2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F范数度量下的鲁棒张量低维表征

王肖锋 石乐岩 杨璐 刘军 周海波

王肖锋, 石乐岩, 杨璐, 刘军, 周海波. F范数度量下的鲁棒张量低维表征. 自动化学报, 2023, 49(8): 1799−1812 doi: 10.16383/j.aas.c210375
引用本文: 王肖锋, 石乐岩, 杨璐, 刘军, 周海波. F范数度量下的鲁棒张量低维表征. 自动化学报, 2023, 49(8): 1799−1812 doi: 10.16383/j.aas.c210375
Wang Xiao-Feng, Shi Le-Yan, Yang Lu, Liu Jun, Zhou Hai-Bo. Low-dimensional representation of robust tensor under F-norm metric. Acta Automatica Sinica, 2023, 49(8): 1799−1812 doi: 10.16383/j.aas.c210375
Citation: Wang Xiao-Feng, Shi Le-Yan, Yang Lu, Liu Jun, Zhou Hai-Bo. Low-dimensional representation of robust tensor under F-norm metric. Acta Automatica Sinica, 2023, 49(8): 1799−1812 doi: 10.16383/j.aas.c210375

F范数度量下的鲁棒张量低维表征

doi: 10.16383/j.aas.c210375
基金项目: 国家重点研发计划 (2018AAA0103004), 天津市科技计划重大专项 (20YFZCGX00550), 国家自然科学基金 (52005370)资助
详细信息
    作者简介:

    王肖锋:博士, 天津理工大学机械工程学院副教授. 2018年获得河北工业大学工学博士学位. 主要研究方向为发育机器人, 模式识别与机器学习. E-mail: wangxiaofeng@tjut.edu.cn

    石乐岩:天津理工大学机械工程学院硕士研究生. 2020年获得天津理工大学机械工程学院学士学位. 主要研究方向为数据降维和机器学习. E-mail: shileyan1998@163.com

    杨璐:博士, 天津理工大学机械工程学院副教授. 2011年获得吉林大学工学博士学位. 主要研究方向为计算机视觉与模式识别. 本文通信作者. E-mail: yanglu8206@163.com

    刘军:博士, 天津理工大学机械工程学院教授. 2002年获得日本名古屋大学工学博士学位. 主要研究方向为转子故障信号的特征提取与分类识别. E-mail: liujunjp@tjut.edu.cn

    周海波:博士, 天津理工大学机械工程学院教授. 2005年获得吉林大学工学博士学位. 主要研究方向为机器人技术, 图像处理和机器视觉, 人工智能.E-mail: zhouhaibo@tjut.edu.cn

Low-Dimensional Representation of Robust Tensor Under F-norm Metric

Funds: Supported by National Key Research and Development Program of China (2018AAA0103004), Tianjin Science and Technology Planed Key Project (20YFZCGX00550), and National Natural Science Foundation of China (52005370)
More Information
    Author Bio:

    WANG Xiao-Feng Ph.D., associate professor at the School of Mechanical Engineering, Tianjin University of Technology. He received his Ph.D. degree from Hebei University of Technology in 2018. His research interest covers developmental robotics, pattern recognition, and machine learning

    SHI Le-Yan Master student at the School of Mechanical Engineering, Tianjin University of Technology. He received his bachelor degree from Tianjin University of Technology in 2020. His research interest covers dimensionality reduction and machine learning

    YANG Lu Ph.D., associate professor at the School of Mechanical Engineering, Tianjin University of Technology. She received her Ph.D. degree from Jilin University in 2011. Her research interest covers computer vision and pattern recognition. Corresponding author of this paper

    LIU Jun Ph.D., professor at the School of Mechanical Engineering, Tianjin University of Technology. He received his Ph.D. degree from Nagoya University, Japan in 2002. His research interest covers feature extraction and recognition for rotor fault signals

    ZHOU Hai-Bo Ph.D., professor at the School of Mechanical Engineering, Tianjin University of Technology. He received his Ph.D. degree from Jilin University in 2005. His research interest covers intelligent robot technology, image processing and machine vision, and artificial intelligence

  • 摘要: 张量主成分分析(Tensor principal component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究, 采用${\rm{F}}$范数平方作为低维投影的距离度量方式, 表征含离群数据和噪声图像的鲁棒性较弱. ${L}_{1}$范数能够抑制噪声的影响, 但所获的低维投影数据缺乏重构误差约束, 其局部表征能力也较弱. 针对上述问题, 利用${\rm{F}}$范数作为目标函数的距离度量方式, 提出一种基于$\rm{F}$范数的分块张量主成分分析算法(Block TPCA with $\rm{F}$-norm, BlockTPCA-F), 提高张量低维表征的鲁棒性. 考虑到同时约束投影距离与重构误差, 提出一种基于比例$\rm{F}$范数的分块张量主成分分析算法(Block TPCA with proportional F-norm, BlockTPCA-PF), 其最大化投影距离与最小化重构误差均得到了优化. 然后, 给出其贪婪的求解算法, 并对其收敛性进行理论证明. 最后, 对包含不同噪声块和具有实际遮挡的彩色人脸数据集进行实验, 结果表明, 所提算法在平均重构误差、图像重构与分类率等方面均得到明显提升, 在张量低维表征中具有较强的鲁棒性.
  • 图  1  BlockTPCA-F算法

