, 当忽略图中顶点标号、顶点间相对位置、边的长短和曲直信息时, 问这两个图是否具有相同的结构?

    定义5[4, 1213]. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_2} = $ $ \langle {V_2}, {E_{\text{2}}} \rangle $是两个图. 若存在一个从$ {V_1} $到$ {V_2} $的一一映射$ g $: $ \forall {v_i},\;{v_j} \in {V_1} $, $ {v_i} $至$ {v_j} $有$ k $条边, 当且仅当$ g({v_i}), g({v_j}) \in {V_2} $, 且$ g({v_i}) $至$ g({v_j}) $也有$ k $条边, 则称$ {G_1} $和$ {G_2} $同构, 记作$ {G_1} \cong {G_2} $.

    定义5既适合简单图也适合复杂图($ k \in \{ 0, 1,\;2,\; \cdots \} $).

    引理2[1011]. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_2} = $$ \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个图, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n $, $ A $与$ B $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, 则$ {G_1} \cong {G_2} $的充要条件是存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ A = {Q^{\text{T}}}BQ $.

    引理2适合一切无向和有向图. 由定义4和引理2可知, 两图同构与该两图的邻接矩阵同构等价.

    定义6[4, 1013]. 设$ G = \left\langle {V,\;E} \right\rangle $是无向图, $ V = \{ {v_1},\;{v_2},\; \cdots ,\;{v_n}\} $, $ E = \{ {e_1},\;{e_2},\; \cdots ,\;{e_m}\} $: 1) $ G $中顶点与边的交替序列$ W = {v_1}{e_1}{v_2}{e_2} \cdots {v_k}{e_k}{v_{k + 1}} $ ($ k \le n - 1 $)称为$ G $的链, 各边互异的链称为迹, 各顶点互异的链称为路, 当$ W $是路时, $ W $中的边数$ k $称为$ W $的长度, 记作$ k = \left| W \right| $; 2) 设$ {v_i} $和$ {v_j} $是$ V $中任意两个顶点, 当$ {v_i} $和$ {v_j} $之间有$ s $条路$ {W_s}{\text{ }} $时, 称$ d({v_i},\;{v_j}) = $$ \min \{ {k_p} = \left| {{W_p}} \right|\left| {1 \le p \le s} \right.\} $为$ {v_i} $和$ {v_j} $之间的距离; 若$ {v_i} $和$ {v_j} $之间无路($ G $不连通), 约定$ d({v_i},\;{v_j}) = \infty $.

    定义7[10, 13]. 设$ G = \left\langle {V,\;E} \right\rangle $是无向图, $ V = \{ {v_1}, {v_2},\; \cdots ,\;{v_n}\} $, $ {d_{ij}} = d({v_i},\;{v_j}) $表示顶点$ {v_i} $和$ {v_j} $($ 1 \le i, j \le n $)之间的距离: 当$ i = j $时, 令$ {d_{ii}} = 0 $; 当$ i \ne j $且$ d({v_i},\;{v_j}) = k $ ($ d({v_i},\;{v_j}) = \infty $)时, 令$ {d_{ij}} = k $$ ({d_{ij}} = \infty ) $, 其中$ k \ge 1 $为正整数, 称由元素$ {d_{ij}} $构成的矩阵$ D({d_{ij}}) \in {{\bf{R}}^{n \times n}} $为无向图$ G $的距离矩阵.

    由定义6和定义7可知: 1) 复杂无向图中的自环和顶点间的重边对顶点间的距离没有影响; 2) 当$ G $是无向连通图时, 距离矩阵$ D $是对角线元素均为零而其他元素均为正整数的对称矩阵.

    定义8[1213]. 设$ {G_n} = \left\langle {V,\;E} \right\rangle $是简单无向图, $ V = \{ {v_1},\;{v_2},\; \cdots ,\;{v_n}\} $, $ n \ge 2 $, 若$ \forall i \ne j $, $ {v_i} $和$ {v_j} $之间恰有一条边, 则称$ {G_n} $为无向完全图, 其邻接矩阵记为$ {A_n} $.

    由定义2和定义8可知, $ {A_n} $的对角线元素均为0而其他元素均为1. 设$ {G_n} $的距离矩阵为$ {D_n} $, 由定义7可知, $ {D_n} = {A_n} $, 即$ {A_n} $既是$ {G_n} $的邻接矩阵又是$ {G_n} $的距离矩阵.

    定义9. 设$ { T} \subset {{\bf{R}}^{n \times n}} $$ (n \ge 2) $表示全体$ n $阶正交矩阵的集合; $ {\Omega ^ - } = \{ - S\left| {S \in \Omega } \right.\} $表示全体$ n $阶负置换矩阵的集合; $ \Phi = \Omega \cup {\Omega ^ - } $表示全体$ n $阶置换矩阵和全体$ n $阶负置换矩阵的并集; $ \Theta = { T} - \Phi $表示$ { T} $中除$ \Phi $之外全体$ n $阶正交矩阵的集合.

    由定义9和正交矩阵的性质可知: $ \Theta \cap \Phi = \emptyset $($ \emptyset $为空集), $ \Theta \cup \Phi = { T} $; $ \forall {Q_1},\;{Q_2} \in \Phi $, $ {Q_1}{Q_2} \in \Phi $; $ \forall Q \in \Phi $, $ \forall P \in \Theta $, $ QP,\;{\text{ }}PQ \in \Theta $; $ \forall P \in \Theta $, $ \forall E \in \Phi $, $ \forall Q \in { T} $且$ Q \ne E{P^{\text{T}}} $, $ QP,\;{\text{ }}PQ \in \Theta $.

    为简便计, $ \forall A \in {{\bf{R}}^{n \times n}} $$ (n \ge 2) $, 本文用$ {f_\lambda }(A) $表示$ A $的特征多项式 $ \det (\lambda {I_n} - A) $, 即$ {f_\lambda }(A) = \det (\lambda {I_n} - A) $.

    推论1. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_{\text{2}}} = \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个无向图, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n $, $ A $与$ B $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, 若$ {f_\lambda }(A) \ne {f_\lambda }(B) $, 则$ {G_1} $和$ {G_2} $不同构.

    证明. 设$ {f_\lambda }(A) \ne {f_\lambda }(B) $时, $ {G_1} \cong {G_2} $. 由引理2可知, 当$ {G_1} \cong {G_2} $时, 存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ A = {Q^{\text{T}}}BQ $. 由此, $ {f_\lambda }(A) = $ $ {f_\lambda }({Q^{\text{T}}}BQ) = {f_\lambda }(B) $, 与假设相矛盾. 故$ {f_\lambda }(A) \ne {f_\lambda }(B) $时, $ {G_1} $和$ {G_2} $不同构.

