2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种非仿射高超声速飞行器输出反馈控制方法

路遥

路遥. 一种非仿射高超声速飞行器输出反馈控制方法. 自动化学报, 2022, 48(6): 1530−1542 doi: 10.16383/j.aas.c210131
引用本文: 路遥. 一种非仿射高超声速飞行器输出反馈控制方法. 自动化学报, 2022, 48(6): 1530−1542 doi: 10.16383/j.aas.c210131
Lu Yao. A method of output feedback control for non-affine hypersonic vehicles. Acta Automatica Sinica, 2022, 48(6): 1530−1542 doi: 10.16383/j.aas.c210131
Citation: Lu Yao. A method of output feedback control for non-affine hypersonic vehicles. Acta Automatica Sinica, 2022, 48(6): 1530−1542 doi: 10.16383/j.aas.c210131

一种非仿射高超声速飞行器输出反馈控制方法

doi: 10.16383/j.aas.c210131
基金项目: 国家自然科学基金(61803357)资助
详细信息
    作者简介:

    路遥:北京航天自动控制研究所高级工程师. 主要研究方向为非线性控制理论及其在飞行控制中的应用. E-mail: luyaosacred@126.com

A Method of Output Feedback Control for Non-affine Hypersonic Vehicles

Funds: Supported by National Natural Science Foundation of China (61803357)
More Information
    Author Bio:

    LU Yao Senior engineer at Bei-jing Aerospace Automatic Control Institute. His research interest covers nonlinear control theory and its application in flight control

  • 摘要: 针对一类考虑模型非仿射特性和执行机构饱和特性的高超声速飞行器轨迹跟踪控制问题, 提出一种基于backstepping的输出反馈非线性控制方法. 考虑执行机构故障激发的未知非线性动态, 建立了非仿射形式飞行器模型. 为解决实际工程应用中存在的气流角测量值难以使用的问题, 利用高度和速度测量值以及高阶微分器设计了航迹倾角在线估计方法. 基于跟踪微分器设计了模型干扰项的估计方法, 并解决了backstepping方法应用中存在的“微分项爆炸”问题. 引入辅助系统降低控制量饱和带来的不利影响. 基于Lyapunov理论证明了闭环系统的稳定性. 最后, 通过对比仿真实验验证了所提方法的有效性.
  • 图  1  控制器结构图

    Fig.  1  Structure diagram of the controller

    图  2  速度跟踪曲线

    Fig.  2  Tracking curves of velocity

    图  3  航迹倾角跟踪曲线

    Fig.  3  Tracking curves of flight path angle

    图  4  速度跟踪误差曲线

    Fig.  4  Curves of velocity tracking errors

    图  5  控制量燃料空气混合比曲线

    Fig.  5  Curves of the control variable fuel-to-air ratio

    图  7  俯仰角曲线

    Fig.  7  Curves of pitch angle

    图  6  航迹倾角跟踪误差曲线

    Fig.  6  Curves of flight path angle tracking errors

    图  8  俯仰角速度曲线

    Fig.  8  Curves of pitch rate

    图  9  航迹倾角估计误差曲线

    Fig.  9  Curves of the estimated error of flight path angle

    图  10  控制量升降舵摆角曲线

    Fig.  10  Curves of the control variable deflection of elevator

    图  11  本文方法航迹倾角子系统控制指令曲线

    Fig.  11  Curves of flight path angle subsystem control commands under proposed method

    图  12  本文方法总干扰项估计曲线

    Fig.  12  Estimated curves of the lumped disturbances under proposed method

    图  13  本文方法抗饱和补偿信号曲线

    Fig.  13  Curves of anti-windup compensated signals under proposed method

    表  1  控制量的容许范围

    Table  1  Admissible ranges for control inputs

    飞行状态/控制量容许范围
    $\phi $[0.1, 1.2]
    ${\delta _{\rm{e}}}$[−15°, 15°]
    ${\delta _{\rm{c}}}$[−27°, 27°]
    下载: 导出CSV

