-
摘要: 针对退化过程呈现两阶段特征的一类随机退化设备, 现有剩余寿命预测方法不适用于测量间隔分布不均匀、监测数据的测量频率与历史数据频率不一致的情况, 并且忽略了自适应漂移的可变性. 鉴于此, 提出了一种新的考虑个体差异性的两阶段自适应Wiener过程剩余寿命预测模型与方法. 首先, 基于自适应Wiener过程分阶段构建随机退化模型, 在首达时间意义下推导出寿命和剩余寿命解析式. 然后, 结合Kalman滤波技术和期望最大化算法进行参数自适应更新, 同时利用赤池信息准则实现退化模型变点的辨识. 最后, 通过蒙特卡洛仿真和锂电池实例, 验证了本文所提方法的有效性和实用价值.
-
关键词:
- 剩余寿命 /
- 两阶段自适应Wiener过程 /
- 期望最大化算法 /
- 赤池信息准则
Abstract: For a class of stochastic degradation equipments with two-stage degradation process, the existing remaining useful life (RUL) prediction method is not suitable for the situation that non-uniform measurement interval, inconsistent measurement frequency of monitoring data and historical data, and ignored it the variability of adaptive drift. In view of this, the paper proposes a new RUL prediction model and method which considers individual differences two-stage adaptive Wiener process. Firstly, the stochastic degradation model is constructed in stages based on the adaptive Wiener process, and the analytical expressions of life and RUL are derived in the sense of first arrival time. Then, the Kalman filtering technology and expectation maximization (EM) algorithm are combined to update the parameters adaptively, and the Schwarz information criterion is used to identify the change points of the degraded model. Finally, the effectiveness and practical value of the proposed method are verified by an example of lithium-ion battery data and the Monte Carlo simulation. -
表 1 不同监测点相对误差的比较结果
Table 1 Comparison results of relative error at different monitoring points
方法 不同监测点相对误差 20 40 60 80 提出模型 20.8 % 19.6 % 15.2 % 12.3 % Zhang等[19]模型 27.2 % 25.3 % 20.1 % 17.6 % 表 2 不同寿命分位点相对误差的比较结果
Table 2 Comparison results of relative error at different life quantiles
方法 寿命分位点相对误差 35 % 55 % 75 % 95 % 提出模型 6.04 7.65 7.91 0.66 Zhang 等[19]模型 11.4 9.37 9.68 1.46 -
[1] 陆宁云, 陈闯, 姜斌, 邢尹. 复杂系统维护策略最新研究进展: 从视情维护到预测性维护. 自动化学报, 2021, 47(1): 1-17.Lu Ning-Yun, Chen Chuang, Jiang Bin, Xing Yin. Latest progress on maintenance strategy of complex system: from condition-based main-tenance to predictive maintenance. Acta Automatica Sinica, 2021, 47(1): 1-17. [2] 喻勇, 司小胜, 胡昌华, 崔忠马, 李洪鹏. 数据驱动的可靠性评估与寿命预测研究进展: 基于协变量的方法. 自动化学报, 2018, 44(2): 216-227.Yu Yong, Si Xiao-Sheng, Hu Chang-Hua, Cui Zhong-Ma, Li Hong-Peng. Data driven reliability assessment and life-time prognostics: a review on covariate models. Acta Automatica Sinica, 2018, 44(2): 216-227. [3] Omshi E M, Grall A, Shemehsavar S. A dynamic auto-adaptive predictive maintenance policy for degradation with unknown parameters. European Journal of Operational Research, 2020, 282(1): 81-92. doi: 10.1016/j.ejor.2019.08.050 [4] Hu J W, Sun Q Z, Ye Z S, Zhou Q. Joint modeling of degradation and lifetime data for RUL prediction of deteriorating products. IEEE Transactions on Industrial Informatics. 2020, 17(7): 4521-4531. [5] 周东华, 魏慕恒, 司小胜. 工业过程异常检测、寿命预测与维修决策的研究进展. 自动化学报, 2013, 39(6): 711−722.Zhou Dong-Hua, Wei Mu-Heng, Si Xiao-Sheng. A survey on anomaly detection, life prediction and maintenance decision for industrial processes. Acta Automatica Sinica, 2013, 39(6): 711−722. [6] Wu S, Castro I T. Maintenance policy for a system with a weighted linear combination of degradation processes. European Journal of Operational Research, 2020, 280(1): 124-133. doi: 10.1016/j.ejor.2019.06.048 [7] 王泽洲, 陈云翔, 蔡忠义, 项华春, 王莉莉. 基于比例关系加速退化建模的设备剩余寿命在线预测. 系统工程与电子技术, 2021, 43(2): 584-592. doi: 10.12305/j.issn.1001-506X.2021.02.34Wang Ze-Zhou, Chen Yun-Xiang, Cai Zhong-Yi, Xiang Hua-Chun, Wang Li-Li. Equipment remaining useful lifetime online prediction based on accelerated degradation modeling with the proportion relationship. Systems Engineering and Electronics, 2021, 43(2): 584-592. doi: 10.12305/j.issn.1001-506X.2021.02.34 [8] 袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状. 