[1]
|
Edwards C, Spurgeon S. Sliding Mode Control. Bristol, PA: Taylor and Francis, 1998.
|
[2]
|
Isidori A. Nonlinear Control Systems, 3rd ed. Berlin: Springer-Verlag, 1995.
|
[3]
|
Liu Y H, Su C Y, Li H, Lu R. Barrier function-based adaptive control for uncertain strict-feedback systems within predefined neural network approximation sets. IEEE Transactions on Neural Networks and Learing Systems, 2020, 31(8): 2942−2954 doi: 10.1109/TNNLS.2019.2934403
|
[4]
|
Lin W, Zhang X. A dynamic feedback framework for control of time-delay nonlinear systems with unstable zero dynamics. IEEE Transactions on Automatic Control, 2020, 65(8): 3317−3332 doi: 10.1109/TAC.2019.2940865
|
[5]
|
Min H, Xu S, Zhang Z. Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation. IEEE Transactions on Automatic Control, 2021, 66(3): 1306−1313 doi: 10.1109/TAC.2020.2990173
|
[6]
|
Wang C, Wang M, Liu T, Hill D J. Learning from ISS-Modular adaptive NN control of nonlinear strict-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(10): 1539−1550 doi: 10.1109/TNNLS.2012.2205702
|
[7]
|
Theodorakopoulos A, Rovithakis G A. Guaranteeing preselected tracking quality for uncertain strict-feedback systems with deadzone input nonlinearity and disturbances via low-complexity control. Automatica, 2015, 54: 135−145 doi: 10.1016/j.automatica.2015.01.038
|
[8]
|
Zhai D, An L W, Dong J X, Zhang Q L. Output feedback adaptive sensor failure compensation for a class of parametric strict feedback systems. Automatica, 2018, 97: 48−57 doi: 10.1016/j.automatica.2018.07.014
|
[9]
|
Zhao K, Song Y D. Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Transactions on Automatic Control, 2019, 64(3): 1265−1272 doi: 10.1109/TAC.2018.2845707
|
[10]
|
周琪, 陈广登, 鲁仁全, 白伟伟. 基于干扰观测器的输入饱和多智能体系统事件触发控制. 中国科学: 信息科学, 2019, 49(11): 1502−1516 doi: 10.1360/SSI-2019-0105Zhou Qi, Chen Guang-Deng, Lu Ren-Quan, Bai Wei-Wei. Disturbance-observer-based event-triggered control for multi-agent systems with input saturation. Scientia Sinica Informationis, 2019, 49(11): 1502−1516 doi: 10.1360/SSI-2019-0105
|
[11]
|
杨彬, 周琪, 曹亮, 鲁仁全. 具有指定性能和全状态约束的多智能体系统事件触发控制. 自动化学报, 2019, 45(8): 1527−1535Yang Bin, Zhou Qi, Cao Liang, Lu Ren-Quan. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527−1535
|
[12]
|
周琪, 林国怀, 马慧, 鲁仁全. 输入死区下的多输入多输出系统自适应神经网络容错控制. 中国科学: 信息科学, 2021, 51(4): 618−632 doi: 10.1360/SSI-2019-0198Zhou Qi, Lin Guo-Huai, Ma Hui, Lu Ren-Quan. Adaptive neural network fault-tolerant control for MIMO systems with dead zone inputs. Scientia Sinica Informationis, 2021, 51(4): 618−632 doi: 10.1360/SSI-2019-0198
|
[13]
|
Yu X, Wang T, Qiu J, Gao H. Barrier Lyapunov function-based adaptive fault-tolerant control for a class of strict-feedback stochastic nonlinear systems. IEEE Transactions on Cybernetics, 2021, 51(2): 938−946 doi: 10.1109/TCYB.2019.2941367
|
[14]
|
Liu Y H, Li H. Adaptive asymptotic tracking using barrier functions. Automatica, 2018, 98: 239−246 doi: 10.1016/j.automatica.2018.09.017
|
[15]
|
Wang Z, Yuan Y, Yang H. Adaptive fuzzy tracking control for strict-feedback Markov jumping nonlinear systems with actuator failures and unmodeled dynamics. IEEE Transactions on Cybernetics, 2020, 50(1): 126−139 doi: 10.1109/TCYB.2018.2865677
|
[16]
|
张吉烈, 张化光, 罗艳红, 梁洪晶. 基于广义模糊双曲模型的自适应动态规划最优控制设计. 自动化学报, 2013, 39(2): 142−149 doi: 10.1016/S1874-1029(13)60016-6Zhang Ji-Lie, Zhang Hua-Guang, Luo Yan-Hong, Liang Hong-Jing. Nearly optimal control scheme using adaptive dynamic programming based on generalized fuzzy hyperbolic model. Acta Automatica Sinica, 2013, 39(2): 142−149 doi: 10.1016/S1874-1029(13)60016-6
|
[17]
|
Song Y D, Shen Z Y, He L, Huang X C. Neuroadaptive control of strict feedback systems with full-state constraints and unknown actuation characteristics: An inexpensive solution. IEEE Transactions on Cybernetics, 2018, 48(11): 3126−3134 doi: 10.1109/TCYB.2017.2759498
|
[18]
|
Jing Y H, Yang G H. Fuzzy adaptive fault-tolerant control for uncertain nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Transactions on Fuzzy Systems, 2020, 27(12): 2265−2278
|
[19]
|
