2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习LDAMP网络的量子状态估计

林文瑞 丛爽

林文瑞, 丛爽. 基于深度学习LDAMP网络的量子状态估计. 自动化学报, 2023, 49(1): 79−90 doi: 10.16383/j.aas.c210156
引用本文: 林文瑞, 丛爽. 基于深度学习LDAMP网络的量子状态估计. 自动化学报, 2023, 49(1): 79−90 doi: 10.16383/j.aas.c210156
Lin Wen-Rui, Cong Shuang. Quantum state estimation based on deep learning LDAMP networks. Acta Automatica Sinica, 2023, 49(1): 79−90 doi: 10.16383/j.aas.c210156
Citation: Lin Wen-Rui, Cong Shuang. Quantum state estimation based on deep learning LDAMP networks. Acta Automatica Sinica, 2023, 49(1): 79−90 doi: 10.16383/j.aas.c210156

基于深度学习LDAMP网络的量子状态估计

doi: 10.16383/j.aas.c210156
基金项目: 国家自然科学基金(61973290, 61720106009)资助
详细信息
    作者简介:

    林文瑞:中国科学技术大学自动化系硕士研究生. 2019年获中国科学技术大学学士学位. 主要研究方向为基于深度学习网络的量子状态估计. E-mail: lwryjj@mail.ustc.edu.cn

    丛爽:中国科学技术大学自动化系教授. 1995年获意大利罗马大学系统工程博士学位. 主要研究方向为运动控制中的先进控制策略, 模糊逻辑控制, 神经网络设计与应用, 机器人协调控制, 量子系统控制. 本文通信作者. E-mail: scong@ustc.edu.cn

Quantum State Estimation Based on Deep Learning LDAMP Networks

Funds: Supported by National Natural Science Foundation of China (61973290, 61720106009)
More Information
    Author Bio:

    LIN Wen-Rui Master student in the Department of Automation, University of Science and technology of China. He received his bachelor degree from University of Science and technology of China in 2019. His main research interest is quantum state estimation based on deep learning networks

    CONG Shuang Professor in the Department of Automation, University of Science and Technology of China. She received her Ph.D. degree in system engineering from University of Rome, Italy, in 1995. Her research interest covers advanced control strategies for motion control, fuzzy logic control, neural networks design and applications, robotic coordination control, and quantum systems control. Corresponding author of this paper

  • 摘要: 设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message passing, LDAMP)的深度学习网络, 将其应用于量子状态的估计. 该网络将去噪卷积神经网络与基于去噪的近似消息传递算法相结合, 利用量子系统输出的测量值作为网络输入, 通过设计出的带有去噪卷积神经网络的LDAMP网络重构出原始密度矩阵, 从大量的训练样本中提取各种不同类型密度矩阵的结构特征, 来实现对量子本征态、叠加态以及混合态的估计. 在对4个量子位的量子态估计的具体实例中, 分别在无和有测量噪声干扰情况下, 对基于LDAMP网络的量子态估计进行了仿真实验性能研究, 并与基于压缩感知的交替方向乘子法和三维块匹配近似消息传递等算法进行估计性能对比研究. 数值仿真实验结果表明, 所设计的LDAMP网络可以在较少的测量的采样率下, 同时完成对4种量子态的更高精度估计.
  • 图  1  LDAMP中第 l 级网络结构图

    Fig.  1  Structure of the l-level network in the LDAMP

    图  2  DnCNN降噪器的网络结构图

    Fig.  2  Network structure of the DnCNN denoiser

    图  3  DnCNN降噪器输入变量的尺寸变换过程

    Fig.  3  Size transformation process of input variable of the DnCNN denoiser

    图  4  DnCNN降噪器的MSE性能

    Fig.  4  MSE performance of the DnCNN denoiser

    图  5  当SNR = 40 dB时, LDAMP网络和其他方法的归一化距离性能对比

    Fig.  5  Comparison of normalized distance performance between LDAMP network and other methods with SNR = 40 dB

    图  6  LDAMP网络对不同量子态密度矩阵估计的归一化距离性能对比

    Fig.  6  Comparison of normalized distance performance of LDAMP network for estimation of density matrices of different quantum states

    图  7  当SNR = 40 dB时, 不同采样率下LDAMP网络的仿真(Sim)状态演化方程的MSE (dB)性能对比

    Fig.  7  Comparison of MSE (dB) performance between simulation (Sim) and SE analysis of LDAMP network for different sampling ratios with SNR = 40 dB

    图  8  $\eta = 0.1$时, 对角混合态密度矩阵${{\boldsymbol{\rho}} _3}$的真实测量值与含噪声测量值对比

    Fig.  8  Comparison between the real measured values of diagonal mixed state density matrix${{\boldsymbol{\rho}} _3}$and themeasured values with noise in$\eta = 0.1$