自动化学报, 2020, 46(10): 2013-2030.Yuan Ye, Zhang Yong, Ding Han. Research on key technology of industrial artificial intelligence and its application in predictive maintenance. Acta Automatica Sinica, 2020, 46(10): 2013-2030. [9] Zhou R S, Serban N, Gebraeel N. Degradation based residual life prediction under different environments. The Annals of Applied Statistics, 2014, 8(3): 1671-1689. [10] Burgess W L. Valve regulated lead acid battery float service life estimation using a Kalman filter. Journal of Power Sources, 2009, 191(1): 16-21. doi: 10.1016/j.jpowsour.2008.12.123 [11] Wang X L, Jiang P, Guo B, Cheng Z J. Real-time reliability evaluation for an individual product based on change-point Gamma and Wiener process. Quality and Reliability Engineering International, 2014, 30(4): 513-525. doi: 10.1002/qre.1504 [12] Ng T S. An application of the EM algorithm to degradation modeling. IEEE Transactions on Reliability, 2008, 57(1): 2-13. doi: 10.1109/TR.2008.916867 [13] Yuan T, Bae S J, Zhu X. A Bayesian approach to degradation-based burn-in optimization for display products exhibiting two-phase degradation patterns. Reliability Engineering & System Safety, 2016, 155(11): 55-63. [14] Bae S J, Kvam P H. A change-point analysis for modeling incomplete burn-in for light displays. IIE Transactions, 2006, 38(3): 489-498. [15] Yan W A, Song B W, Duan G L, Shi Y M Real-time reliability evaluation of two-phase Wiener degradation process. Communications in Statistics-Theory and Methods, 2017, 46(1): 176-188. doi: 10.1080/03610926.2014.988262 [16] Chen N, Tsui K L. Condition monitoring and remaining useful life prediction using degradation signals: Revisited. IIE Transactions, 2013, 45(9): 939-952. doi: 10.1080/0740817X.2012.706376 [17] Wang Y, Peng Y, Zi Y, Jin X H, Tsui K L. A two-stage data-driven-based prognostic approach for bearing degradation problem. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924–932. doi: 10.1109/TII.2016.2535368 [18] Peng Y, Wang Y, Zi Y. Switching state-space degradation model with recursive filter/smoother for prognostics of remaining useful life. IEEE Transactions on Industrial Informatics, 2018, 15(2): 822-832. [19] Zhang J X, Hu C H, He X, Si X S, Liu Y, Zhou D H. A novel lifetime estimation method for two-phase degrading systems. IEEE Transactions on Reliability, 2018, 68(2): 689-709. [20] Wang. W, Carr M, Xu W, Kobbacy K. A model for residual life prediction based on Brownian motion with an adaptive drift. Microelectronics Reliability, 2011, 51(2): 285-293. [21] Si X S, Wang W, Hu C H, Zhou D H. Remaining useful life estimation-a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213(1): 1-14. doi: 10.1016/j.ejor.2010.11.018 [22] Zhai Q Q, Ye Z S. RUL prediction of deteriorating products using an adaptive Wiener process model. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2911-2921. doi: 10.1109/TII.2017.2684821 [23] Si X S, Wang W, Chen M Y, Hu C H, Zhou D H. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution. European Journal of Operational Research, 2013, 226(1): 53-66. doi: 10.1016/j.ejor.2012.10.030 [24] Shumway R H, Stoffer D S. Times Series Analysis and Its Applications. New York: Springer, 2011. 326−344 [25] 夏正敏. 基于分形的网络流量分析及异常检测技术研究 [博士学位论文], 上海交通大学, 2012Xia Zheng-Min. Research on network traffic analysis and abnormal detection based on fractal theory [Ph. D. Dissertation], Shanghai jiao-tong University, 2012 [26] He W, Williard N, Osterman M, Pecht M. Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 2011, 196(23): 10314–10321. doi: 10.1016/j.jpowsour.2011.08.040