2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向航空母舰甲板运动状态预估的鲁棒学习模型

王可 徐明亮 李亚飞 姜晓恒 鲁爱国 李鉴

王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴. 一种面向航空母舰甲板运动状态预估的鲁棒学习模型. 自动化学报, 2024, 50(9): 1785−1793 doi: 10.16383/j.aas.c210664
引用本文: 王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴. 一种面向航空母舰甲板运动状态预估的鲁棒学习模型. 自动化学报, 2024, 50(9): 1785−1793 doi: 10.16383/j.aas.c210664
Wang Ke, Xu Ming-Liang, Li Ya-Fei, Jiang Xiao-Heng, Lu Ai-Guo, Li Jian. A robust learning model for deck motion prediction of aircraft carrier. Acta Automatica Sinica, 2024, 50(9): 1785−1793 doi: 10.16383/j.aas.c210664
Citation: Wang Ke, Xu Ming-Liang, Li Ya-Fei, Jiang Xiao-Heng, Lu Ai-Guo, Li Jian. A robust learning model for deck motion prediction of aircraft carrier. Acta Automatica Sinica, 2024, 50(9): 1785−1793 doi: 10.16383/j.aas.c210664

一种面向航空母舰甲板运动状态预估的鲁棒学习模型

doi: 10.16383/j.aas.c210664 cstr: 32138.14.j.aas.c210664
基金项目: 国家自然科学基金 (62036010, 61972362, 61802351), 中国博士后科学基金 (2020M682348), 海洋防务技术创新中心创新基金 (JJ-2022-709-01), 河南省自然科学基金 (232300421235)资助
详细信息
    作者简介:

    王可:郑州大学计算机与人工智能学院讲师. 主要研究方向为基于计算智能的优化与学习. E-mail: iekwang@zzu.edu.cn

    徐明亮:郑州大学计算机与人工智能学院教授. 主要研究方向为计算机图形学, 人工智能. 本文通信作者. E-mail: iexumingliang@zzu.edu.cn

    李亚飞:郑州大学计算机与人工智能学院教授. 主要研究方向为群体智能与机器学习.E-mail: ieyfei@zzu.edu.cn

    姜晓恒:郑州大学计算机与人工智能学院副教授. 主要研究方向为深度学习, 机器视觉.E-mail: jiangxiaoheng@zzu.edu.cn

    鲁爱国:武汉数字工程研究所研究员. 主要研究方向为信息系统与软件, 人机交互.E-mail: aigwx@163.edu.com

    李鉴:武汉数字工程研究所研究员. 主要研究方向为信息系统与软件. E-mail: lij1015@sina.com

A Robust Learning Model for Deck Motion Prediction of Aircraft Carrier

Funds: Supported by National Natural Science Foundation of China (62036010, 61972362, 61802351), China Postdoctoral Science Foundation (2020M682348), Innovation Foundation of Ocean Defense Technology Innovation Center (JJ-2022-709-01), and Natural Science Foundation of Henan Province (232300421235)
More Information
    Author Bio:

    WANG Ke Lecturer at the School of Computer and Artificial Intelligence, Zhengzhou University. His research interest covers computational intelligence based optimization and learning

    XU Ming-Liang Professor at the School of Computer and Artificial Intelligence, Zhengzhou University. His research interest covers computer graphics and artificial intelligence. Corresponding author of this paper

    LI Ya-Fei Professor at the School of Computer and Artificial Intelligence, Zhengzhou University. His research interest covers swarm intelligence and machine learning

    JIANG Xiao-Heng Associate professor at the School of Computer and Artificial Intelligence, Zhengzhou University. His research interest covers deep learning and computer vision

    LU Ai-Guo Professor at Wuhan Digital Engineering Institute. His research interest covers information system and software, and human-computer interaction

    LI Jian Professor at Wuhan Digital Engineering Institute. His research interest covers information system and software

  • 摘要: 航母甲板在风、浪、流等因素影响下做六自由度不规则运动, 影响舰载机着舰精度. 航母甲板运动预估与补偿是自动着舰系统的重要功能之一, 也是提高舰载机着舰安全性与成功率的关键技术之一. 为此, 提出一种面向甲板运动预估的鲁棒学习模型, 通过基本构建单元自适应演化出复杂学习系统. 构建单元的训练采用非梯度的伪逆学习策略, 提高了训练效率, 简化了学习控制超参数调优; 构建单元的架构设计采用数据驱动的策略, 简化了架构超参数调优; 采用图拉普拉斯正则化方法提高了模型对噪声和意外扰动的鲁棒性. 通过某型航母在中等海况条件下以典型航速巡航时的仿真实验, 验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性.
  • 图  1  舰船平移运动及摇荡运动

    Fig.  1  The translational motion and swaying motion of a ship

    图  2  多个子模型集成学习系统架构

    Fig.  2  The architecture of the ensemble learning system with multiple sub-models