    图  9  $\eta = 0.1$时, 对角混合态密度矩阵${{\boldsymbol{\rho}} _3}$及其在无和含测量噪声下估计矩阵的模值分布

    Fig.  9  Diagonal mixed state density matrix${{\boldsymbol{\rho}} _3}$and its modulus distribution of estimation matrix without and including measurement noise with $\eta = 0.1$

    图  10  不同采样率下LDAMP网络对4种量子态密度矩阵估计时的MSE性能

    Fig.  10  MSE performance of the LDAMP network for the estimation of four quantum state density matrices with different sampling ratios

    表  1  $\eta = 0.1$时, LDAMP网络和其他方法的MSE (dB)性能比较

    Table  1  Comparison of MSE (dB) performance between LDAMP network and other methods with $\eta = 0.1$

    SNR01020304050607080无干扰
    LDAMP−25.7984−29.0129−32.8600−33.6109−36.0653−36.5386−38.0527−38.9837−40.0702−41.0905
    ADMM−14.6620−23.0837−30.2725−33.0952−34.5782−35.3161−35.4256−35.5693−35.9288−36.1332
    BM3D-AMP−24.8475−25.1181−25.3271−25.7576−26.2451−26.4625−26.7987−26.7337−26.9364−27.3626
    NLM-AMP−25.6457−25.2723−25.1595−25.3828−25.4296−25.5618−25.7596−25.9587−26.0826−26.2108
    Gauss-AMP−25.6424−25.6433−25.6620−25.6991−25.6728−25.6729−25.6786−25.6985−25.6940−25.7053
    Bilateral-AMP−25.1949−25.1813−25.1152−25.1163−25.1209−25.1663−25.2087−25.2193−25.2296−25.2332
    下载: 导出CSV
  • [1] Mackey G W. Mathematical Foundations Of Quantum Mechanics. Physics Today, 1958, 17(4): 68-68.
    [2] Cahill K E, Glauber R J. Density Operators and Quasiprob-ability Distributions. Physical Review, 1969, 177(5): 1882-1902. doi: 10.1103/PhysRev.177.1882
    [3] Fano U. Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Rev. mod. phys, 1957, 29(1): 74-93. doi: 10.1103/RevModPhys.29.74
    [4] D'Alessandro D. On Quantum State Observability and Measurement. Journal of Physics A General Physics, 2003, 36(37): 9721-9735.
    [5] Baraniuk R G. Compressive Sensing [Lecture Notes]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. doi: 10.1109/MSP.2007.4286571
    [6] Candès E J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 2008, 346(9–10): 589-592. doi: 10.1016/j.crma.2008.03.014
    [7] Flammia S T, Gross D, Liu Y K, Eisert J. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New Journal of Physics, 2012, 14(9): 95022-95049. doi: 10.1088/1367-2630/14/9/095022
    [8] Miosso C J, Von Borries R, Argaez M, Velazquez L, Quintero C, Potes C M. Compressive Sensing Reconstruction With Prior Information by Iteratively Reweighted Least-Squares. IEEE Transactions on Signal Processing, 2009, 57(6): 2424-2431. doi: 10.1109/TSP.2009.2016889
    [9] 练秋生, 富利鹏, 陈书贞, 石保顺. 基于多尺度残差网络的压缩感知重构算法. 自动化学报, 2019, 45(11): 2082-2091.

    Lian Qiu-Sheng, Fu Li-Peng, Chen Shu-Zhen, Shi Bao-Shun. A compressed sensing algorithm based on multi-scale residual reconstruction network. Acta Automatica Sinica, 2019, 45 (11): 2082-2091.
    [10] Smith A, Riofrío C A, Anderson B E, Sosa-Martinez H, Deutsch I H, Jessen P S. Quantum state tomography by continuous measurement and compressed sensing. Physical Review A, 2012, 87(3): 184-191.
    [11] Li K Z, Cong S. A Robust Compressive Quantum State Tomography Algorithm Using ADMM. IFAC Proceedings Volumes, 2014, 47(3): 6878-6883. doi: 10.3182/20140824-6-ZA-1003.01815
    [12] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Boston: Now publishers Incorporat-ed, 2011.
    [13] Smolin J A, Gambetta J M, Smith G. Efficient Method for Computing the Maximum-Likelihood Quantum State from Measurements with Additive Gaussian Noise. Physical Review Letters, 2012, 108(7): 070502. doi: 10.1103/PhysRevLett.108.070502
    [14] Mézard M, Montanari A. Information, Physics, Computation: Probabilistic approaches. Cambridge: Cambridge University Pre-ss, 2008.
    [15] Donoho D L, Maleki A, Montanari A. Message-passing algorithms for compressed sensing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45): 18914-18919. doi: 10.1073/pnas.0909892106
    [16] Liu X M, Lu S C, Wu R B. Machine learning for data Reduction in quantum state tomography. In: Proceedings of the 37th Chinese Control Conference. Wuhan, China: 2018. 227−231
    [17] Metzler C A, Mousavi A, Baraniuk R. Learned DAMP: A principled CNN-based compressive image recovery algorithm. arXiv preprint, 2017, arXiv: 1704.06625
    [18] Zhang K, Zuo W M, Chen Y J, Meng D Y, Zhang L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 2016, 26(7): 3142-3155.
    [19] Metzler C A, Maleki A, Baraniuk R G. From Denoising to Compressed Sensing. IEEE Transactions on Information Theory, 2016, 62(9): 5117-5144. doi: 10.1109/TIT.2016.2556683
    [20] Borgerding M, Schniter P, Rangan S. AMP-Inspired Deep Networks for Sparse Linear Inverse Problems. IEEE Transactions on Signal Processing, 2017, 65: 4293-4308. doi: 10.1109/TSP.2017.2708040
    [21] 郑凯, 杨靖北, 丛爽. 基于泡利测量的量子本征态估计最优测量配置集的构造方法. 第18届中国系统仿真技术及其应用学术年会. 兰州, 中国: 2017. 216−219

