-
摘要: 针对黑猩猩优化算法(Chimp optimization algorithm, ChOA)存在收敛速度慢、精度低和易陷入局部最优值问题, 提出一种融合多策略的黄金正弦黑猩猩优化算法(Multi-strategy golden sine chimp optimization algorithm, IChOA). 引入Halton序列初始化种群, 提高初始化种群的多样性, 加快算法收敛, 提高收敛精度; 考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用, 引入改进的非线性收敛因子和自适应权重因子, 平衡算法的搜索能力; 结合黄金正弦算法相关思想, 更新个体位置, 提高算法对局部极值的处理能力. 通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知, 改进的算法具有更好的鲁棒性; 最后, 通过2个实际工程优化问题的实验对比分析, 进一步验证了IChOA在处理现实优化问题上的优越性.Abstract: Chimp optimization algorithm (ChOA) has the problems of slow convergence speed, low accuracy and easy to fall into local optimal value. A multi-strategy golden sine chimp optimization algorithm (IChOA) was proposed. The Halton sequence is introduced into the algorithm to initialize the population, which improves the diversity of the initialized population, accelerates the convergence of the algorithm, and improves the convergence accuracy. Considering the important role of convergence factor and weight factor on the exploration and exploitation of the balance algorithm, the improved nonlinear convergence factor and adaptive weighting factor are introduced to balance the search ability of the algorithm. The golden sine algorithm is used to update the individual position and improve the ability of the algorithm to deal with the local extreme value. Through comparative analysis of the optimization of 23 benchmark test functions, Wilcoxon rank sum statistical test and optimization results of some CEC2014 test functions, it can be seen that the improved algorithm has better robustness. Finally, through comparative analysis of two practical engineering optimization problems, the superiority of IChOA in dealing with realistic optimization problem is further verified.
-
表 1 算法参数设置
Table 1 Parameter setting of algorithm
算法 参数 ChOA $m = {{chaos} } (3, 1, 1)$ PSO c1 = 1.5, c2 = 2.0, $\omega$ = 1, wdamp = 0.99 GWO — WOA $b=1 $ IChOA $m = {chaos} (3, 1, 1)$, $\delta _1=0.3,$$\delta _2=300.0, \delta _3=1.8,$
$\rho _1=0.10,\;\rho _2=0.05, \;\rho _3=0.30, \; \varepsilon=300$表 2 基准测试函数介绍
Table 2 Introduction to benchmark functions
编号 函数名 定义域 维度 最优值 绝对精度误差$\varepsilon $ $f_1 $ Sphere [−100, 100] 30 0 1.00 × 10−3 $f_2 $ Schwefel'problem 2.22 [−10, 10] 30 0 1.00 × 10−3 $f_3 $ Schwefel'problem 1.2 [−100, 100] 30 0 1.00 × 10−3 $f_4 $ Schwefel'problem 2.21 [−100, 100] 30 0 1.00 × 10−3 $f_5 $ Generalized Rosenbrock's function [−30, 30] 30 0 1.00 × 10−2 $f_6 $ Step function [−100, 100] 30 0 1.00 × 10−2 $f_7 $ Quartic function [−1.28, 1.28] 30 0 1.00 × 10−2 $f_8 $ Generalized Schwefel's problem 2.26 [−500, 500] 30 −12569.5000 1.00 × 102 $f_9 $ Generalized Rastrigin's Function [−5.12, 5.12] 30 0 1.00 × 10−2 $f_{10} $ Ackley's function [−32, 32] 30 0 1.00 × 10−2 $f_{11} $ Generalized Criewank function [−600, 600] 30 0 1.00 × 10−2 $f_{12} $ Generalized penalized function 1 [−50, 50] 30 0 1.00 × 10−2 $f_{13} $ Generalized penalized function 2 [−50, 50] 30 0 1.00 × 10−2 $f_{14} $ Shekell's foxholes function [−65, 65] 2 1.0000 1.00 × 10−2 $f_{15} $ Kowalik's function [−5, 5] 4 0.0003 1.00 × 10−2 $f_{16} $ Six-hump camel-back function [−5, 5] 2 −1.0300 1.00 × 10−2 $f_{17} $ Branin function [−5, 5] 2 0.3980 1.00 × 10−2 $f_{18} $ Gold stein-price function [−2, 2] 2 3.0000 1.00 × 10−2 $f_{19} $ Hatman's function1 [0, 1] 3 −3.8600 1.00 × 10−2 $f_{20} $ Hatman's function 2 [0, 1] 6 −3.3200 1.00 × 10−2 $f_{21} $ Shekel's family 1 [0, 10] 4 −10.0000 1.00 × 10−2 $f_{22}$ Shekel's family 2 [0, 10] 4 −10.0000 1.00 × 10−2 $f_{23} $ Shekel's family 3 [0, 10] 4 −10.0000 1.00 × 10−2 表 3 各算法寻优结果对比(30维)
Table 3 Comparison of optimization results of each algorithm (30 dim)
函数 ChOA PSO GWO SChOA IChOA 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 $f_{1} $ 1.34 × 10−5 1.19 × 10−20 1.40 × 10−4 2.11 × 10−4 5.95 × 10−28 6.85 × 10−28 5.66 × 10−33 5.68 × 103 0 0 $f_{2} $ 1.42 × 10−5 8.55 × 10−21 4.21 × 10−2 4.54 × 10−2 7.95 × 10−17 4.97 × 10−17 1.72 × 10−20 1.91 × 1010 0 0 $f_{3} $ 6.31 × 100 1.40 × 10−17 7.01 × 101 2.21 × 101 2.83 × 10−5 1.12 × 10−4 6.19 × 10−8 2.25 × 104 0 0 $f_{4} $ 2.75 × 10−2 5.95 × 10−28 1.08 × 100 3.17 × 10−1 5.69 × 10−7 5.55 × 10−7 2.75 × 10−10 1.26 × 100 0 0 $f_{5} $ 2.87 × 101 2.51 × 10−14 9.67 × 101 6.01 × 101 2.70 × 101 8.26 × 10−1 2.85 × 102 1.00 × 107 3.13 × 10−4 5.26 × 10−17 $f_{6} $ 3.72 × 100 4.48 × 10−15 1.10 × 10−4 8.28 × 10−5 7.64 × 10−1 3.58 × 10−1 3.01 × 100 5.62 × 103 6.51 × 10−3 3.25 × 10−4 $f_{7} $ 1.72 × 10−3 1.09 × 10−18 1.22 × 10−1 4.49 × 10−2 1.72 × 10−3 7.51 × 10−4 1.00 × 10−3 5.77 × 101 7.81 × 10−7 1.02 × 10−12 $f_{8} $ −5.65 × 103 2.75 × 10−12 −4.84 × 103 1.15 × 103 −6.08 × 103 1.02 × 103 −9.87 × 103 1.80 × 102 −1.26 × 104 1.83 × 10−11 $f_{9} $ 1.41 × 101 0 4.67 × 101 1.16 × 101 3.22 × 100 4.16 × 100 0 7.77 × 101 0 0 $f_{10} $ 1.96 × 101 1.79 × 10−14 2.76 × 10−1 5.09 × 10−1 1.05 × 10−13 2.39 × 10−14 1.50 × 10−14 1.76 × 101 8.88 × 10−16 0 $f_{11} $ 4.79 × 10−2 7.00 × 10−17 9.21 × 10−3 7.74 × 10−3 5.14 × 10−3 9.98 × 10−3 0 8.30 × 101 0 0 $f_{12} $ 3.98 × 10−1 5.60 × 10−17 6.92 × 10−3 1.19 × 10−2 5.99 × 10−2 9.78 × 10−2 1.62 × 10−1 3.31 × 107 6.46 × 10−4 4.39 × 10−18 $f_{13} $ 2.82 × 100 1.76 × 10−15 6.68 × 10−3 8.91 × 10−3 6.27 × 10−1 3.06 × 10−1 6.76 × 10−1 5.16 × 107 2.97 × 10−5 4.56 × 10−16 $f_{14} $ 1.00 × 100 1.12 × 10−15 3.63 × 100 2.50 × 100 5.09 × 100 4.34 × 100 1.00 × 100 1.04 × 101 0.99 × 100 4.48 × 10−16 $f_{15} $ 1.36 × 10−3 4.39 × 10−19 5.80 × 10−4 2.21 × 10−4 5.73 × 10−3 8.98 × 10−3 6.80 × 10−4 1.70 × 10−3 2.30 × 10−4 5.46 × 10−19 $f_{16} $ −1.03 × 100 6.72 × 10−15 −1.03 × 100 6.25 × 10−16 −1.03 × 100 2.42 × 10−8 −1.03 × 100 2.21 × 10−1 −1.03 × 100 5.60 × 10−16 $f_{17} $ 3.98 × 10−1 3.36 × 10−16 3.98 × 10−1 0 3.98 × 10−1 0 3.99 × 10−1 4.90 × 10−3 3.99 × 10−1 8.98 × 10−16 $f_{18} $ 3.00 × 100 0 3.18 × 100 1.33 × 10−15 5.70 × 100 1.47 × 101 3.00 × 100 1.92 × 10−1 3.00 × 100 0 $f_{19} $ −3.85 × 100 2.69 × 10−15 −3.86 × 100 2.58 × 10−15 −3.86 × 100 2.17 × 10−3 −3.86 × 100 9.16 × 10−2 −3.72 × 100 1.34 × 10−18 $f_{20} $ −1.92 × 100 1.12 × 10−15 −3.26 × 100 6.05 × 10−2 −3.23 × 100 8.43 × 10−2 −3.32 × 100 1.24 × 10−1 −2.90 × 100 5.23 × 10−15 $f_{21} $ −4.92 × 100 2.69 × 10−15 −6.87 × 100 3.01 × 100 −8.80 × 100 2.20 × 100 −1.01 × 101 3.34 × 10−1 −1.01 × 101 2.38 × 10−15 $f_{22} $ −4.99 × 100 2.69 × 10−15 −8.46 × 100 3.08 × 100 −10.22 × 100 9.70 × 10−1 −5.18 × 100 5.74 × 10−2 −9.78 × 100 8.79 × 10−15 $f_{23} $ −5.02 × 100 4.48 × 10−16 −8.95 × 100 1.78 × 100 −9.90 × 100 1.96 × 100 −1.05 × 101 4.95 × 10−2 −9.93 × 100 8.97 × 10−16 表 4 Wilcoxon秩和检验结果
Table 4 Wilcoxon rank sum test results
编号 PSO ($p_{1} $) GWO ($p_{2} $) WOA ($p_{3} $) ChOA ($p_{4} $) GChOA ($p_{5} $) $f_{1} $ 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 $f_{2} $ 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 3.25 × 10−20 $f_{3} $ 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 $f_{4} $ 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 3.31 × 10−20 $f_{5} $ 1.01 × 10−17 2.47 × 10−17 1.04 × 10−15 2.29 × 10−15 7.96 × 10−18 $f_{6} $ 7.06 × 10−18 1.28 × 10−17 1.38 × 10−15 2.13 × 10−16 7.06 × 10−18 $f_{7} $ 4.20 × 10−17 7.06 × 10−18 6.88 × 10−14 1.36 × 10−17 1.27 × 10−16 $f_{8} $ 7.06 × 10−18 7.06 × 10−18 2.21 × 10−10 7.06 × 10−18 7.06 × 10−18 $f_{9} $ 3.31 × 10−20 3.31 × 10−20 NaN 1.17 × 10−19 3.31 × 10−20 $f_{10} $ 3.31 × 10−20 3.31 × 10−20 2.39 × 10−16 2.91 × 10−20 2.62 × 10−23 $f_{11} $ 3.31 × 10−20 3.31 × 10−20 3.27 × 10−1 2.50 × 10−4 3.31 × 10−20 $f_{12} $ 7.06 × 10−18 9.37 × 10−11 1.83 × 10−17 7.96 × 10−18 7.06 × 10−18 +/=/− 12/0/0 12/0/0 10/1/1 12/0/0 12/0/0 表 5 部分CEC2014函数介绍
Table 5 Introduction of part CEC2014 function