    推论1既适合简单无向图也适合复杂无向图. 需要强调的是, 即使$ {f_\lambda }(A) = {f_\lambda }(B) $, 也不能保证$ {G_1} $和$ {G_2} $同构. 邻接矩阵特征多项式相等仅是两个无向图同构的必要条件[10, 15].

    设$ A({a_{ij}}) \in {{\bf{R}}^{n \times n}} $$ (n \ge 2) $是对称矩阵: 若$ {a_{ij}} $全是正整数, 则称$ A $为正整数对称矩阵; 若$ {a_{ij}} $为零或正整数, 则称$ A $为非负整数对称矩阵.

    引理3[10]. 设$ A \in {{\bf{R}}^{n \times n}} $$ (n \ge 2) $是对角线元素均为1而其他元素均为正整数的对称矩阵, 则$ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是正整数对称矩阵.

    引理4[14]. 设$ A \in {{\bf{R}}^{n \times n}} $, 则$ A $为正交矩阵的充要条件是存在正交矩阵$ P \in { T} $, 使得

    $$ {P^{\text{T}}}AP = {P^{ - 1}}AP = \left[ {\begin{array}{*{20}{c}} {{I_s}}&{}&{} \\ {}&{ - {I_t}}&{} \\ {}&{}&{{H_\theta }} \end{array}} \right] = {P_\theta } $$

    其中, $ {I_s} $与$ I_{t} $分别是$ s $阶和$ t $阶单位矩阵,

    $$ {H_\theta } = \left[ {\begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} {\cos {\theta _1}}&{\sin {\theta _1}} \\ { - \sin {\theta _1}}&{\cos {\theta _1}} \end{array}} \right]}&{}&{} \\ {}& \ddots &{} \\ {}&{}&{\left[ {\begin{array}{*{20}{c}} {\cos {\theta _k}}&{\sin {\theta _k}} \\ { - \sin {\theta _k}}&{\cos {\theta _k}} \end{array}} \right]} \end{array}} \right] $$

    $ s + t + 2k = n $, $ {\theta _j} \in {\bf{R}} $$ (1 \le j \le k) $为实数.

    由正交矩阵的定义可知, $ {P_\theta } $和$ {H_\theta } $均是正交矩阵.

    定理1. 设$ A \in {{\bf{R}}^{n \times n}} $$ (n \ge 2) $是对角线元素为0或1而其他元素均为正整数的对称矩阵, 则$ \forall P \in \Theta $, $ {P^{\text{T}}}AP $既不是正整数对称矩阵也不是非负整数对称矩阵.

    证明. 当$ A $的对角线元素全为1时, 由引理3可知, $ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是正整数对称矩阵. 当$ A $的对角线元素全为0时, 设$ B = A + {I_n} $. 由引理3可知, $ \forall P \in \Theta $, $ {P^{\text{T}}}BP $不是正整数对称矩阵. 因$ {P^{\text{T}}}BP = {P^{\text{T}}}AP + {I_n} $, 故$ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是非负整数对称矩阵. 当$ A $的对角线元素不全为0也不全为1时, 以下用归纳法证明: $ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是非负整数对称矩阵.

    当$ n = 2 $时, 设

    $$ A = \left[ {\begin{array}{*{20}{c}} {{\delta _1}}&a \\ a&{{\delta _2}} \end{array}} \right] ,\; P = \left[ {\begin{array}{*{20}{c}} {\cos \theta }&{\sin \theta } \\ { - \sin \theta }&{\cos \theta } \end{array}} \right] $$

    其中, $ {\delta _1},\;{\delta _2} \in \{ 0,\;1\} $, $ {\delta _1} + {\delta _2} = 1 $, $ a \ge 1 $为正整数, $ \theta \in {\bf{R}} $. 设$ {\vartheta _1} = \sin 2\theta $, $ {\vartheta _2} = \cos 2\theta $, $ C = {P^{\text{T}}}AP $, 可得

    $$ C = \left[ {\begin{array}{*{20}{c}} {{{\sin }^2}\theta + {\delta _1}{\vartheta _2} - a{\vartheta _1}}&{({\delta _1} - 0.5){\vartheta _1} + a{\vartheta _2}} \\ {({\delta _1} - 0.5){\vartheta _1} + a{\vartheta _2}}&{{{\cos }^2}\theta - {\delta _1}{\vartheta _2} + a{\vartheta _1}} \end{array}} \right] $$

    当$ \theta \ne \pm k\pi $$ (k = 0,\;1,\;2,\; \cdots ) $时, $ P \in \Theta $, $ C $不是非负整数对称矩阵($ C $的元素中有负数或小数). 当$ P \in \Theta $时, 由定义9和引理4可知, 对一切2阶正交矩阵$ E \in \Phi $, $ Z \in {\rm T} $且$ Z \ne E{P^{ - 1}} $, 则: 1) $ {J_1} = ZP \in \Theta $, $ {J_2} = PZ \in \Theta $, $ {J_3} = {Z^{\text{T}}}PZ \in \Theta $; 2) $ J_1^{\text{T}}A{J_1} $, $ J_2^{\text{T}}A{J_2} $, $ J_3^{\text{T}}A{J_3} $均不是非负整数对称矩阵. 由此, 对一切2阶正交矩阵$ J \in \Theta $, $ {J^{\text{T}}}AJ $不是非负整数对称矩阵.

    当$ n = 3 $时, 设

    $$ A = \left[ {\begin{array}{*{20}{c}} {{\delta _1}}&{{a_1}}&{{a_2}} \\ {{a_1}}&{{\delta _2}}&{{a_3}} \\ {{a_2}}&{{a_3}}&{{\delta _3}} \end{array}} \right] ,\; P = \left[ {\begin{array}{*{20}{c}} \delta &0&0 \\ 0&{\cos \theta }&{\sin \theta } \\ 0&{ - \sin \theta }&{\cos \theta } \end{array}} \right] $$

    其中, $ {\delta _1},\;{\delta _2},\;{\delta _3} \in \{ 0,\;1\} $, $ 1 \le {\delta _1} + {\delta _2} + {\delta _3} \le 2 $, $ {a_i} \ge 1 $ $ (1 \le i \le 3) $为正整数, $ \delta = \pm 1 $, $ \theta \in {\bf{R}} $. 设$ {\vartheta _1} = \sin 2\theta $, $ {\vartheta _2} = \cos 2\theta $, $ \alpha (\theta ) = {a_1}\cos \theta - {a_2}\sin \theta $, $ \beta (\theta ) = {a_1}\sin \theta $ $ +{a_2}\cos \theta $, $ \eta = {\delta _2} - {\delta _3} $, $ \mu (\theta ) = \eta {\sin ^2}\theta $, $ C = {P^{\mathrm{T}}}AP $, 可得

    $$ C = \left[ {\begin{array}{*{20}{c}} {{\delta _1}}&{\delta \alpha (\theta )}&{\delta \beta (\theta )} \\ {\delta \alpha (\theta )}&{{\delta _2} - \mu (\theta ) - {a_3}{\vartheta _1}}&{0.5\eta {\vartheta _1} + {a_3}{\vartheta _2}} \\ {\delta \beta (\theta )}&{0.5\eta {\vartheta _1} + {a_3}{\vartheta _2}}&{{\delta _3} + \mu (\theta ) + {a_3}{\vartheta _1}} \end{array}} \right] $$

    当$ \delta = 1 $且 $ \theta \ne \pm 2l\pi $$ (l = 0,\;1,\;2,\; \cdots ) $, 或者$ \delta = - 1 $且$ \theta \ne \pm h\pi $ ($ h $为奇数)时, $ P \in \Theta $, $ C $不是非负整数对称矩阵. 类似$ n = 2 $时的分析可得, 对一切3阶正交矩阵$ J \in \Theta $, $ {J^{\text{T}}}AJ $不是非负整数对称矩阵.