    图  3  不同信噪比下的甲板纵摇预估结果

    Fig.  3  The prediction results of deck pitch with different SNR

    图  5  不同信噪比下的甲板垂荡预估结果

    Fig.  5  The prediction results of deck heave with different SNR

    图  7  PILAE 与 PILAE-Lap 的甲板横摇预估结果对比

    Fig.  7  The deck roll prediction results comparison between PILAE and PILAE-Lap

    图  4  不同信噪比下的甲板横摇预估结果

    Fig.  4  The prediction results of deck roll with different SNR

    图  6  PILAE 与 PILAE-Lap 的甲板纵摇预估结果对比

    Fig.  6  The deck pitch prediction results comparison between PILAE and PILAE-Lap

    图  8  PILAE与PILAE-Lap的甲板垂荡预估结果对比

    Fig.  8  The deck heave prediction results comparison between PILAE and PILAE-Lap

    图  9  本文所提方法与其他方法的训练耗时对比

    Fig.  9  Training time comparison between our proposed method and others

    图  10  本文方法生成的网络架构及运动预估性能

    Fig.  10  The network architectures generated by our proposed method and its motion prediction performance

    图  11  预估性能与子模型个数的关系

    Fig.  11  The prediction performance with different number of sub-model

    表  1  本文所提方法与其他方法的预测均方误差对比

    Table  1  Comparison of prediction MSE between our proposed method with others

    方法PitchRollHeave
    BPNN0.021 20.016 50.075 4
    ELM0.019 80.116 50.076 5
    KELM-PSO0.012 40.013 70.056 0
    Kalman filter0.022 40.573 70.026 1
    Autoregression0.006 60.016 80.020 8
    本文方法0.001 50.025 40.002 9
    注: 加粗字体表示各列最优结果.
    下载: 导出CSV
  • [1] 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展. 自动化学报, 2019, 45(4): 669−681

    Zhen Zi-Yang. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles. Acta Automatica Sinica, 2019, 45(4): 669−681
    [2] 石明, 屈香菊, 王萌辉. 甲板运动对舰载机人工着舰的影响和补偿. 飞行力学, 2006, 24(1): 5−8 doi: 10.3969/j.issn.1002-0853.2006.01.002

    Shi Ming, Qu Xiang-Ju, Wang Meng-Hui. The influence and compensation of deck motion in carrier landing approach. Flight Dynmics, 2006, 24(1): 5−8 doi: 10.3969/j.issn.1002-0853.2006.01.002
    [3] 张志冰, 甄子洋, 江驹, 薛艺璇. 舰载机自动着舰引导与控制综述. 南京航空航天大学学报, 2018, 50(6): 734−744

    Zhang Zhi-Bing, Zhen Zi-Yang, Jiang Ju, Xue Yi-Xuan. Review on development in guidance and control of automatic carrier landing of carrier-based aircraft. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(6): 734−744
    [4] 江驹, 王新华, 甄子洋, 杨一栋, 袁锁中, 周鑫. 舰载机起飞着舰引导与控制. 北京: 科学出版社, 2019.

    Jiang Ju, Wang Xin-Hua, Zhen Zi-Yang, Yang Yi-Dong, Yuan Suo-Zhong, Zhou Xin. Guidance and Control of Carrier-Based Aircraft Launching and Landing. Beijing: Science Press, 2019.
    [5] 王能建, 刘钦辉, 李江, 商振. 舰载机出动回收能力仿真研究. 北京: 科学出版社, 2018.

    Wang Neng-Jian, Liu Qin-Hui, Li Jiang, Shang Zhen. Simulation on Ircraft Sortie Generation Rate. Beijing: Science Press, 2018.
    [6] 张永花, 周鑫. 舰载机着舰点垂直运动补偿技术仿真研究. 系统仿真学报, 2013, 25(4): 826−830

    Zhang Yong-Hua, Zhou Xin. Simulation study on landing point vertical motion in carrier landing. Journal of System Simulation, 2013, 25(4): 826−830
    [7] 周鑫, 彭荣鲲, 袁锁中. 舰载机理想着舰点垂直运动的预估与补偿. 航空学报, 2013, 34(7): 1663−1669