函数 维度 特征 定义域 最佳值 CEC03 30 单峰 [−100, 100] 300 CEC05 30 多峰 [−100, 100] 500 CEC06 30 多峰 [−100, 100] 600 CEC16 30 多峰 [−100, 100] 1600 CEC19 30 混合 [−100, 100] 1900 CEC22 30 混合 [−100, 100] 2200 CEC25 30 复合 [−100, 100] 2500 CEC27 30 复合 [−100, 100] 2700 表 6 CEC2014函数优化对比
Table 6 CEC2014 function optimization comparison
函数 PSO SCA L-SHADE HChOA GChOA IChOA 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 CEC03 4.87 × 101 6.61 × 101 8.83 × 100 1.36 × 100 0 0 7.78 × 104 7.44 × 103 7.54 × 104 6.58 × 103 7.35 × 104 6.23 × 103 CEC05 2.09 × 101 8.52 × 10−2 2.21 × 100 2.72 × 100 2.01 × 101 1.70 × 10−2 5.22 × 102 6.67 × 10−2 5.26 × 102 4.21 × 10−2 5.20 × 102 1.02 × 10−2 CEC06 1.08 × 101 2.53 × 100 6.63 × 101 3.74 × 101 1.67 × 10−2 9.17 × 10−2 6.33 × 102 2.42 × 100 6.33 × 10−5 2.42 × 100 6.31 × 102 2.39 × 100 CEC16 1.13 × 101 7.05 × 10−1 2.27 × 101 1.66 × 10−1 8.48 × 100 2.97 × 10−1 1.62 × 103 2.81 × 10−1 1.61 × 103 1.88 × 10−1 1.61 × 103 1.24 × 10−1 CEC19 7.76 × 100 1.87 × 100 2.88 × 102 2.99 × 101 3.59 × 100 7.22 × 10−1 2.56 × 103 2.46 × 100 1.76 × 103 2.39 × 100 2.32 × 103 1.96 × 100 CEC22 2.31 × 102 1.04 × 102 2.43 × 101 3.03 × 101 3.69 × 101 3.36 × 101 3.57 × 103 9.65 × 101 4.21 × 103 1.48 × 102 3.56 × 103 7.48 × 101 CEC25 2.09 × 102 1.65 × 100 2.69 × 102 2.71 × 101 2.03 × 102 4.97 × 10−2 2.71 × 103 9.49 × 100 2.71 × 103 3.21 × 100 2.70 × 103 0 CEC27 5.36 × 102 8.15 × 103 2.08 × 102 1.89 × 101 3.00 × 102 1.34 × 10−13 2.93 × 103 5.36 × 100 2.91 × 103 8.12 × 100 2.90 × 103 0 表 7 基准函数寻优平均时间及成功率对比
Table 7 Comparison of average time and success rate for optimization of benchmark function
函数 ChOA HChOA WChOA GChOA IChOA 平均值 标准差 成功率
(%)平均值 标准差 成功率
(%)平均值 标准差 成功率
(%)平均值 标准差 成功率
(%)平均值 标准差 成功率
(%)f1 1.9732 0.0136 100 1.9824 0.0088 100 1.9302 0.0155 100 1.4113 0.0181 100 1.3916 0.0101 100 f2 1.9546 0.0101 100 1.9841 0.0181 100 1.7962 0.0063 100 1.4176 0.0101 100 1.4086 0.0081 100 f3 2.2999 0.0083 0 2.2988 0.0077 100 2.0616 0.0906 100 2.1272 0.0128 100 2.1150 0.0275 100 f4 2.0456 0.0107 0 1.9884 0.0309 100 1.9955 0.0676 100 1.4381 0.0330 100 1.4208 0.0446 100 f5 2.0696 0.0663 0 2.0691 0.0649 0 1.9966 0.0326 33.3 1.4670 0.0530 96.6 1.4574 0.0244 100 f6 2.0127 0.0435 0 1.9617 0.0107 36.6 1.9604 0.0138 16.6 1.4122 0.0111 43.3 1.4006 0.0121 90.0 f7 2.0567 0.0089 100 2.0364 0.0190 100 2.0520 0.0147 100 1.5407 0.0070 100 1.5356 0.0098 100 f8 2.0246 0.0127 0 2.0195 0.0310 0 1.9784 0.0294 0 1.4638 0.0086 73.3 1.4625 0.0132 83.3 f9 2.0138 0.0343 0 2.0203 0.0112 96.6 1.9855 0.0096 100 1.4316 0.0184 100 1.4169 0.0141 100 f10 2.0011 0.0113 0 