    Fig.  1  BlockTPCA-F algorithm

    图  2  BlockTPCA-PF算法

    Fig.  2  BlockTPCA-PF algorithm

    图  3  ${{\cal{X}}_m}$, ${{\cal{Y}}_m}$与${{\cal{E}}_m}$之间的关系

    Fig.  3  The relation between ${{\cal{X}}_m}$, ${{\cal{Y}}_m}$ and ${{\cal{E}}_m}$

    图  4  GT彩色人脸数据集样本

    Fig.  4  GT color face dataset samples

    图  5  Aberdeen彩色人脸数据集样本

    Fig.  5  Aberdeen color face dataset samples

    图  6  AR彩色人脸数据集样本

    Fig.  6  AR color face dataset samples

    图  7  平均重构误差

    Fig.  7  Average reconstruction error

    图  8  AR数据集下的平均重构误差

    Fig.  8  Average reconstruction error under AR dataset

    图  9  20%噪声下的重构图像

    Fig.  9  Reconstruction images under 20% noise

    图  11  60%噪声下的重构图像

    Fig.  11  Reconstruction images under 60% noise

    图  10  40%噪声下的重构图像

    Fig.  10  Reconstruction images under 40% noise

    表  1  20%噪声下最优平均分类率

    Table  1  Optimal average classification rate under 20% noise

    NPC MPCA TPCA-$L _{1} $-G TPCA-$L _{1} $-NG TPCA-F BlockTPCA-F BlockTPCA-PF
    AB 10 0.9048 0.8974 0.9079 0.9153 0.9153 0.9143
    20 0.9132 0.9111 0.9132 0.9101 0.9164 0.9175
    30 0.9090 0.9069 0.9090 0.9069 0.9090 0.9101
    40 0.9058 0.9048 0.9058 0.9026 0.9090 0.9090
    50 0.9048 0.9058 0.9058 0.9005 0.9079 0.9058
    GT 10 0.6940 0.7020 0.7055 0.7055 0.6900 0.6915
    20 0.7015 0.6935 0.6935 0.6950 0.7070 0.7090
    30 0.7005 0.6875 0.6880 0.6905 0.7020 0.7035
    40 0.6900 0.6860 0.6850 0.6845 0.7010 0.7035
    50 0.6855 0.6820 0.6850 0.6840 0.6970 0.7000
    下载: 导出CSV

    表  3  60%噪声下最优平均分类率

    Table  3  Optimal average classification rate under 60% noise

    NPC MPCA TPCA-$L _{1} $-G TPCA-$L _{1} $-NG TPCA-F BlockTPCA-F BlockTPCA-PF
    AB 10 0.7958 0.7958 0.7937 0.7915 0.8148 0.8116
    20 0.7810 0.7810 0.7788 0.7779 0.7926 0.7947
    30 0.7810 0.7746 0.7820 0.7757 0.7788 0.7799
    40 0.7841 0.7746 0.7767 0.7799 0.7778 0.7799
    50 0.7778 0.7757 0.7778 0.7799 0.7757 0.7757
    GT 10 0.5354 0.5550 0.5690 0.5700 0.5690 0.5680
    20 0.5344 0.5450 0.5665 0.5680 0.5580 0.5580
    30 0.5238 0.5455 0.5590 0.5590 0.5510 0.5520
    40 0.5101 0.5435 0.5470 0.5470 0.5500 0.5510
    50 0.5048 0.5405 0.5450 0.5455 0.5470 0.5485
    下载: 导出CSV

    表  4  AR人脸数据集最优平均分类率

    Table  4  Optimal average classification rate of AR face dataset

    NPC MPCA TPCA-$L _{1} $-G TPCA-$L _{1} $-NG TPCA-F BlockTPCA-F BlockTPCA-PF
    AR 10 0.7692 0.7653 0.7692 0.7731 0.8077 0.8077
    20 0.7654 0.7653 0.7654 0.7616 0.8001 0.8001
    30 0.7654 0.7615 0.7653 0.7654 0.8039 0.8039
    40 0.7654 0.7692 0.7692 0.7654 0.8038 0.8038
    50 0.7692 0.7615 0.7654 0.7692 0.8039 0.8039
    下载: 导出CSV