    Zhou Xin, Peng Rong-Kun, Yuan Suo-Zhong. Prediction and compensation for vertical motion of ideal touchdown point in carrier landing. Acta Aeronautica ET Astronautica Sinica, 2013, 34(7): 1663−1669
    [8] Xue Y X, Zhen Z Y, Yang L Q, Wen L D. Adaptive fault-tolerant control for carrier-based UAV with actuator failures. Aerospace Science and Technology, 2020, 107: Article No. 106227 doi: 10.1016/j.ast.2020.106227
    [9] Nicolau V, Aiordachioaie D, Popa R. Neural network prediction of the wave influence on the yaw motion of a ship. In: Proceedings of the IEEE International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004. 2801−2806
    [10] Liu X X, Wang Q M, Huang Y J, Song Q, Zhao L Y. A prediction method for deck motion of aircraft carrier based on particle swarm optimization and kernel extreme learning machine. Sensors and Materials, 2017, 29(9): 1291−1303
    [11] Li G Y, Kawan B, Wang H, Zhang H X. Neural-network-based modelling and analysis for time series prediction of ship motion. Ship Technology Research, 2017, 64(1): 30−39 doi: 10.1080/09377255.2017.1309786
    [12] Sidar M, Doolin B. On the feasibility of real-time prediction of aircraft carrier motion at sea. IEEE Transactions on Automatic Control, 1983, 28(3): 350−356 doi: 10.1109/TAC.1983.1103227
    [13] 邢伯阳, 潘峰, 王位, 冯肖雪. 基于复合地标导航的动平台四旋翼飞行器自主优化降落技术. 航空学报, 2019, 40(6): Article No. 322601

    Xing Bo-Yang, Pan Feng, Wang Wei, Feng Xiao-Xue. Moving platform self-optimization landing technology for quadrotor based on hybrid landmark. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): Article No. 322601
    [14] Bhatia A K, Ju J, Kumar A, Shah S, Zhen Z Y. Adaptive preview control with deck motion compensation for autonomous carrier landing of an aircraft. International Journal of Adaptive Control Signal Processing, 2021, 35(5): 769−785 doi: 10.1002/acs.3228
    [15] Zhen Z Y, Jiang S Y, Ma K. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering. Aerospace Science and Technology, 2018, 81: 99−107 doi: 10.1016/j.ast.2018.07.039
    [16] Zhen Z Y, Jiang S Y, Jiang J. Preview control and particle filtering for automatic carrier landing. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2662−2674 doi: 10.1109/TAES.2018.2826398
    [17] 杨柳, 徐东昊. 基于极短期运动预报的舰载机着舰过程仿真分析. 中国舰船研究, 2018, 13(4): 99−103

    Yang Liu, Xu Dong-Hao. Aircraft carrier landing process simulation based on extremely short-term prediction of ship motion. Chinese Journal of Ship Research, 2018, 13(4): 99−103
    [18] Yin J C, Zou Z J, Xu F, Wang N N. Online ship roll motion prediction based on grey sequential extreme learning machine. Neurocomputing, 2014, 129(10): 168−174
    [19] Wang K, Guo P, Xin X, Ye Z B. Autoencoder, low rank approximation and pseudoinverse learning algorithm. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Banff, Canada: IEEE, 2017. 948−953
    [20] Guo P, Wang K, Zhou X L. PILAE: A non-gradient descent learning scheme for deep feedforward neural networks [Online], available: https://arxiv.org/abs/1811.01545v3, November 9, 2021
    [21] Wang K, Guo P. An ensemble classification model with unsupervised representation learning for driving stress recognition using physiological signals. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3303−3315 doi: 10.1109/TITS.2020.2980555
    [22] Guo P, Lv M R. A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data. Neurocomputing, 2004, 56(1): 101−121
    [23] Rifai S, Vincent P, Muller X, Glorot X, Bengio Y. Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on Machine Learning. Bellevue, Washington, USA: Omnipress, 2011. 833−840
    [24] Wang K, Guo P. A robust automated machine learning system with pseudoinverse learning. Cognitive Computation, 2021, 13(3): 724−735 doi: 10.1007/s12559-021-09853-6
    [25] Diallo B, Hu J, Li T R, Khan G A, Liang X Y, Zhao Y M. Deep embedding clustering based on contractive autoencoder. Neurocomputing, 2021, 433: 96−107 doi: 10.1016/j.neucom.2020.12.094
    [26] Wu E Q, Peng X Y, Zhang C Z, Lin J X, Sheng R S F. Pilots' fatigue status recognition using deep contractive autoencoder network. IEEE Transactions on Instrumentation and Measurement, 2019, 68(10): 3907−3919 doi: 10.1109/TIM.2018.2885608
    [27] 陈晓云, 陈媛. 子空间结构保持的多层极限学习机自编码器. 自动化学报, 2022, 48(4): 1091−1104

    Chen Xiao-Yun, Chen Yuan. Multi-layer extreme learning machine autoencoder with subspace structure preserving. Acta Automatica Sinica, 2022, 48(4): 1091−1104
    [28] 张万栋, 李庆忠, 黎明, 武庆明. 基于最优误差自校正极限学习机的高频地波雷达RD谱图海面目标检测算法. 自动化学报, 2021, 47(1): 108−120

    Zhang Wan-Dong, Li Qing-Zhong, Li Ming, Q. M. Jonathan Wu. Sea surface target detection for RD images of HFSWR based on optimized error self-adjustment extreme learning machine. Acta Automatica Sinica, 2021, 47(1): 108−120
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1251
  • HTML全文浏览量:  338
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 网络出版日期:  2021-11-29
  • 刊出日期:  2024-09-19

目录

    /

    返回文章
    返回