2.0045 0.0143 73.3 1.9999 0.0086 100 1.4521 0.0113 100 1.4395 0.0089 100 f11 2.0293 0.0081 63.3 2.0301 0.0144 100 2.0155 0.0095 100 1.4776 0.0119 100 1.4735 0.0116 100 f12 2.2040 0.0114 0 2.1930 0.0142 33.3 2.1697 0.0169 86.6 1.8354 0.0110 43.3 1.8422 0.0530 100 f13 2.1873 0.0112 0 2.1792 0.0115 36.6 2.1811 0.0184 56.6 1.8180 0.0140 66.6 1.8140 0.0084 100 f14 0.7893 0.0090 100 0.7916 0.0068 100 0.7898 0.0073 100 1.3830 0.0100 100 1.3571 0.0064 100 f15 0.3131 0.0039 0 0.3141 0.0034 50.0 0.3174 0.0024 63.3 0.2792 0.0027 90.0 0.2788 0.0024 96.6 f16 0.1730 0.0038 100 0.1743 0.0034 100 0.1728 0.0037 100 0.1647 0.0037 100 0.1647 0.0013 100 f17 0.1690 0.0012 100 0.1709 0.0043 100 0.1689 0.0013 100 0.1556 0.0061 100 0.1524 0.0022 100 f18 0.1673 0.0025 100 0.1699 0.0035 100 0.1689 0.0021 100 0.1516 0.0012 100 0.1510 0.0020 100 f19 0.2804 0.0045 100 0.2847 0.0031 100 0.2849 0.0019 100 0.3021 0.0064 100 0.2580 0.0017 100 f20 0.4751 0.0042 46.6 0.4737 0.0024 70.0 0.4724 0.0028 63.3 0.4304 0.0053 63.3 0.4278 0.0033 76.6 f21 0.4046 0.0251 16.6 0.4068 0.0035 20.0 0.4012 0.0028 70.0 0.4581 0.0029 76.6 0.4035 0.0055 83.3 f22 0.4447 0.0043 0 0.4458 0.0030 36.6 0.4403 0.0050 53.3 0.5391 0.0048 73.3 0.4349 0.0051 80.0 f23 0.5087 0.0029 0 0.5089 0.0036 43.3 0.5080 0.0021 36.6 0.6610 0.0034 76.6 0.6347 0.0039 86.6 表 8 焊接梁设计问题结果对比
Table 8 Comparative results of welding beam design problems
算法 h l t b 平均值 GA 0.2455 6.1986 8.1264 0.2247 2.4412 PSO 0.2027 3.4705 9.0366 0.2057 1.7249 WOA 0.2024 3.4772 9.0435 0.2189 1.7299 GWO 0.2022 3.4893 9.0541 0.2155 1.7265 RO 0.2036 3.5284 9.0042 0.2072 1.7353 MVO 0.2054 3.4731 9.0445 0.2056 1.7246 HSSAHHO 0.2057 3.4705 9.0367 0.2057 1.7248 ChOA 0.2214 3.5358 8.9115 0.2127 1.7737 SChOA 0.2057 3.4705 9.0306 0.2056 1.7229 IChOA 0.2038 3.4713 9.0300 0.2060 1.7228 表 9 拉力/压力弹簧优化设计问题结果对比
Table 9 Comparison of tension/compression spring design
算法 d D P 平均值 GA 0.0528 0.3523 11.5980 0.01250 PSO 0.0500 0.3174 14.0278 0.01270 WOA 0.5119 0.3452 12.0052 0.01260 GWO 0.5156 0.3562 11.5560 0.01250 RO 0.0413 0.3490 11.7620 0.01260 MFO 0.0510 0.3641 10.8684 0.01260 HSSAHHO 0.0514 0.3535 11.3546 0.01240 ChOA 0.0500 0.3159 14.2629 0.01280 SChOA 0.0524 0.3489 10.6543 0.01187 IChOA 0.0510 0.3374 11.5068 0.01185 -