    当$ n \ge 4 $时, 设

    $$ A = \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&{{A_{13}}} \\ {A_{12}^{\text{T}}}&{{A_{22}}}&{{A_{23}}} \\ {A_{13}^{\text{T}}}&{A_{23}^{\text{T}}}&{{A_{33}}} \end{array}} \right] ,\; {P_\theta } = \left[ {\begin{array}{*{20}{c}} {{I_s}}&{}&{} \\ {}&{ - {I_t}}&{} \\ {}&{}&{{H_\theta }} \end{array}} \right] $$

    其中, $ {A_{11}} \in {{\bf{R}}^{s \times s}} $、$ {A_{22}} \in {{\bf{R}}^{t \times t}} $和$ {A_{33}} \in {{\bf{R}}^{2k \times 2k}} $均是对角线元素为0或1而其他元素全是正整数的分块对称矩阵; $ {A_{12}} $, $ {A_{13}} $, $ {A_{23}} $均是分块正整数矩阵; $ A $的对角线元素之和满足$ 1 \le \sum\nolimits_i {{a_{ii}}} \le n - 1 $; $ {H_\theta } $为形如引理4中的矩阵, $ s + t + 2k = n $, $ {\theta _j} \in {\bf{R}} $$ (1 \le j \le k) $为实数. 由此,

    $$ P_\theta ^{\text{T}}A{P_\theta } = \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{ - {A_{12}}}&{{A_{13}}{H_\theta }} \\ { - A_{12}^{\text{T}}}&{{A_{22}}}&{ - {A_{23}}{H_\theta }} \\ {H_\theta ^{\text{T}}A_{13}^{\text{T}}}&{ - H_\theta ^{\text{T}}A_{23}^{\text{T}}}&{H_\theta ^{\text{T}}{A_{33}}{H_\theta }} \end{array}} \right] $$

    1) 当$ s = n $, 或$ 1 \le s < n $, $ t = 0 $且所有的$ {\theta _j} = \pm 2l\pi $$ (l = 0,\;1,\;2,\; \cdots ) $, 或$ s = t = 0 $且所有的$ {\theta _j} = \pm 2l\pi $$ (l = 0,\;1,\;2,\; \cdots ) $时, $ {P_\theta } = {I_n} \in \Omega $.

    2) 当$ t = n $, 或$ 1 \le t < n $, $ s = 0 $且所有的$ {\theta _j} = \pm h\pi $($ h $为奇数), 或$ t = s = 0 $且所有的$ {\theta _j} = \pm h\pi $($ h $为奇数)时, $ {P_\theta } = - {I_n} \in \Phi $.

    3) 当$ s,\;t,\;k $和$ {\theta _j} $$ (1 \le j \le k) $的取值不是上述两种情况时, $ {P_\theta } \in \Theta $, $ P_\theta ^{\text{T}}A{P_\theta } $不是非负整数对称矩阵.

    当$ P \in \Theta $时, 由定义9和引理4可知, 对一切$ n \ge 4 $阶正交矩阵$ E \in \Phi $, $ Z \in {T} $且$ Z \ne E{P^{ - 1}} $, 则: a) $ {J_1} = ZP \in \Theta $, $ {J_2} = PZ \in \Theta $, $ {J_3} = {Z^{\text{T}}}PZ \in \Theta $; b) $ J_1^{\text{T}}A{J_1} $, $ J_2^{\text{T}}A{J_2} $, $ J_3^{\text{T}}A{J_3} $均不是非负整数对称矩阵. 由此, 对一切$ n \ge 4 $阶正交矩阵$ J \in \Theta $, $ {J^{\text{T}}}AJ $不是非负整数对称矩阵.

    综上可得, $ \forall n \ge 2 $, $ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是非负整数对称矩阵.

    此外, 不难证明, $ \forall n \ge 2 $, $ \forall Q \in \Phi $, $ {Q^{\text{T}}}AQ $是非负整数对称矩阵.

    使用定义8中的符号$ {A_n} $和引理2, 可以得到如下推论.

    推论2. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_2} = \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个无向图, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n \ge 2 $, $ A $与$ B $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, 则$ {G_1} \cong {G_2} $的充要条件是存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ A + {A_n} = {Q^{\text{T}}}(B + {A_n})Q $.

    证明. 设$ A + {A_n} = {Q^{\text{T}}}(B + {A_n})Q $. 由定义3和引理1可知, 置换矩阵$ Q \in \Omega $$ (Q \ne {I_n}) $可表示为$ m $ ($ m \ge 2 $为正整数)个对换矩阵$ P({i_s},\;{j_s}) = {P_s} $的乘积, 即$ Q = P({i_1},\;{j_1}) \cdots P({i_m},\;{j_m}) = {P_1} \cdots {P_m}$. 此外, 不难验证, 任给对换矩阵$ {P_s} $, $ P_s^{\text{T}}{A_n}{P_s} = {A_n} $. 由此可得: $ {Q^{\text{T}}}{A_n}Q = P_m^{\text{T}} \cdots P_1^{\text{T}}{A_n}{P_1} \cdots {P_m} = {A_n} $; $ A\; + {A_n} = $$ {Q^{\text{T}}}(B + {A_n})Q = {Q^{\text{T}}}BQ + {A_n} $; $ A = {Q^{\text{T}}}BQ $. 再由引理2可得, $ {G_1} \cong {G_2} $.

    设$ {G_1} \cong {G_2} $. 由引理2可知, 存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ A = {Q^{\text{T}}}BQ $. 由上述充分性证明可知, $ \forall Q \in \Omega $, $ {A_n} = {Q^{\text{T}}}{A_n}Q $. 由此, $ A + {A_n} = {Q^{\text{T}}}(B + {A_n})Q $.

    容易理解, 推论2适合一切无向图.

    引理5[14]. 设$ C,\;B \in {{\bf{R}}^{n \times n}} $是对称矩阵, 则$ {f_\lambda }(C) = {f_\lambda }(B) $的充要条件是存在$ n $阶正交矩阵$ P \in {T} $, 使得$ C = {P^{\text{T}}}BP $.

