2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制

范云生 陈欣宇 赵永生 宋保健

范云生, 陈欣宇, 赵永生, 宋保健. 基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制. 自动化学报, 2023, 49(8): 1758−1770 doi: 10.16383/j.aas.c210001
引用本文: 范云生, 陈欣宇, 赵永生, 宋保健. 基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制. 自动化学报, 2023, 49(8): 1758−1770 doi: 10.16383/j.aas.c210001
Fan Yun-Sheng, Chen Xin-Yu, Zhao Yong-Sheng, Song Bao-Jian. Nonlinear control of quadrotor suspension system based on extended state observer. Acta Automatica Sinica, 2023, 49(8): 1758−1770 doi: 10.16383/j.aas.c210001
Citation: Fan Yun-Sheng, Chen Xin-Yu, Zhao Yong-Sheng, Song Bao-Jian. Nonlinear control of quadrotor suspension system based on extended state observer. Acta Automatica Sinica, 2023, 49(8): 1758−1770 doi: 10.16383/j.aas.c210001

基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制

doi: 10.16383/j.aas.c210001
基金项目: 国家自然科学基金(61976033, 51609033), 辽宁省重点研发指导计划(2019JH8/10100100), 大连市软科学研究计划(2019J11CY-014)资助
详细信息
    作者简介:

    范云生:大连海事大学船舶电气工程学院教授. 主要研究方向为智能控制理论与应用. 本文通信作者. E-mail: yunsheng@dlmu.edu.cn

    陈欣宇:大连海事大学船舶电气工程学院博士研究生. 主要研究方向为无人飞行器的非线性控制. E-mail: chenxinyu_dlmu@163.com

    赵永生:大连海事大学船舶电气工程学院教授. 主要研究方向为嵌入式测控系统, 检测技术与自动化装置和智能控制技术. E-mail: yszhao@dlmu.edu.cn

    宋保健:大连海事大学船舶电气工程学院博士研究生. 主要研究方向为无人系统控制理论. E-mail: songbj725@163.com

Nonlinear Control of Quadrotor Suspension System Based on Extended State Observer

Funds: Supported by National Natural Science Foundation of China (61976033, 51609033), Key Development Guidance Program of Liaoning (2019JH8/10100100), and Soft Science Research Program of Dalian (2019J11CY014)
More Information
    Author Bio:

    FAN Yun-Sheng Professor at the College of Marine Electrical Engineering, Dalian Maritime University. His research interest covers intelligent control theory and application. Corresponding author of this paper

    CHEN Xin-Yu Ph.D. candidate at the College of Marine Electrical Engineering, Dalian Maritime University. His main research interest is nonlinear control of unmanned aerial vehicle

    ZHAO Yong-Sheng Professor at the College of Marine Electrical Engineering, Dalian Maritime University. His research interest covers embedded measurement and control system, detection technology and automation device, and intelligent control technology

    SONG Bao-Jian Ph.D. candidate at the College of Marine Electrical Engineering, Dalian Maritime University. His main research interest is unmanned system control theory

  • 摘要: 针对一类四旋翼飞行器吊挂飞行系统的负载摆动抑制和轨迹跟踪精确控制的问题, 考虑系统存在未知外界扰动和模型动态不确定的情况, 提出一种基于扩张状态观测器(Extended state observer, ESO)的吊挂负载摆动抑制的非线性轨迹跟踪控制方法. 将四旋翼吊挂飞行系统分解为姿态、位置和负载摆动控制三个动态子系统, 分别设计非线性控制器实现欠驱动约束下的解耦控制; 设计一种扩张状态观测器, 用以估计和补偿四旋翼与吊挂负载耦合飞行的未知外界扰动与模型动态不确定性, 并验证了闭环系统的稳定性, 跟踪误差及吊挂负载摆动所有信号的一致最终有界. 最后, 利用Quanser公司的Qball2飞行器进行三维空间螺旋轨迹的跟踪控制, 仿真结果验证了未知干扰下基于扩张状态观测器的四旋翼吊挂飞行非线性控制的有效性和优越性, 实现了四旋翼吊挂系统轨迹跟踪的精确控制和飞行过程中负载摆动的快速抑制.
  • 图  1  四旋翼吊挂负载耦合系统模型