    Zheng Kai, Yang Jing-Bei, Cong Shuang. A construction method of optimal measurement configuration set for quantum eigenstate estimation based on pauli measurement. In: Proceedings of the 18th China Conference on System Simulation Technology and Its Applications. Lanzhou, China: 2017. 216−219
    [22] Zheng K, Li K Z, Cong S. A reconstruction algorithm for compressive quantum tomography using various measurement sets. Scientific Reports, 2016, 6: 38497. doi: 10.1038/srep38497
    [23] Tibshirani R. Regression shrinkage selection via the LASSO. Journal of the Royal Statistical Society Series B (Statistical Methodology), 2011, 73(3): 273-282. doi: 10.1111/j.1467-9868.2011.00771.x
    [24] Chen S S, Saunders D. Atomic Decomposition by Basis Pursuit. Siam Review, 2001, 43(1): 129-159. doi: 10.1137/S003614450037906X
    [25] Borgerding M, Schniter P. Onsager-corrected deep learning for sparse linear inverse problems. In: Proceedings of IEEE Global Conference on Signal and Information Processing. Washington DC, USA: IEEE, 2016. 227−231
    [26] Ramani S, Blu T, Unser M. Monte-Carlo Sure: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms. IEEE Transactions on Image Processing, 2008, 17(9): 1540-1554. doi: 10.1109/TIP.2008.2001404
    [27] He H T, Wen C K, Jin S, Li G Y. Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems. IEEE Wireless Communications Letters, 2018, 7(5): 852-855. doi: 10.1109/LWC.2018.2832128
    [28] Dabov K, Foi A, Katkovnik V, Egiazarian K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. doi: 10.1109/TIP.2007.901238
    [29] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: 2012. 1097−1105
    [30] Ioffe S, Szegedy C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift. arXiv prepr-int, 2015, arXiv: 1502.03167
    [31] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 770−778.
    [32] 盖杉, 鲍中运. 基于深度学习的高噪声图像去噪算法. 自动化学报, 2020, 46(12): 2672-2680.

    Gai Shan, Bao Zhong-Yun. High noise image denoising algorithm based on deep learning. Acta Automatica Sinica, 2020, 46(12): 2672-2680.
    [33] 周登文, 赵丽娟, 段然, 柴晓亮. 基于递归残差网络的图像超分辨率重建. 自动化学报, 2019, 45(6): 1157-1165.

    Zhou Deng-Wen, Zhao Li-Juan, Duan Ran, Cai Xiao-Liang. Image Super-resolution Based on Recursive Residual Networks. Acta Automatica Sinica, 2019, 45(6): 1157-1165.
    [34] Schmidt U, Roth S. Shrinkage fields for effective image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: 2014. 2774−2781
    [35] Zyczkowski K, Penson K A, Nechita I, Collins B. Generating random density matrices. Journal of Mathematical Physics, 2010, 52(6): 062201.
    [36] He K M, Zhang X Y, Ren S Q, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: 2015. 1026−1034
    [37] Vedaldi A, Lenc K. MatConvNet: Convolutional neural netwo-rks for Matlab. arXiv preprint, 2014, arXiv: 1412.4564
    [38] Michael A N, Isaac L C, Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2002.
    [39] Flammia S T, Liu Y K. Direct Fidelity Estimation from Few Pauli Measurements. Physical Review Letters, 2011, 106(23): 230501. doi: 10.1103/PhysRevLett.106.230501
    [40] 唐雅茹, 丛爽, 杨靖北. 单量子比特系统状态的在线估计, 自动化学报, 2020, 46(8): 1592-1599.

    Tang Ya-Ru, Cong Shuang, Yang Jing-Bei. On-line state estimation of one-qubit system. Acta Automatica Sinica, 2020, 46(8): 1592−1599.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1593
  • HTML全文浏览量:  520
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-21
  • 网络出版日期:  2021-08-18
  • 刊出日期:  2023-01-07

目录

    /

    返回文章
    返回