    基于前面的分析和准备, 下面给出两个无向图的同构判定条件.

    定理2. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_2} = \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个无向图, 每个顶点最多有一个自环, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n \ge 2 $, $ {A_1} $与$ {A_2} $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, 则$ {G_1} \cong {G_2} $的充要条件是$ {f_\lambda }({A_1} + {A_n}) = {f_\lambda }({A_2} + {A_n}) $.

    证明. 设$ {f_\lambda }({A_1} + {A_n}) = {f_\lambda }({A_2} + {A_n}) $. 给$ {G_1} $和$ {G_2} $中的每两个顶点之间加一条边, 可以得到两个新的无向图$ {\hat G_1} $和$ {\hat G_2} $, 其邻接矩阵分别是$ {A_1} + {A_n} $和$ {A_2} + {A_n} $. 因$ {G_1} $和$ {G_2} $的顶点最多有一个自环, 由定义2可知, $ {A_1} $和$ {A_2} $的对角线元素为0或1 (可以全为0, 也可全为1); 再由定义8可知, $ {A_1} + {A_n} $和$ {A_2} + {A_n} $均是对角线元素为0或1而其他元素均是正整数的对称矩阵, 即$ {A_1} + {A_n} $和$ {A_2} + {A_n} $均是非负整数对称矩阵. 由引理5可知, 当$ {f_\lambda }({A_1} + {A_n}) = {f_\lambda }({A_2} + {A_n}) $时, 存在正交矩阵$ Q \in { T} $, 使得$ {A_1} \;+ {A_n} = {Q^{\text{T}}}({A_2} + {A_n})Q $. 由定理1可知, $ Q \notin \Theta $; 否则, $ {A_1} + {A_n} $将不是非负整数矩阵. 因$ Q \in { T} = \Phi \cup \Theta $且$ Q \notin \Theta $, 故$ Q \in \Phi $. 由此, 存在$ Q \in \Omega $ (或$ - Q \in \Omega $), 使得$ {A_1} + {A_n} = {Q^{\text{T}}}({A_2} + {A_n})Q $; 再由推论2可知, $ {G_1} \cong {G_2} $.

    设$ {G_1} \cong {G_2} $. 因$ {G_1} \cong {G_2} $, 故存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ {A_1} = {Q^{\text{T}}}{A_2}Q $. 由推论2的证明结果可知, $ {A_n} = {Q^{\text{T}}}{A_n}Q $. 由此, $ {A_1} + {A_n} = $$ {Q^{\text{T}}}({A_2} + {A_n})Q $, $ {f_\lambda }({A_1} + {A_n}) = {f_\lambda }({A_2} + {A_n}) $.

    需要说明的是: 1) 定理2既适合复杂无向图也适合简单无向图, 既适合连通无向图也适合不连通无向图; 一言以蔽之, 定理2适合一切无向图. 2) 因求解特征多项式$ {f_\lambda }(A) $的算法复杂度是$ {\mathrm{O}}({n^3}) $[1617], 故使用定理2判定两个无向图是否同构的算法复杂度是$ 2{\mathrm{O}}({n^3}) $.

    引理6[10]. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_{\text{2}}} = \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个简单无向连通图, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n \ge {\text{2}} $, $ {D_1} $与$ {D_2} $分别是$ {G_1} $和$ {G_2} $的距离矩阵, 则$ {G_1} \cong {G_2} $的充要条件是$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $.

    引理7[18]. 设$ C,\;B \in {{\bf{R}}^{n \times n}} $为对称矩阵, 对一切$ 1 \le i \le n $, $ {\lambda _i}(C) $为$ C $的特征值, $ {\lambda _i}(B) $为$ B $的特征值, 则$ \min {\lambda _i}(B) + {\lambda _i}(C) \le {\lambda _i}(C + B) $$ \le {\lambda _i}(C) \;+ \max {\lambda _i}(B) $.

    设$ G = \left\langle {V,\;E} \right\rangle $是复杂无向连通图, $ V = \{ {v_1}, {v_2},\; \cdots ,\;{v_n}\} $, $ n \ge 2 $: 1) 除去$ G $中顶点上的自环和邻接顶点间的重边(邻接顶点间仅保留一条边), 可以得到一个简单无向连通图$ {G_1} $(称$ {G_1} $为$ G $的主图). 2) $ \forall i \ne j $, 若$ {v_i} $和$ {v_j} $邻接, 除去$ {v_i} $和$ {v_j} $之间的一条边, 其他保持不变, 可以得到另一个无向图$ {G_2} $(称$ {G_2} $为$ G $的附图). 3) 设$ A $为$ G $的邻接矩阵, $ {A_1} $和$ {A_2} $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, $ D $为$ G $的距离矩阵. 由上述假设可知, $ A = {A_1} + {A_2} $. 因复杂无向图中的自环和顶点间的重边对距离没有影响, 由定义6和定义7可知, $ D $既是$ G $也是$ {G_1} $的距离矩阵.

    基于以上的叙述和讨论, 本文给出两个复杂无向图同构的另一个判定条件.

    定理3. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_{\text{2}}} = $$ \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个复杂无向连通图, 每个顶点最多有一个自环, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n \ge {\text{2}} $, $ {A_1} $与$ {A_2} $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, $ {D_1} $与$ {D_2} $分别是$ {G_1} $和$ {G_2} $的距离矩阵. 则$ {G_1} \cong {G_2} $的充要条件是$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $且$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $.

    证明. 设$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $且$ {f_\lambda }({A_1}) = $$ {f_\lambda }({A_2}) $. 另设$ {G_{11}} $与$ {G_{12}} $分别是$ {G_1} $的主图和附图, $ {A_{11}} $与$ {A_{12}} $$ ({A_{12}} \ne 0) $分别是$ {G_{11}} $和$ {G_{12}} $的邻接矩阵; $ {G_{21}} $与$ {G_{22}} $分别是$ {G_2} $的主图和附图, $ {A_{21}} $与$ {A_{22}} $$ ({A_{22}} \ne 0) $分别是$ {G_{21}} $和$ {G_{22}} $的邻接矩阵. 由此, 可得: $ {A_1} = {A_{11}} + {A_{12}} $, $ {A_2} = {A_{21}} + {A_{22}} $; $ {D_1} $既是$ {G_1} $也是$ {G_{11}} $的距离矩阵, $ {D_2} $既是$ {G_2} $也是$ {G_{21}} $的距离矩阵. 由引理6可知, 当$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $时, $ {G_{11}} \cong {G_{21}} $; 再由引理2可知, 存在$ Q \in \Omega $, 使得$ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $. 因$ {A_1} $和$ {A_2} $均是实对称矩阵, 且$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $, 由引理5可知, 存在$ n $阶正交矩阵$ P \in { T} $, 使得$ {A_1} = {P^{\text{T}}}{A_2}P $, 即$ {A_{11}} + {A_{12}} = {P^{\text{T}}}{A_{21}}P + {P^{\text{T}}}{A_{22}}P $. 综上可知, 当$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $且$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $时

    $$ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $$ (1)

    $$ {A_{11}} + {A_{12}} = {P^{\text{T}}}{A_{21}}P + {P^{\text{T}}}{A_{22}}P$$ (2)

    设$ {A_{12}} = {P^{\text{T}}}{A_{22}}P $, 由式(1)和式(2)可得, $ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $, $ {A_{11}} = {P^{\text{T}}}{A_{21}}P $, 由此, $ P = Q $. 另由式(2)可得, $ {A_{11}} = {P^{\text{T}}}{A_{21}}P + {P^{\text{T}}}{A_{22}}P - {A_{12}} $.