    Fig.  1  Model of quadrotor suspension system

    图  2  四旋翼吊挂系统控制器

    Fig.  2  Quadrotor suspension system controller

    图  3  四旋翼吊挂系统实验平台

    Fig.  3  Experimental platform of quadrotor suspension system

    图  4  ESO、Adp-空间轨迹跟踪曲线

    Fig.  4  ESO, Adp-trajectory tracking curve

    图  5  ESO、Adp-xoy 平面轨迹跟踪曲线

    Fig.  5  ESO, Adp-xoy plane trajectory tracking curve

    图  6  ESO、Adp-xoz 平面轨迹跟踪曲线

    Fig.  6  ESO, Adp-xoz plane trajectory tracking curve

    图  7  ESO、Adp-飞行器位置跟踪误差

    Fig.  7  ESO, Adp-quadrotor position tracking error

    图  8  吊挂负载摆角

    Fig.  8  Swing angle of hanging load

    图  9  飞行器姿态角控制

    Fig.  9  Control of quadrotor attitude angle

    图  10  飞行器速度估计

    Fig.  10  Quadrotor speed estimation

    图  12  飞行器姿态角速度估计

    Fig.  12  Estimation of quadrotor attitude angle velocity

    图  11  吊挂角速度估计

    Fig.  11  Estimation of hanging angle velocity

    图  14  吊挂角估计误差

    Fig.  14  Hanging angle estimation error

    图  13  飞行器位置估计误差

    Fig.  13  Quadrotor position estimation error

    图  15  飞行器姿态角估计误差

    Fig.  15  Estimation error of quadrotor attitude angle

    图  17  吊挂角观测干扰

    Fig.  17  Interference of hanging angle observation

    图  16  飞行器位置观测干扰

    Fig.  16  Interference of quadrotor position observation

    图  18  飞行器姿态角观测干扰

    Fig.  18  Interference of quadrotor attitude angle observation

    表  1  模型参数

    Table  1  Model parameters

    参数大小
    $M$1.80 kg
    $l$0.20 m
    ${I_x}$0.03 kg·m2
    ${I_y}$0.03 kg·m2
    ${I_z}$0.04 kg·m2
    ${K_t}$8.80 N
    ${K_y}$0.40 N
    $m$0.20 kg
    $L$0.30 m
    下载: 导出CSV

    表  2  ESO参数设置

    Table  2  Parameters of ESO

    参数$i=X,Y,Z$$i=\phi ,\theta ,\psi$$i=\alpha ,\beta$
    ${\kappa _{1i}}$55100100
    ${\kappa _{2i}}$55010001000
    ${\kappa _{3i}}$55001000010000
    下载: 导出CSV
  • [1] Romero J G, Rodríguez-Cortés H. Asymptotic stability for a transformed nonlinear UAV model with a suspended load via energy shaping. European Journal of Control, 2020, 52: 87-96. doi: 10.1016/j.ejcon.2019.09.002
    [2] Ren Yong, Chen Mou. Anti-swing control for a suspension cable system of a helicopter with cable swing constraint and unknown dead-zone. Neurocomputing, 2019, 356: 257-267. doi: 10.1016/j.neucom.2019.04.056
    [3] 曹龙, 曹义华, 李春华. 直升机-吊挂耦合系统平衡特性和稳定性分析. 北京航空航天大学学报, 2014, 40(09): 1219-1224.

    Cao Long, Cao Yi-Hua, Li Chun-Hua. Analysis of the balance characteristics and stability of the helicopter-hanging interchange system. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(09): 1219-1224.
    [4] Thanapalan K. Nonlinear controller design for a helicopter with an external slung load system. Systems Science & Control Engineering, 2017, 5(1): 97-107.
    [5] 何荣荣, 陈谋, 吴庆宪, 刘楠. 无人直升机吊挂系统滑模反步减摆控制. 航空兵器, 2020, 27(05): 100-106.