[1] 何东晓, 周栩, 王佐, 等. 复杂网络社区挖掘—基于聚类融合的遗传算法. 自动化学报, 2010, 36(8): 1160--1170. doi: 10.3724/SP.J.1004.2010.01160He D X, Zhou X, Wang Z, et al. Complex Network Community Mining: Genetic Algorithm Based on Clustering Fusion. Acta Automatica Sinica, 2010, 36(8): 1160--1170. doi: 10.3724/SP.J.1004.2010.01160 [2] Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems. Intelligent Technologies —— Theory and Application: New Trends in Intelligent Technologies, 2002, 76(1): 214−220. [3] 龙文, 伍铁斌, 唐明珠, 徐明, 蔡绍洪. 基于透镜成像学习策略的灰狼优化算法. 自动化学报, 2020, 46(10): 2148--2164.Long W, Wu T B, Tang M Z, et al. A Grey Wolf Optimization Algorithm Based on Lens Imaging Learning Strategy. Acta Automatica Sinica, 2020, 46(10): 2148-2164. [4] Arora S, Singh S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing, 2019, 23(3): 715--734. doi: 10.1007/s00500-018-3102-4 [5] Tharwat A, Elhoseny M, Hassanien A E, et al. Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm. Cluster Computing, 2019, 22(2): 4745--4766.. [6] Guha D, Roy P K, Banerjee S. Load frequency control of interconnected power system using grey wolf optimization. Swarm and Evolutionary Computation, 2016, 27: 97--115. doi: 10.1016/j.swevo.2015.10.004 [7] Khishe M, Mosavi M R. Chimp optimization algorithm. Expert systems with applications, 2020, 149: 113338. doi: 10.1016/j.eswa.2020.113338 [8] Lu C, Liang G, Jin Y. Grey wolf optimizer with cellular topological structure. Expert Systems with Applications, 2018, 107: 89--114. doi: 10.1016/j.eswa.2018.04.012 [9] 王坚浩, 张亮, 史超. 基于混沌搜索策略的鲸鱼优化算法[J]. 控制与决策, 2019, 34(9): 1893--1900.Wang J H, Zhang L, Shi C. Whale optimization algorithm based on chaotic search strategy. Control and Decision, 2019, 34(9): 1893--1900. [10] 宁杰琼, 何庆. 混合策略改进的蝴蝶优化算法. 计算机应用研究, 2021, 38(06): 1718-1723+1738.Ning J Q, He Q. Butterfly optimization algorithm improved by hybrid strategy. Application Research of Computers, 2021, 38(06): 1718--1723+1738. [11] 王秋萍, 王梦娜, 王晓峰. 改进收敛因子和比例权重的灰狼优化算法. 计算机工程与应用, 2019, 55(21): 60--65. doi: 10.3778/j.issn.1002-8331.1808-0117Wang Q P, Wang M N, Wang X F. Grey wolf optimization algorithm with improved convergence factor and proportional weight. Computer Engineering and Applications, 2019, 55(21): 60--65. doi: 10.3778/j.issn.1002-8331.1808-0117 [12] Ewees A A, Abd Elaziz M, Houssein E H. Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications, 201 8, 112: 156--172. doi: 10.1016/j.eswa.2018.06.023 [13] Dinkar S K, Deep K. Opposition based Laplacian ant lion optimizer. Journal of computational science, 2017, 23: 71--90. doi: 10.1016/j.jocs.2017.10.007 [14] 吕鑫, 慕晓冬, 张钧, 王震. 混沌麻雀搜索优化算法. 北京航空航天大学学报. 2020, 16(05): 1-10.Lu X, Mu X D, Zhang J, Wang Z. Chaos Sparrow Search Optimization Algorithm. Journal of Beijing University of Aeronautics and Astronautics. 