    1) 设$ {H_1} = {P^{\text{T}}}{A_{21}}P $, $ {H_2} = {P^{\text{T}}}{A_{22}}P - {A_{12}} $, 则

    $${A_{11}} = {H_1} + {H_2} $$ (3)

    因$ {H_1} $和$ {H_2} $均是实对称矩阵且$ \lambda ({H_1}) = \lambda ({A_{21}}) $. 由式(3)和引理7可得

    $$ \begin{split} & \min {\lambda _i}({H_2}) + {\lambda _i}({A_{21}}) \le {\lambda _i}({A_{11}}) \le\\& \qquad{\lambda _i}({A_{21}}) +\max {\lambda _i}({H_2}) \end{split} $$ (4)

    2) 设$ {A_{12}} \ne {P^{\text{T}}}{A_{22}}P $, 则$ {H_2} \ne 0 $. 因$ {H_2} $是对称矩阵, 故当$ {H_2} \ne 0 $时, $ \lambda ({H_2}) \ne 0 $. 设$ \min {\lambda _i}({H_2}) = \max {\lambda _i}({H_2}) = h $, 由式(4)可得, $ {\lambda _i}({A_{11}}) = {\lambda _i}({A_{21}}) \;+ h $. 若$ \lambda ({A_{11}}) = \lambda ({A_{21}}) $, 则$ h = 0 $, $ \lambda ({H_2}) = 0 $, $ {A_{12}} = {P^{\text{T}}}{A_{22}}P $, 与假设矛盾; 若$ \lambda ({A_{11}}) \ne \lambda ({A_{21}}) $, 则与式(1)矛盾. 设$ {\lambda _i}({A_{11}}) \le $$ {\lambda _i}({A_{21}}) + \max {\lambda _i}({H_2})\; ({\lambda _i}({A_{11}}) \ge {\lambda _i}({A_{21}}) + \min {\lambda _i}({H_2})) $, 若$ \lambda ({A_{11}}) \ne \lambda ({A_{21}}) $, 则与$ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $矛盾; 若$ \lambda ({A_{11}}) = \lambda ({A_{21}}) $, 则由引理5可得, $ {A_{11}} = {P^{\text{T}}}{A_{21}}P $$ (P \in { T}) $. 由此, ${A_{11}} = {P^{\text{T}}}{A_{21}}P,\; {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $, $ P = Q $. 而当$ P = Q $时, 由式(1)和式(2)可得, $ {A_{12}} = {P^{\text{T}}}{A_{22}}P $, 与$ {A_{12}} \ne {P^{\text{T}}}{A_{22}}P $的假设矛盾. 总之, $ {A_{12}} \ne {P^{\text{T}}}{A_{22}}P $的假设不成立.

    综上可知: 当$ {A_{12}} = {P^{\text{T}}}{A_{22}}P $时, $ P = Q $; 由式(2)可得$ {A_1} = {Q^{\text{T}}}{A_2}Q $, 再由引理2可得, $ {G_1} \cong {G_2} $.

    设$ {G_1} \cong {G_2} $. 由引理2可知, 存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ {A_1} = {Q^{\text{T}}}{A_2}Q $. 因$ {G_1} $和$ {G_2} $均是复杂无向连通图, 如充分性证明可设, $ {A_1} = {A_{11}} + {A_{12}} $, $ {A_2} = {A_{21}} + {A_{22}} $, 由此, $ {A_{11}} + {A_{12}} = {Q^{\text{T}}}({A_{21}} + {A_{22}})Q $. 因$ Q $是正交矩阵, 故$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $. 设$ {A_{11}} \ne {Q^{\text{T}}}{A_{21}}Q $, 则简单无向连通图$ {G_{11}} $和$ {G_{21}} $不同构, 进而可得$ {G_1} $和$ {G_2} $不同构, 与假设矛盾. 当$ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $时, 由引理2可知, $ {G_{11}} \cong {G_{21}} $; 再由引理6可得, $ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $. 综上, 当$ {G_1} \cong {G_2} $时, $ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $且$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $.

    比较引理6和定理3可知, 简单无向连通图的同构条件不同于复杂无向连通图的同构条件.

    由定理3的证明过程可知, 当定理3中的$ {G_1} $和$ {G_2} $均是简单无向连通图时, $ {G_1} = {G_{11}} $, $ {G_2} = {G_{21}} $, $ {A_{12}} = {A_{22}} = 0 $, $ {A_1} = {A_{11}} $, $ {A_2} = {A_{21}} $. 由引理6可知: 当$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $时, $ {G_1} \cong {G_2} $; 再由引理2可知, 存在$ Q \in \Omega $, 使得$ {A_1} = {Q^{\text{T}}}{A_2}Q $, 进而可得$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $. 由此, 当$ {G_1} $和$ {G_2} $均是简单无向连通图时, 定理3中的条件可简化为$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $; 定理3退化为引理6. 这表明定理3也适合简单无向连通图.

    因为求解距离矩阵$ D $的算法复杂度是$ {\mathrm{O}}({n^3}) $[1213], 求解特征多项式的算法复杂度是$ {\mathrm{O}}({n^3}) $[1617], 故定理3判定条件的算法复杂度是$ 4{\mathrm{O}}({n^3}) $.

    设$ {G_1} $和$ {G_2} $是两个复杂无向不连通图且分别由$ m $个连通子图$ {G_{ij}} $$ (i = 1,\;2;{\text{ }}1 \le j \le m) $组成, $ {G_1} $与$ {G_2} $同构是指$ {G_1} $中的连通子图$ {G_{1j}} $与$ {G_2} $中的连通子图$ {G_{2j}} $一一对应同构. 不难理解, 将定理3用于复杂无向不连通图的各个连通子图, 就可解决复杂无向不连通图的同构判定问题.

    比较定理2和定理3可知: 1) 定理2适合一切无向图, 而定理3仅适合复杂无向连通图; 2) 若将定理2限定在复杂无向连通图上, 则定理2与定理3等价; 3) 就一般复杂无向图的同构判定问题而言, 定理2比定理3具有更低的算法复杂度, 因此也更便于实际应用.