    He Rong-Rong, Chen Mou, Wu Qing-Xian, Liu Nan. Sliding mode anti-step sway control of unmanned helicopter suspension system. Aviation Ordnance, 2020, 27(05): 100-106.
    [6] Cao Yi-Hua, Nie Wen-Song, Wang Zhao-Rui, Wan Shao-Feng. Dynamic modeling of helicopter-slung load system under the flexible sling hypothesis. Aerospace Science and Technology, 2020, 99: 105770. doi: 10.1016/j.ast.2020.105770
    [7] 黄刚, 李军华. 基于AC-DSDE进化算法多UAVs协同目标分配. 自动化学报, 2021, 47(01): 173-184.

    Huang Gang, Li Jun-Hua. Multi UAVs Cooperative Target Assignment Based on ac-dsde evolutionary algorithm. Acta Automatica Sinica, 2021, 47(01): 173-184.
    [8] 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展. 自动化学报, 2019, 45(04): 669-681.

    Zhen Zi-Yang. Research progress of guidance and control for autonomous landing and recovery of Shipborne UAV. Acta Automatica Sinica, 2019, 45(04): 669-681.
    [9] Sanalitro D, Savino H J, Tognon M, et al. Full-pose Manipulation Control of a Cable-suspended load with Multiple UAVs under Uncertainties. IEEE Robotics and Automation Letters, 2020, 5(2): 2185-2191. doi: 10.1109/LRA.2020.2969930
    [10] Guerrero-Sánchez M E, Lozano R, Castillo P, et al. Nonlinear control strategies for a UAV carrying a load with swing attenuation. Applied Mathematical Modelling, 2021, 91: 709-722. doi: 10.1016/j.apm.2020.09.027
    [11] Qian L H, Liu H H T. Dynamics and control of a quadrotor with a cable suspended payload. In: Proceedings of the 30th IEEE Canadian Conference on Electrical and Computer Engineering. Windsor, Canada: IEEE, 2017. 1−4
    [12] Ailon A, Arogeti S. On set-point control of a quadrotor-type helicopter with a suspended load. In: Proceedings of the 2nd International Conference on Control, Automation and Robotics. Hong Kong, China: IEEE, 2016. 194−199
    [13] Yi K, Gu F, Yang L Y, He Y Q, Han J D. Sliding mode control for a quadrotor slung load system. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017. 3967− 3703
    [14] 王诗章, 鲜斌, 杨森. 无人机吊挂飞行系统的减摆控制设计. 自动化学报, 2018, 44 (10): 1771-1780.

    Wang Shi-Zhang, Xian Bin, Yang Sen. Design of sway control for UAV suspension flight system. Acta Automatica Sinica, 2018, 44(10): 1771-1780.
    [15] Cruz P J, Oishi M, Fierro R. Lift of a cable-suspended load by a quadrotor: A hybrid system approach. In: Proceedings of the IEEE American Control Conference. Chicago, USA: IEEE, 2015. 1887−1892
    [16] Cruz P J, Fierro R. Cable-suspended load lifting by a quadrotor UAV: hybrid model, trajectory generation, and control. Autonomous Robots, 2017, 41(8): 1629-1643. doi: 10.1007/s10514-017-9632-2
    [17] Emanuele L. de Angelis, Fabrizio Giulietti, Goele Pipeleers. Two-time-scale control of a multirotor aircraft for suspended load transportation. Aerospace Science and Technology, 2019, 84: 193-203. doi: 10.1016/j.ast.2018.10.012
    [18] 梁晓, 胡欲立. 四旋翼吊挂运输系统动态反馈线性化轨迹控制. 自动化学报, 2020, 46(09): 1993-2002.