    表  2  控制器参数设置

    Table  2  Parameter settings of controllers

    控制方法控制器参数
    本文方法$\begin{aligned} {k_V} = 5,{k_\gamma } = 1.5,{k_\theta } = {k_Q} = 5,{k_1} = 10,{k_2} = 10, \\ {R_H} = 100,{a_{H1} } = {a_{H2} } = 6,{a_{H3} } = 4,{R_V} = 100,\;\; \\ {R_\theta } = {R_{Qc} } = 10,{R_Q} = 50,{a_{V1} } = {a_{V2} } = 5,\;\;\;\; \qquad\\ {a_{\theta 1} } = {a_{Qc1} } = {a_{Q1} } = {a_{\theta 2} } = {a_{Qc2} } = {a_{Q2} } = 5.\qquad \end{aligned}$
    对比方法[17]$\begin{aligned} { {k'}_1} = 5,{k_1} = 1.5,{k_2} = {k_3} = 5,\varepsilon = \varepsilon ' = 0.25, \;\;\;\;\;\\ \iota = \iota ' = 0.5,{M_0} = 15,{ {M'}_0} = 1.2, \qquad\qquad\qquad\;\;\;\;\\ {\mu _{i1} } = {\mu _{i2} } = 1,i = 2,3,{\theta _{j1} } = {\theta _{j2} } = 1,j = 1,2,3, \\ \theta _1^{'} = \theta _2^{'} = 10,\Delta {t_1} = \Delta {t_2} = \Delta {t_3} = 0.2.\qquad\qquad\;\; \end{aligned}$
    下载: 导出CSV
  • [1] 罗艺, 谭贤四, 王红, 曲智国. 基于信息几何的高超声速飞行器搜索方法. 自动化学报, 48(6): 1520−1529

    Luo Yi, Tan Xian-Si, Wang Hong, Qu Zhi-Guo. Search method for hypersonic vehicle based on information geometry. Acta Automatica Sinica, 48(6): 1520−1529
    [2] 赵良玉, 雍恩米, 王波兰. 反临近空间高超声速飞行器若干研究进展. 宇航学报, 2020, 41(10): 1239-1250

    Zhao Liang-Yu, Yong En-Mi, Wang Bo-Lan. Some achievements on interception of near space hypersonic vehicles. Journal of Astronautics, 2020, 41(10): 1239-1250
    [3] 路遥, 贾志强, 刘晓东, 路坤锋. 高超声速飞行器无在线求导backstepping控制方法. 宇航学报, 2022, 43(1): 103-110

    Lu Yao, Jia Zhi-Qiang, Liu Xiao-Dong, Lu Kun-Feng. Backstepping Control for Hypersonic Vehicles without Online Differentiation. Journal of Astronautics, 2022, 43(1): 103-110>
    [4] 刘凯, 郭健, 周文雅, 佘志勇. 吸气式组合动力高超声速飞行器上升段制导方法研究. 宇航学报, 2020, 41(8): 1023-1031

    Liu Kai, Guo Jian, Zhou Wen-Ya, She Zhi-Yong. Investigation on ascent guidance law for air-breathing combined-cycle hypersonic vehicle. Journal of Astronautics, 2020, 41(8): 1023-1031
    [5] 汤佳骏, 刘燕斌, 曹瑞, 陆宇平, 朱鸿绪, 衣春轮. 吸气式高超声速飞行器爬升段关键任务点的鲁棒优化. 宇航学报, 2020, 41(5): 507-520

    Tang Jia-Jun, Liu Yan-Bin, Cao Rui, Lu Yu-Ping, Zhu Hong-Xu, Yi Chun-Lun. Robust optimization of key mission points in climbing phase for air-breathing hypersonic vehicle. Journal of Astronautics, 2020, 41(5): 507-520
    [6] Mannava A, Serrani A. A modular adaptive control design with ISS analysis for nonminimum phase hypersonic vehicle models. International Journal of Adaptive Control and Signal Processing, 2018, 32(6): 816-838 doi: 10.1002/acs.2869
    [7] Hu Q L, Meng Y, Wang C L, Zhang Y M. Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities. Aerospace Science and Technology, 2018, 73: 289-299 doi: 10.1016/j.ast.2017.12.001
    [8] Lu Y. Disturbance observer-based backstepping control for hypersonic flight vehicles without use of measured flight path angle. Chinese Journal of Aeronautics, 2021, 34(2): 396−406
    [9] Basin M V, Yu P, Shtessel Y B. Hypersonic missile adaptive sliding mode control using finite-and-fixed-time observers. IEEE Transactions on Industrial Electronics, 2018, 65(1): 930-941 doi: 10.1109/TIE.2017.2701776
    [10] Sachan K, Padhi R. Nonlinear robust neuro-adaptive flight control for hypersonic vehicles with state constraints. Control Engineering Practice, 2020, 102: 104526 doi: 10.1016/j.conengprac.2020.104526
    [11] 曾喆昭, 刘文珏. 自耦PID控制器. 自动化学报, 2021, 47(2): 404-422