    例1[10, 15]. 判定图1中下列各组对应图是否同构.

    图 1  例1中的各对应图
    Fig. 1  Corresponding figures of Example 1

    1) $ {G_1} $和$ {G_2} $均是复杂无向连通图. 设$ {G_1} $和$ {G_2} $的邻接矩阵分别是$ {A_{11}} $和$ {A_{12}} $, 距离矩阵分别是$ {D_1} $和$ {D_2} $. 按图中顶点标号, 经计算可得

    $$ {A_{11}} = \left[ {\begin{array}{*{20}{c}} 1&1&1 \\ 1&1&1 \\ 1&1&1 \end{array}} \right] ,\; {A_{12}} = \left[ {\begin{array}{*{20}{c}} 1&1&1 \\ 1&0&2 \\ 1&2&0 \end{array}} \right] $$
    $$ {D_1} = {D_2} = \left[ {\begin{array}{*{20}{c}} 0&1&1 \\ 1&0&1 \\ 1&1&0 \end{array}} \right] $$
    $$ {f_\lambda }({A_{11}} + {A_3}) = {\lambda ^3} - 3{\lambda ^2} - 9\lambda - 5\qquad\qquad $$
    $$ {f_\lambda }({A_{12}} + {A_3}) = {\lambda ^3} - {\lambda ^2} - 17\lambda - 15 \qquad\quad\;\;$$
    $$ {f_\lambda }({A_{11}}) = {\lambda ^3} - 3{\lambda ^2}, {f_\lambda }({A_{12}}) = {\lambda ^3} - {\lambda ^2} - 6\lambda$$

    其中, $ {A_3} $是3顶点无向完全图的邻接矩阵.

    因$ {f_\lambda }({A_{11}} + {A_3}) \ne {f_\lambda }({A_{12}} + {A_3}) $, 由定理2可以判定$ {G_1} $和$ {G_2} $不同构. 因$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $, 但$ {f_\lambda }({A_{11}}) \ne {f_\lambda }({A_{12}}) $, 由推论1和定理3均可判定$ {G_1} $和$ {G_2} $不同构.

    2) $ {G_3} $和$ {G_4} $均是复杂无向连通图. 设$ {G_3} $的邻接矩阵和距离矩阵分别是$ {A_{31}} $和$ {D_3} $, $ {G_4} $的邻接矩阵和距离矩阵分别是$ {A_{41}} $和$ {D_4} $. 按图中顶点标号, 经计算可得

    $$ {A_{31}} = {A_{41}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&0&1&1&1 \\ 0&0&0&0&2&0&1&1 \\ 0&0&0&1&0&1&0&1 \\ 0&0&1&0&1&0&1&0 \\ 0&2&0&1&0&1&0&0 \\ 1&0&1&0&1&0&0&0 \\ 1&1&0&1&0&0&0&0 \\ 1&1&1&0&0&0&0&0 \end{array}} \right] $$
    $$ {D_3} = {D_4} = \left[ {\begin{array}{*{20}{c}} 0&2&2&2&2&1&1&1 \\ 2&0&2&2&1&2&1&1 \\ 2&2&0&1&2&1&2&1 \\ 2&2&1&0&1&2&1&2 \\ 2&1&2&1&0&1&2&2 \\ 1&2&1&2&1&0&2&2 \\ 1&1&2&1&2&2&0&2 \\ 1&1&1&2&2&2&2&0 \end{array}} \right] $$

    设$ {A_8} $是8顶点无向完全图的邻接矩阵. 因$ {f_\lambda }({A_{31}} + {A_8}) = {f_\lambda }({A_{41}} + {A_8}) $, 由定理2可以判定$ {G_3} \cong {G_4} $. 因$ {f_\lambda }({D_3}) = {f_\lambda }({D_4}) $且$ {f_\lambda }({A_{31}}) = $$ {f_\lambda }({A_{41}}) $, 故由定理3亦可判定$ {G_3} \cong {G_4} $.

    3) $ {G_5} $和$ {G_6} $均是复杂无向连通图. 设$ {G_5} $的邻接矩阵和距离矩阵分别是$ {A_{51}} $和$ {D_5} $, $ {G_6} $的邻接矩阵和距离矩阵分别是$ {A_{61}} $和$ {D_6} $. 按图中顶点标号, 经计算可得

    $$ {A_{51}} = {A_{61}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&1&1&1 \\ 0&0&0&1&1&1 \\ 0&0&0&1&1&2 \\ 1&1&1&0&0&0 \\ 1&1&1&0&0&0 \\ 1&1&2&0&0&0 \end{array}} \right] $$
    $$ {D_5} = {D_6} = \left[ {\begin{array}{*{20}{c}} 0&2&2&1&1&1 \\ 2&0&2&1&1&1 \\ 2&2&0&1&1&1 \\ 1&1&1&0&2&2 \\ 1&1&1&2&0&2 \\ 1&1&1&2&2&0 \end{array}} \right] $$

    设$ {A_6} $是6顶点无向完全图的邻接矩阵. 因$ {f_\lambda }({A_{51}} + {A_6}) = {f_\lambda }({A_{61}} + {A_6}) $, 由定理2可以判定$ {G_5} \cong {G_6} $. 因$ {f_\lambda }({A_{51}}) = {f_\lambda }({A_{61}}) $且$ {f_\lambda }({D_5}) = $$ {f_\lambda }({D_6}) $, 由定理3亦可判定$ {G_5} \cong {G_6} $.

    4) $ {G_7} $和$ {G_8} $均是无向树. 设$ {G_7} $和$ {G_8} $的邻接矩阵分别是$ {A_{71}} $和$ {A_{81}} $, 距离矩阵分别是$ {D_7} $和$ {D_8} $. 按图中顶点标号, 经计算可得

    $$ {A_{71}} = \left[ {\begin{array}{*{20}{c}} 0&1&1&1&1&0&0&0 \\ 1&0&0&0&0&1&1&1 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 0&1&0&0&0&0&0&0 \\ 0&1&0&0&0&0&0&0 \\ 0&1&0&0&0&0&0&0 \end{array}} \right] \; $$
    $$ {A_{81}} = \left[ {\begin{array}{*{20}{c}} 0&1&1&1&1&1&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&1&0 \\ 0&0&0&0&0&1&0&1 \\ 0&0&0&0&0&0&1&0 \end{array}} \right] $$
    $$ {D_7} = \left[ {\begin{array}{*{20}{c}} 0&1&1&1&1&2&2&2 \\ 1&0&2&2&2&1&1&1 \\ 1&2&0&2&2&3&3&3 \\ 1&2&2&0&2&3&3&3 \\ 1&2&2&2&0&3&3&3 \\ 2&1&3&3&3&0&2&2 \\ 2&1&3&3&3&2&0&2 \\ 2&1&3&3&3&2&2&0 \end{array}} \right] $$
    $$ {D_8} = \left[ {\begin{array}{*{20}{c}} 0&1&1&1&1&1&2&3 \\ 1&0&2&2&2&2&3&4 \\ 1&2&0&2&2&2&3&4 \\ 1&2&2&0&2&2&3&4 \\ 1&2&2&2&0&2&3&4 \\ 1&2&2&2&2&0&1&2 \\ 2&3&3&3&3&1&0&1 \\ 3&4&4&4&4&2&1&0 \end{array}} \right] $$