    Liang Xiao, Hu Yu-Li. Dynamic feedback linearization trajectory control of four-rotor suspension transportation system. Acta Automatica Sinica, 2020, 46(09): 1993-2002.
    [19] Liang X, Fang Y, Sun N, et al. Nonlinear hierarchical control for unmanned quadrotor transportation systems. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3395-3405. doi: 10.1109/TIE.2017.2752139
    [20] Feng Y, Rabbath C A, Rakheja S, Su C. Adaptive controller design for generic quadrotor aircraft platform subject to slung load. In: Proceedings of the 28th Canadian Conference on Electrical and Computer Engineering. Halifax, Canada: IEEE, 2015. 1135−1139
    [21] David, Cabecinhas, et al. A trajectory tracking control law for a quadrotor with slung load. Automatica, 2019, 106: 384-389. doi: 10.1016/j.automatica.2019.04.030
    [22] Yu G, Cabecinhas D, Cunha R, et al. Nonlinear Backstepping Control of a Quadrotor-Slung Load System. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2304-2315. doi: 10.1109/TMECH.2019.2930211
    [23] Vandanipour M, Khodabandeh M. Adaptive Fractional Order Sliding Mode Control for a Quadrotor with a Varying Load. Aerospace Science and Technology, 2019, 86: 737-747. doi: 10.1016/j.ast.2019.01.053
    [24] Bin, Xian, Shizhang, et al. An Online Trajectory Planning Approach for a Quadrotor UAV With a Slung Payload. IEEE Transactions on Industrial Electronics, 2019, 67(8): 6669-6678.
    [25] Antonelli G, Cataldi E, Arrichiello F, et al. Adaptive Trajectory Tracking for Quadrotor MAVs in Presence of Parameter Uncertainties and External Disturbances. IEEE Transactions on Control Systems Technology, 2017, 26(1): 248-254.
    [26] Cabecinhas D, Cunha R, Silvestre C. A nonlinear quadrotor trajectory tracking controller with disturbance rejection. Control Engineering Practice, 2014, 26: 1-10. doi: 10.1016/j.conengprac.2013.12.017
    [27] 范云生, 曹亚博, 赵永生. 四旋翼飞行器轨迹跟踪控制器的设计与验证. 仪器仪表学报, 2017, 38(3): 741-749. doi: 10.3969/j.issn.0254-3087.2017.03.029

    Fan Yun-Sheng, Cao Ya-Bo, Zhao Yong-Sheng. Design and verification of a quadrotor trajectory tracking controller. Chinese Journal of Scientific Instrument, 2017, 38(3): 741-749. doi: 10.3969/j.issn.0254-3087.2017.03.029
    [28] FAN Y SH, CAO Y B, GUO Ch, et al. Fuzzy Self-adaptive Proportional Integration Differential Control for Attitude Stabilization of Quadrotor UAV. Journal of Donghua University(English Edition), 2016, 33(5): 768-773.
    [29] Fan Y S, Cao Y B, Zhao Y S. Sliding mode control for nonlinear trajectory tracking of a quadrotor. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017. 6676−6680
    [30] 范云生, 何智平, 曹健, 王国峰. 四旋翼飞行器非线性轨迹跟踪控制. 仪器仪表学报, 2019, 40(10): 247-256.

    Fan Yun-Sheng, He Zhi-Ping, Cao Jian, Wang Guo-Feng. Nonlinear trajectory tracking control of quadrotor aircraft. Chinese Journal of Scientific Instrument, 2019, 40(10): 247-256.
    [31] Chen X Y, Zhao Y S, Fan Y S. Adaptive integral back-stepping control for a quadrotor with suspended flight. In: Proceedings of the 5th International Conference on Automation, Control and Robotics Engineering. Dalian, China: IEEE, 2020. 226−234
    [32] Kotaru P, Wu G, Sreenath K. Dynamics and control of a quadrotor with a payload suspended through an elastic cable. In: Proceedings of the American Control Conference. Seattle, USA: IEEE, 2017. 3906−3913
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  1703
  • HTML全文浏览量:  739
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 录用日期:  2021-06-24
  • 网络出版日期:  2021-08-06
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回