Swaroop D, Hedrick J K, Yip P P, Gerdes J C. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(10): 1893−1899 doi: 10.1109/TAC.2000.880994
|
[20]
|
Yip P P, Hedrick J K. Adaptive dynamic surface control: A simplified algorithm for adaptive backstepping control of nonlinear systems. International Journal of Control, 2010, 71(5): 959−979
|
[21]
|
Pan Y, Yu H. Composite learning from adaptive dynamic surface control. IEEE Transactions on Automatic Control, 2016, 61(9): 2603−2609 doi: 10.1109/TAC.2015.2495232
|
[22]
|
刘希, 孙秀霞, 刘树光, 徐嵩, 程志浩. 非线性增益递归滑模动态面自适应 NN 控制. 自动化学报, 2014, 40(10): 2193−2202Liu Xi, Sun Xiu-Xia, Liu Shu-Guang, Xu Song, Cheng Zhi-Hao. Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains. Acta Automatica Sinica, 2014, 40(10): 2193−2202
|
[23]
|
Liu Y H. Adaptive dynamic surface asymptotic tracking for a class of uncertain nonlinear systems. International Journal of Robust and Nonlinear Control, 2017, 28(4): 1233−1245
|
[24]
|
Farrell J A, Polycarpou M M, Sharma M, Dong W. Command filtered backstepping. IEEE Transactions on Automatic Control, 2009, 54(6): 1391−1395 doi: 10.1109/TAC.2009.2015562
|
[25]
|
Dong W, Farrell J A, Polycarpou M M, Djapic V, Sharma M. Command filtered adaptive backstepping. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566−580 doi: 10.1109/TCST.2011.2121907
|
[26]
|
Yu J, Shi P, Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica, 2018, 92: 173−180 doi: 10.1016/j.automatica.2018.03.033
|
[27]
|
Li Y X. Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica, 2019, 106: 117−123 doi: 10.1016/j.automatica.2019.04.022
|
[28]
|
Ma J, Park J H, Xu S. Command-filter-based finite-time adaptive control for nonlinear systems with quantized input. IEEE Transactions on Automatic Control, 2021, 66(5): 2339−2344 doi: 10.1109/TAC.2020.3006283
|
[29]
|
Jiang B, Shen Q, Shi P. Neural-networked adaptive tracking control for switched nonlinear pure-feedback systems under arbitrary switching. Automatica, 2015, 61: 119−125 doi: 10.1016/j.automatica.2015.08.001
|
[30]
|
Zheng X, Yang X. Command filter and universal approximator based backstepping control design for strict-feedback nonlinear systems with uncertainty. IEEE Transactions on Automatic Control, 2020, 65(3): 1310−1317 doi: 10.1109/TAC.2019.2929067
|
[31]
|
Sun W, Wu Y Q, Sun Z Y. Command filter-based finite-time adaptive fuzzy control for uncertain nonlinear systems with prescribed performance. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3161−3170 doi: 10.1109/TFUZZ.2020.2967295
|
[32]
|
Sun W, Su S F, Xia J, Zhuang G. Command filter-based adaptive prescribed performance tracking control for stochastic uncertain nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(10): 6555−6563 doi: 10.1109/TSMC.2019.2963220
|
[33]
|
Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica, 2000, 36: 1635−1646
|
[34]
|
Gong J Q, Yao B. Neural network adaptive robust control of nonlinear systems in semi-strict feedback form. Automatica, 2001, 37: 1149−1160 doi: 10.1016/S0005-1098(01)00069-3
|
[35]
|
Bechlioulis C P, Rovithakis G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica, 2009, 45: 532−538 doi: 10.1016/j.automatica.2008.08.012
|
[36]
|
Huang X, Song Y, Lai J. Neuro-adaptive control with given performance specifications for strict feedback systems under full-state constraints. IEEE Transactions on Neural Networks and Learing Systems, 2019, 30(1): 25−34 doi: 10.1109/TNNLS.2018.2821668
|
[37]
|
Tong S, Min X, Li Y, Huang X C. Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Transactions on Cybernetics, 2020, 50(9): 3903−3913 doi: 10.1109/TCYB.2020.2977175
|
[38]
|
Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(3): 447−451 doi: 10.1109/9.486648
|
[39]
|
李玉玲, 杨洪勇, 刘凡, 杨怡泽. 带有不匹配干扰的多智能体系统有限时间积分滑模控制. 自动化学报, 2019, 45(9): 1783−1790Li Yu-Ling, Yang Hong-Yong, Liu Fan, Yang Yi-Ze. Finite-time containment control of second-order multi-agent systems with mismatched disturbances. Acta Automatica Sinica, 2019, 45(9): 1783−1790
|
[40]
|
Wang M, Zou Y T, Yang C G. System transformation-based neural control for full-state-constrained pure-feedback systems via disturbance observer. IEEE Transactions on Cybernetics, 2022, 52(3): 1479−1489
|