    设$ {A_8} $是8顶点无向完全图的邻接矩阵, 可得$ \det ({A_{71}} + {A_8}) = 17 $, $ \det ({A_{81}} + {A_8}) = 21 $. 由此, $ {f_\lambda }({A_{71}} + {A_8}) \ne {f_\lambda }({A_{81}} + {A_8}) $, 由定理2可以判定$ {G_7} $和$ {G_8} $不同构. 另外, 还可求得: $ {f_\lambda }({A_{71}}) = {f_\lambda }({A_{81}}) = {\lambda ^8} - 7{\lambda ^6} + 9{\lambda ^4} $; $ \det ({D_7}) = $$- 1\,048$, $\det ({D_8}) = 1\,600$. 因$ \det ({D_7}) \ne \det ({D_8}) $, 故$ {f_\lambda }({D_7}) \ne {f_\lambda }({D_8}) $. 由此, $ {f_\lambda }({A_{71}}) = {f_\lambda }({A_{81}}) $, 但$ {f_\lambda }({D_7}) \ne {f_\lambda }({D_8}) $, 由定理3可以判定$ {G_7} $和$ {G_8} $不同构.

    图的同构关系是一种等价关系, 凡与图的结构相关的分类、聚类、识别和学习等问题均与图的同构判定问题有关. 时至今日, 图的同构判定问题仍然具有重要的理论和应用价值.

    文献[10]将基于邻接矩阵的同构判定条件(引理2)推广到简单无向图距离矩阵(引理6和引理7), 解决了简单无向图的同构判定问题. 但引理6和引理7不能用于复杂无向图的同构判定, 原因在于复杂无向图的同构关系不能由其距离矩阵唯一确定.

    本文的主要思路和贡献可概括为: 1) 证明了对角线元素为0或1而其他元素均为正整数的对称矩阵在非同构正交变换下不再是非负整数对称矩阵(定理1); 利用无向完全图邻接矩阵在矩阵同构变换下保持不变的特性, 给出了引理2的另一种等价表示(推论2); 基于定理1和推论2, 给出了基于邻接矩阵之和的特征多项式判定条件(定理2). 2) 针对复杂无向连通图的同构判定问题, 使用图及邻接矩阵的分解方法, 给出了基于邻接矩阵特征多项式和距离矩阵特征多项式的同构判定条件(定理3). 将该条件用于复杂无向不连通图的各个连通子图, 就可解决复杂无向不连通图的同构判定问题. 定理2和定理3中的判定条件均是充要条件且均具有多项式时间复杂度. 需要再次说明的是: 定理2所给的判定条件具有一般普适性, 即对任意的简单、复杂(每一顶点最多允许有一个自环)、连通和不连通无向图均适用; 定理3既适合复杂无向连通图也适合简单无向连通图.

    与文献[10]中的结果相比, 定理2和定理3是无向图同构研究方面的又一重要进展. 定理2和定理3的另一理论价值表明, 无向图的同构判定问题是 P 问题. 需要说明的是, 虽然我们解决了无向图的同构判定问题, 但有向图的同构判定是 P 问题还是 NP 问题仍然没有得到解决.

    今后我们将针对有向图的同构判定问题开展研究, 期望得到一些有理论和实用价值的新结果.

  • 图  1  舰船平移运动及摇荡运动

    Fig.  1  The translational motion and swaying motion of a ship

    图  2  多个子模型集成学习系统架构

    Fig.  2  The architecture of the ensemble learning system with multiple sub-models

    图  3  不同信噪比下的甲板纵摇预估结果

    Fig.  3  The prediction results of deck pitch with different SNR

    图  5  不同信噪比下的甲板垂荡预估结果

    Fig.  5  The prediction results of deck heave with different SNR

    图  7  PILAE 与 PILAE-Lap 的甲板横摇预估结果对比

    Fig.  7  The deck roll prediction results comparison between PILAE and PILAE-Lap

    图  4  不同信噪比下的甲板横摇预估结果

    Fig.  4  The prediction results of deck roll with different SNR

    图  6  PILAE 与 PILAE-Lap 的甲板纵摇预估结果对比

    Fig.  6  The deck pitch prediction results comparison between PILAE and PILAE-Lap

    图  8  PILAE与PILAE-Lap的甲板垂荡预估结果对比

    Fig.  8  The deck heave prediction results comparison between PILAE and PILAE-Lap

    图  9  本文所提方法与其他方法的训练耗时对比

    Fig.  9  Training time comparison between our proposed method and others

    图  10  本文方法生成的网络架构及运动预估性能

    Fig.  10  The network architectures generated by our proposed method and its motion prediction performance

    图  11  预估性能与子模型个数的关系

    Fig.  11  The prediction performance with different number of sub-model

    表  1  本文所提方法与其他方法的预测均方误差对比

    Table  1  Comparison of prediction MSE between our proposed method with others

    方法PitchRollHeave
    BPNN0.021 20.016 50.075 4
    ELM0.019 80.116 50.076 5
    KELM-PSO0.012 40.013 70.056 0
    Kalman filter0.022 40.573 70.026 1
    Autoregression0.006 60.016 80.020 8
    本文方法0.001 50.025 40.002 9
    注: 加粗字体表示各列最优结果.
    下载: 导出CSV
  • [1] 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展. 自动化学报, 2019, 45(4): 669−681

    Zhen Zi-Yang. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles. Acta Automatica Sinica, 2019, 45(4): 669−681
    [2] 石明, 屈香菊, 王萌辉. 甲板运动对舰载机人工着舰的影响和补偿. 飞行力学, 2006, 24(1): 5−8 doi: 10.3969/j.issn.1002-0853.2006.01.002

    Shi Ming, Qu Xiang-Ju, Wang Meng-Hui. The influence and compensation of deck motion in carrier landing approach. Flight Dynmics, 2006, 24(1): 5−8 doi: 10.3969/j.issn.1002-0853.2006.01.002
    [3] 张志冰, 甄子洋, 江驹, 薛艺璇. 舰载机自动着舰引导与控制综述. 南京航空航天大学学报, 2018, 50(6): 734−744

    Zhang Zhi-Bing, Zhen Zi-Yang, Jiang Ju, Xue Yi-Xuan. Review on development in guidance and control of automatic carrier landing of carrier-based aircraft. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(6): 734−744
    [4] 江驹, 王新华, 甄子洋, 杨一栋, 袁锁中, 周鑫. 舰载机起飞着舰引导与控制. 北京: 科学出版社, 2019.