    表  2  40%噪声下最优平均分类率

    Table  2  Optimal average classification rate under 40% noise

    NPC MPCA TPCA-$L _{1} $-G TPCA-$L _{1} $-NG TPCA-F BlockTPCA-F BlockTPCA-PF
    AB 10 0.8804 0.8794 0.8847 0.8772 0.8889 0.8889
    20 0.8783 0.8772 0.8751 0.8709 0.8889 0.8889
    30 0.8624 0.8571 0.8593 0.8635 0.8751 0.8730
    40 0.8519 0.8497 0.8508 0.8614 0.8603 0.8571
    50 0.8497 0.8476 0.8466 0.8519 0.8529 0.8497
    GT 10 0.6243 0.6645 0.6650 0.6630 0.6690 0.6690
    20 0.5788 0.6335 0.6300 0.6295 0.6590 0.6590
    30 0.5556 0.6115 0.6115 0.6115 0.6455 0.6455
    40 0.5471 0.6050 0.6070 0.6070 0.6320 0.6320
    50 0.5439 0.6035 0.6070 0.6065 0.6220 0.6220
    下载: 导出CSV
  • [1] Zare A, Ozdemir A, Iwen M A, Aviyente S. Extension of PCA to higher order data structures: An introduction to tensors, tensor decompositions, and tensor PCA. Proceedings of the IEEE, 2018, 106(8): 1341-1358 doi: 10.1109/JPROC.2018.2848209
    [2] Chachlakis D G, Dhanaraj M, Prater-Bennette A, Markopoulos P P. Dynamic L1-norm tucker tensor decomposition. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(3): 587-602 doi: 10.1109/JSTSP.2021.3058846
    [3] Liu J X, Wang D, Chen J. Monitoring framework based on generalized tensor PCA for three-dimensional batch process data. Industrial & Engineering Chemistry Research, 2020, 59(22): 10493-10508
    [4] Qing Y H, Liu W Y. Hyperspectral image classification based on multi-scale residual network with attention mechanism. Remote Sensing, 2021, 13(3): Article No. 335 doi: 10.3390/rs13030335
    [5] Wu S X, Wai H T, Li L, Scaglione A. A review of distributed algorithms for principal component analysis. Proceedings of the IEEE, 2018, 106(8): 1321-1340 doi: 10.1109/JPROC.2018.2846568
    [6] 夏志明, 赵文芝, 徐宗本. 张量主成分分析与高维信息压缩方法. 工程数学学报, 2017, 34(6): 571-590 doi: 10.3969/j.issn.1005-3085.2017.06.001

    Xia Zhi-Ming, Zhao Wen-Zhi, Xu Zong-Ben. Principle component analysis for tensors and compression theory for high-dimensional information. Chinese Journal of Engineering Mathematics, 2017, 34(6): 571-590 doi: 10.3969/j.issn.1005-3085.2017.06.001
    [7] Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137 doi: 10.1109/TPAMI.2004.1261097
    [8] Wang H X. Block principal component analysis with L1-norm for image analysis. Pattern Recognition Letters, 2012, 33(5): 537-542 doi: 10.1016/j.patrec.2011.11.029
    [9] Neumayer S, Nimmer M, Setzer S, Steidl G. On the robust PCA and Weiszfeld$’$s algorithm. Applied Mathematics & Optimization, 2020, 82(3): 1017-1048
    [10] Kwak N. Principal component analysis based on L1-norm maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9): 1672-1680 doi: 10.1109/TPAMI.2008.114
    [11] Nie F P, Huang H, Ding C, Luo D J, Wang H. Robust principal component analysis with non-greedy $l_1$-norm maximization. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Barcelona, Spain: AAAI, 2011. 1433−1438
    [12] Li X L, Pang Y W, Yuan Y. L1-norm-based 2DPCA. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(4): 1170-1175 doi: 10.1109/TSMCB.2009.2035629
    [13] Wang R, Nie F P, Yang X J, Gao F F, Yao M L. Robust 2DPCA with non-greedy $\ell_1$-norm maximization for image analysis. IEEE Transactions on Cybernetics, 2015, 45(5): 1108-1112
    [14] Kwak N. Principal component analysis by $L_p$-norm maximization. IEEE Transactions on Cybernetics, 2014, 44(5): 594-609 doi: 10.1109/TCYB.2013.2262936
    [15] Wang J. Generalized 2-D principal component analysis by Lp-norm for image analysis. IEEE Transactions on Cybernetics, 2016, 46(3): 792-803 doi: 10.1109/TCYB.2015.2416274
    [16] 李春娜, 陈伟杰, 邵元海. 鲁棒的稀疏$L_p$-模主成分分析. 自动化学报, 2017, 43(1): 142-151