2020, 16(05): 1--10. [15] Sayed S A E F, Nabil E, Badr A. A binary clonal flower pollination algorithm for feature selection. Pattern Recognition Letters, 2016, 77: 21--27. doi: 10.1016/j.patrec.2016.03.014 [16] Bangyal W H, Batool H, Ahmed J, et al. An improved particle swarm optimization algorithm with chi-square mutation strategy. International Journal of Advanced Computer Science and Applications, 2019, 10(3): 481-491. [17] Tanyildizi E, Demir G. Golden sine algorithm: A novel math-inspired algorithm. Advances in Electrical and Computer Engineering, 2017, 17(2): 71--78. doi: 10.4316/AECE.2017.02010 [18] 邢燕祯, 王东辉. 基于模糊控制的权重决策灰狼优化算法. 计算机系统应用, 2018, 27(10): 202--208.Xing Y Z, Wang D H. Weight decision gray wolf optimization algorithm based on fuzzy control. Computer Systems & Applications, 2018, 27(10): 202--208. [19] 郭文艳, 王远, 戴芳, 等. 基于精英混沌搜索策略的交替正余弦算法. 控制与决策, 2019, 34(8): 1654--1662.Guo W Y, Wang Y, Dai F, et al. Alternating Sine and Cosine Algorithm Based on Elite Chaotic Search Strategy. Control and Decision, 2019, 34(8): 1654--1662. [20] 汪超, 王丙柱, 岑豫皖, 谢能刚. 基于多样性全局最优引导和反向学习的离子运动算法. 控制与决策, 2020, 35(7): 1584−1596.Wang Chao, Wang Bing-Zhu, Cen Yu-Wan, Xie Neng-Gang. Ion motion algorithm based on diversity global optimal guidance and reverse learning Control and Decision, 2020, 35(7): 1584−1596. [21] Kaur M, Kaur R, Singh N, et al. SChoA: an newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Engineering with Computers, 2021, 42, 1--29. [22] Zhang X M, Wang X, Kang Q. Improved grey wolf optimizer and its application to high dimension alfunction and FCM optimization. Control and Decision, 2019, 10(8): 1--10. [23] Liang J J, Qu B Y, Suganthan P N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-parameter Numerical Optimization, Technical Report, Computational Intelligence Laboratory, Zhengzhou University, China, 2013. [24] Xu G P, Cui Q L, Shi X H, et al. Particle swarm optimization based on dimensional learning strategy. Swarm and Evolutionary Computation, 2019, 45: 33--51. doi: 10.1016/j.swevo.2018.12.009 [25] Chen H L, Wang M J, Zhao X H. A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Applied Mathematics and Computation, 2020, 369: 124872. doi: 10.1016/j.amc.2019.124872 [26] Tanabe R, Fukunaga A S. Improving the search performance of SHADE using linear population size reduction. In: Proceedings of the IEEE Congress on Evolutionary Computation. Beijing, China: IEEE, 2014. 1658−1665 [27] 傅文渊. 具有万有引力加速机理的布谷鸟搜索算法. 软件学报, 2021, 32(05): 1480--1494.Fu W Y. Cuckoo Search Algorithm with Gravity Acceleration Mechanism. Journal of Software, 2021, 32(05): 1480--1494.