    Zeng Zhe-Zhao, Liu Wen-Jue. Self-coupling PID controllers. Acta Automatica Sinica, 2021, 47(2): 404-422
    [12] Ghavidel H F. A modeling error-based adaptive fuzzy observer approach with input saturation analysis for robust control of affine and non-affine systems. Soft Computing, 2020, 24(3): 1717-1735 doi: 10.1007/s00500-019-03999-0
    [13] Gil P, Oliveira T, Palma L. Adaptive neuro-fuzzy control for discrete-time nonaffine nonlinear systems. IEEE Transactions on Fuzzy Systems, 2019, 27(8): 1602-1615 doi: 10.1109/TFUZZ.2018.2883540
    [14] Ghavidel H F, Kalat A A. Observer-based hybrid adaptive fuzzy control for affine and nonaffine uncertain nonlinear systems. Neural Computing & Applications, 2018, 30(4): 1187-1202
    [15] Ran M P, Wang Q, Dong C Y. Active disturbance rejection control for uncertain nonaffine-in-control nonlinear systems. IEEE Transactions on Automatic Control, 2017, 62(11): 5830-5836 doi: 10.1109/TAC.2016.2641980
    [16] Zhang S, Wang Q, Dong C Y. Extended state observer based control for generic hypersonic vehicles with nonaffine-in-control character. ISA Transactions, 2018, 80: 127-136 doi: 10.1016/j.isatra.2018.05.020
    [17] Liu Y A, Wang Q, Hu C H, Dong C Y. ESO-based fault-tolerant anti-disturbance control for air-breathing hypersonic vehicles with variable geometry inlet. Nonlinear Dynamics, 2019, 98: 2293-2308 doi: 10.1007/s11071-019-05329-3
    [18] Bu X W. Guaranteeing prescribed output tracking performance for air-breathing hypersonic vehicles via non-affine back-stepping control design. Nonlinear Dynamics, 2018, 91: 525-538 doi: 10.1007/s11071-017-3887-1
    [19] Wang Y H, Chen M, Wu Q X, Zhang J. Fuzzy adaptive non-affine attitude tracking control for a generic hypersonic flight vehicle. Aerospace Science and Technology, 2018, 80: 56-66 doi: 10.1016/j.ast.2018.06.033
    [20] 路遥, 刘晓东, 路坤锋. 一种非仿射高超声速飞行器姿态控制方法. 宇航学报, 2021, 42(1): 132-140

    Lu Yao, Liu Xiao-Dong, Lu Kun-Feng. An attitude control method for non-affine hypersonic flight vehicles. Journal of Astronautics, 2021, 42(1): 132-140
    [21] Wang Y Y, Hu J B. Improved prescribed performance control for air-breathing hypersonic vehicles with unknown deadzone input nonlinearity. ISA Transactions, 2018, 79: 95-107 doi: 10.1016/j.isatra.2018.05.008
    [22] Bu X W. Guaranteeing prescribed performance for air-breathing hypersonic vehicles via an adaptive non-affine tracking controller. Acta Astronautica, 2018, 151: 368-379 doi: 10.1016/j.actaastro.2018.06.041
    [23] Zong Q, Ji Y H, Zeng F L, Liu H L. Output feedback back-stepping control for a generic hypersonic vehicle via small-gain theorem. Aerospace Science and Technology, 2012, 23: 409-417 doi: 10.1016/j.ast.2011.09.012
    [24] Sun J L, Yi J Q, Pu Z Q, Liu Z. Adaptive fuzzy nonsmooth backstepping output-feedback control for hypersonic vehicles with finite-time convergence. IEEE Transactions on Fuzzy System, 2020, 28(10): 2320-2334 doi: 10.1109/TFUZZ.2019.2934934
    [25] Tian J Y, Zhang S F, Zhang Y H, Li T. Active disturbance rejection control based robust output feedback autopilot design for airbreathing hypersonic vehicles. ISA Transactions, 2018, 74: 45-59 doi: 10.1016/j.isatra.2018.01.002
    [26] He J J, Qi R Y, Jiang B, Qian J S. Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles. Journal of the Franklin Institute, 2015, 352: 1811-1835 doi: 10.1016/j.jfranklin.2015.01.016
    [27] Rodriguez A A, Dickeson J J, Chifdaloz O, McCullen R, Benavides J, Sridharan S, et al. Modeling and control of scramjet-powered hypersonic vehicles: challenges, trends, and tradeoffs. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, USA: AIAA, 2008. 1−40
    [28] Stephen A W, Timothy R M. Measurement Uncertainty and Feasibility Study of a Flush Airdata System for a Hypersonic Flight Experiment. NASA TM-4627, USA, 1994
    [29] Parker J T, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 857-869
    [30] Wang X H, Chen Z Q, Yuan Z Z. Design and analysis for new discrete tracking-differentiators. Applied Mathematics-A Journal of Chinese Universities Series B, 2003, 18(2): 214-222 doi: 10.1007/s11766-003-0027-0
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1205
  • HTML全文浏览量:  744
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 录用日期:  2021-03-19
  • 网络出版日期:  2021-05-20
  • 刊出日期:  2022-06-02

目录

    /

    返回文章
    返回