    Li Chun-Na, Chen Wei-Jie, Shao Yuan-Hai. Robust sparse $L_p$ norm principal component analysis. Acta Automatica Sinica, 2017, 43(1): 204-211
    [17] Xiao X L, Chen Y Y, Gong Y J, Zhou Y C. Low-rank preserving t-linear projection for robust image feature extraction. IEEE Transactions on Image Processing, 2021, 30: 108-120 doi: 10.1109/TIP.2020.3031813
    [18] Lu H P, Plataniotis K N, Venetsanopoulos A N. MPCA: Multilinear principal component analysis of tensor objects. IEEE Transactions on Neural Networks, 2008, 19(1): 18-39 doi: 10.1109/TNN.2007.901277
    [19] Hu W M, Li X, Zhang X Q, Shi X C, Maybank S, Zhang Z F. Incremental tensor subspace learning and its applications to foreground segmentation and tracking. International Journal of Computer Vision, 2011, 91(3): 303-327 doi: 10.1007/s11263-010-0399-6
    [20] Han L, Wu Z, Zeng K, Yang X W. Online multilinear principal component analysis. Neurocomputing, 2018, 275: 888-896 doi: 10.1016/j.neucom.2017.08.070
    [21] Wu J S, Qiu S J, Zeng R, Kong Y Y, Senhadji L, Shu H Z. Multilinear principal component analysis network for tensor object classification. IEEE Access, 2017, 5: 3322-3331 doi: 10.1109/ACCESS.2017.2675478
    [22] Li X T, Ng M K, Xu X F, Ye Y M. Block principal component analysis for tensor objects with frequency or time information. Neurocomputing, 2018, 302: 12-22 doi: 10.1016/j.neucom.2018.02.014
    [23] Zheng Y M, Xu A B. Tensor completion via tensor QR decomposition and $L_{2,1}$-norm minimization. Signal Processing, 2021, 189: Article No. 108240
    [24] Du S Q, Xiao Q J, Shi Y Q, Cucchiara R, Ma Y D. Unifying tensor factorization and tensor nuclear norm approaches for low-rank tensor completion. Neurocomputing, 2021, 458: 204-218 doi: 10.1016/j.neucom.2021.06.020
    [25] Yang J H, Zhao X L, Ji T Y, Ma T H, Huang T Z. Low-rank tensor train for tensor robust principal component analysis. Applied Mathematics and Computation, 2020, 367: Article No. 124783 doi: 10.1016/j.amc.2019.124783
    [26] Zhang X Q, Wang D, Zhou Z Y, Ma Y. Robust low-rank tensor recovery with rectification and alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 238-255 doi: 10.1109/TPAMI.2019.2929043
    [27] Lai Z H, Xu Y, Chen Q C, Yang J, Zhang D. Multilinear sparse principal component analysis. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(10): 1942-1950 doi: 10.1109/TNNLS.2013.2297381
    [28] Sun W W, Yang G, Peng J T, Du Q. Lateral-slice sparse tensor robust principal component analysis for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 107-111 doi: 10.1109/LGRS.2019.2915315
    [29] Lu C Y, Feng J S, Chen Y D, Liu W, Lin Z C, Yan S C. Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(4): 925-938 doi: 10.1109/TPAMI.2019.2891760
    [30] Zheng Y B, Huang T Z, Zhao X L, Jiang T X, Ma T H, Ji T Y. Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 734-749 doi: 10.1109/TGRS.2019.2940534
    [31] Pang Y W, Li X L, Yuan Y. Robust tensor analysis with L1-norm. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(2): 172-178 doi: 10.1109/TCSVT.2009.2020337
    [32] Zhao L M, Jia W M, Wang R, Yu Q. Robust tensor analysis with non-greedy $\ell_1$-norm maximization. Radioengineering, 2016, 25(1): 200-207 doi: 10.13164/re.2016.0200
    [33] Li T, Li M Y, Gao Q X, Xie D Y. F-norm distance metric based robust 2DPCA and face recognition. Neural Networks, 2017, 94: 204-211 doi: 10.1016/j.neunet.2017.07.011
    [34] Gao Q X, Ma L, Liu Y, Gao X B, Nie F P. Angle 2DPCA: A new formulation for 2DPCA. IEEE Transactions on Cybernetics, 2018, 48(5): 1672-1678 doi: 10.1109/TCYB.2017.2712740
    [35] Zhou S S, Zhang D Q. Bilateral angle 2DPCA for face recognition. IEEE Signal Processing Letters, 2019, 26(2): 317-321 doi: 10.1109/LSP.2018.2889925
    [36] Ge W M, Li J X, Wang X F. Robust tensor principal component analysis based on F-norm. In: Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA). Beijing, China: IEEE, 2020. 1077−1082
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  965
  • HTML全文浏览量:  358
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 录用日期:  2021-11-02
  • 网络出版日期:  2021-11-29
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回