    Jiang Ju, Wang Xin-Hua, Zhen Zi-Yang, Yang Yi-Dong, Yuan Suo-Zhong, Zhou Xin. Guidance and Control of Carrier-Based Aircraft Launching and Landing. Beijing: Science Press, 2019.
    [5] 王能建, 刘钦辉, 李江, 商振. 舰载机出动回收能力仿真研究. 北京: 科学出版社, 2018.

    Wang Neng-Jian, Liu Qin-Hui, Li Jiang, Shang Zhen. Simulation on Ircraft Sortie Generation Rate. Beijing: Science Press, 2018.
    [6] 张永花, 周鑫. 舰载机着舰点垂直运动补偿技术仿真研究. 系统仿真学报, 2013, 25(4): 826−830

    Zhang Yong-Hua, Zhou Xin. Simulation study on landing point vertical motion in carrier landing. Journal of System Simulation, 2013, 25(4): 826−830
    [7] 周鑫, 彭荣鲲, 袁锁中. 舰载机理想着舰点垂直运动的预估与补偿. 航空学报, 2013, 34(7): 1663−1669

    Zhou Xin, Peng Rong-Kun, Yuan Suo-Zhong. Prediction and compensation for vertical motion of ideal touchdown point in carrier landing. Acta Aeronautica ET Astronautica Sinica, 2013, 34(7): 1663−1669
    [8] Xue Y X, Zhen Z Y, Yang L Q, Wen L D. Adaptive fault-tolerant control for carrier-based UAV with actuator failures. Aerospace Science and Technology, 2020, 107: Article No. 106227 doi: 10.1016/j.ast.2020.106227
    [9] Nicolau V, Aiordachioaie D, Popa R. Neural network prediction of the wave influence on the yaw motion of a ship. In: Proceedings of the IEEE International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004. 2801−2806
    [10] Liu X X, Wang Q M, Huang Y J, Song Q, Zhao L Y. A prediction method for deck motion of aircraft carrier based on particle swarm optimization and kernel extreme learning machine. Sensors and Materials, 2017, 29(9): 1291−1303
    [11] Li G Y, Kawan B, Wang H, Zhang H X. Neural-network-based modelling and analysis for time series prediction of ship motion. Ship Technology Research, 2017, 64(1): 30−39 doi: 10.1080/09377255.2017.1309786
    [12] Sidar M, Doolin B. On the feasibility of real-time prediction of aircraft carrier motion at sea. IEEE Transactions on Automatic Control, 1983, 28(3): 350−356 doi: 10.1109/TAC.1983.1103227
    [13] 邢伯阳, 潘峰, 王位, 冯肖雪. 基于复合地标导航的动平台四旋翼飞行器自主优化降落技术. 航空学报, 2019, 40(6): Article No. 322601

    Xing Bo-Yang, Pan Feng, Wang Wei, Feng Xiao-Xue. Moving platform self-optimization landing technology for quadrotor based on hybrid landmark. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): Article No. 322601
    [14] Bhatia A K, Ju J, Kumar A, Shah S, Zhen Z Y. Adaptive preview control with deck motion compensation for autonomous carrier landing of an aircraft. International Journal of Adaptive Control Signal Processing, 2021, 35(5): 769−785 doi: 10.1002/acs.3228
    [15] Zhen Z Y, Jiang S Y, Ma K. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering. Aerospace Science and Technology, 2018, 81: 99−107 doi: 10.1016/j.ast.2018.07.039
    [16] Zhen Z Y, Jiang S Y, Jiang J. Preview control and particle filtering for automatic carrier landing. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2662−2674 doi: 10.1109/TAES.2018.2826398
    [17] 杨柳, 徐东昊. 基于极短期运动预报的舰载机着舰过程仿真分析. 中国舰船研究, 2018, 13(4): 99−103

    Yang Liu, Xu Dong-Hao. Aircraft carrier landing process simulation based on extremely short-term prediction of ship motion. Chinese Journal of Ship Research, 2018, 13(4): 99−103
    [18] Yin J C, Zou Z J, Xu F, Wang N N. Online ship roll motion prediction based on grey sequential extreme learning machine. Neurocomputing, 2014, 129(10): 168−174
    [19] Wang K, Guo P, Xin X, Ye Z B. Autoencoder, low rank approximation and pseudoinverse learning algorithm. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Banff, Canada: IEEE, 2017. 948−953
    [20] Guo P, Wang K, Zhou X L. PILAE: A non-gradient descent learning scheme for deep feedforward neural networks [Online], available: https://arxiv.org/abs/1811.01545v3, November 9, 2021
    [21] Wang K, Guo P. An ensemble classification model with unsupervised representation learning for driving stress recognition using physiological signals. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3303−3315 doi: 10.1109/TITS.2020.2980555
    [22] Guo P, Lv M R. A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data. Neurocomputing, 2004, 56(1): 101−121
    [23] Rifai S, Vincent P, Muller X, Glorot X, Bengio Y. Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on Machine Learning. Bellevue, Washington, USA: Omnipress, 2011. 833−840
    [24] Wang K, Guo P. A robust automated machine learning system with pseudoinverse learning. Cognitive Computation, 2021, 13(3): 724−735 doi: 10.1007/s12559-021-09853-6
    [25] Diallo B, Hu J, Li T R, Khan G A, Liang X Y, Zhao Y M. Deep embedding clustering based on contractive autoencoder. Neurocomputing, 2021, 433: 96−107 doi: 10.1016/j.neucom.2020.12.094
    [26] Wu E Q, Peng X Y, Zhang C Z, Lin J X, Sheng R S F. Pilots' fatigue status recognition using deep contractive autoencoder network. IEEE Transactions on Instrumentation and Measurement, 2019, 68(10): 3907−3919 doi: 10.1109/TIM.2018.2885608
    [27] 陈晓云, 陈媛. 子空间结构保持的多层极限学习机自编码器. 自动化学报, 2022, 48(4): 1091−1104

    Chen Xiao-Yun, Chen Yuan. Multi-layer extreme learning machine autoencoder with subspace structure preserving. Acta Automatica Sinica, 2022, 48(4): 1091−1104
    [28] 张万栋, 李庆忠, 黎明, 武庆明. 基于最优误差自校正极限学习机的高频地波雷达RD谱图海面目标检测算法. 自动化学报, 2021, 47(1): 108−120

    Zhang Wan-Dong, Li Qing-Zhong, Li Ming, Q. M. Jonathan Wu. Sea surface target detection for RD images of HFSWR based on optimized error self-adjustment extreme learning machine. Acta Automatica Sinica, 2021, 47(1): 108−120
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1328
  • HTML全文浏览量:  377
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 网络出版日期:  2021-11-29
  • 刊出日期:  2024-09-19

目录

/

返回文章
返回