The Control Strategy of Vertical Torsional Coupling Vibration of Rolling Mill Based on Coupled Backstepping Method
-
摘要: 针对轧机机电液垂扭耦合系统存在耦合振动问题, 提出一种基于耦合反步法的轧机垂扭耦合振动抑制控制策略. 首先考虑轧机传动系统、液压系统与辊系机械间的相互影响, 根据动力学定理, 建立轧机机电液垂扭耦合振动数学模型. 其次考虑到轧机耦合垂振系统和耦合扭振系统间存在状态耦合关系, 利用耦合反步法, 解决了振动控制器设计中存在的相互嵌套问题. 针对耦合系统输出性能受限问题, 借助于障碍李雅普诺夫函数方法, 同时利用神经网络来逼近未知非线性函数, 设计自适应神经网络振动抑制控制策略. 基于李雅普诺夫稳定理论严格证明了本文设计的控制方法能够保证系统输出满足所要求的暂稳态性能指标. 最后, 根据650 mm轧机的实际数据进行仿真, 验证了本文设计控制策略的有效性与优越性.Abstract: A control strategy based on coupling backstepping method is proposed to suppress the vertical torsional coupling vibration of rolling mill. Firstly, the coupling effect of the drive system, hydraulic system and the roll system is considered. According to the dynamic theorem, the vertical torsional coupling vibration model of the rolling mill is established. Then, in view of the coupling relationship between the two subsystems, a control strategy of electromechanical hydraulic vertical torsional coupling vibration suppression of rolling mill is proposed. Based on the specific order backstepping method, the coupling vibration control strategy is designed to overcome the problem of nesting each other in the controller design. Considering the output performance constraints of the coupled system, with the aid of the barrier Lyapunov function method and the neural network to approximate the unknown nonlinear function, an adaptive neural network vibration suppression control strategy is designed. It is proved theoretically that the designed controller can make the system output meet the required transient-steady performance index. Finally, a simulation is carried out on 650 mm rolling mill by using the actual data to show the validity of the proposed control strategy in this paper.
-
表 1 轧机机电液垂扭耦合系统仿真参数
Table 1 The simulation parametes of electromechanical hydraulic vertical torsional coupling system of rolling mill
参数 数值 参数 数值 ${m_1}$ $8.9357 \times {10^4}\;{\rm{kg}}$ ${k_v}$ $1.25 \times {10^{ - 4}}\;{\rm{m/v}}$ ${k_{11}}$ $7.2 \times {10^{10}}\;{\rm{N/m}}$ ${\beta _e}$ $7 \times {10^8}\;{\rm{Pa}}$ ${c_{11}}$ $1.2\times {10}^{6}\;({\rm{N} }·{\rm{s} })/{\rm{m} }$ $V$ $0.0{{732} }\;{ {\rm{m} }^{ {3} } }$ ${P_s}$ $2 \times {10^7}\;{\rm{Pa}}$ $J{}_m$ $1\,552\;{\rm{kg} }·{\rm{m} }^{2}$ ${P_2}$ $1 \times {10^6}\;{\rm{Pa}}$ $J{}_L$ $1\,542\;{\rm{kg} }·{\rm{m} }^{2}$ ${A_1}$ $1.9635 \times {10^{ - 1} }\;{ {\rm{m} }^{{2} } }$ $K$ $5.93\times {10}^{6}\;({\rm{N} }·{\rm{m} })/{\rm{rad} }$ ${A_2}$ $3.015 \times {10^{ - 2} }\;{ {\rm{m} }^{{2} } }$ ${TL}1$ $14\,500\;{\rm{N} }·{\rm{m} }$ ${C_t}$ $5 \times {10^{ - 16}}$ ${TLD}$ $2\,190\times \sin\left({\rm{\pi } }t\right)\,{\rm{N} }·{\rm{m} }$ ${C_d}$ $0.{\rm{62}}$ $R$ 0.4 $w$ 0.119 ${c_1}$ 0.2 ${c_2}$ 0.1 ${c_3}$ 0.1 ${c_4}$ 0.2 $a$ 0.13 $b$ 0.002 $c$ 0.2 -
[1] Gao Z Y, Liu Y, Zhang Q D, Liao M L, Tian B. Chatter model with structure-process-control coupled and stability analyses in the cold rolling system. Mechanical Systems and Signal Processing, 2020, 140: 106692. doi: 10.1016/j.ymssp.2020.106692 [2] 魏立群, 戴志方, 肖壮, 瞿志豪. 高速冷连轧机组的振动与对策研究[J]. 机械工程学报, 2016, 52(11): 88–94. doi: 10.3901/JME.2016.11.088Wei Li-Qun, Dai Zhi-Fang, Xiao Zhuang, Qu Zhi-Hao. Research of vibration and strategy in high speed cold-rolling mill. Journal of Mechanical Engineering, 2016, 52(11): 88–94 (in Chinese). doi: 10.3901/JME.2016.11.088 [3] Niroomand M R, Forouzan M R, Heidari A. Experimental analysis of vibration and sound in order to investigate chatter phenomenon in cold strip rolling. International Journal of Advanced Manufacturing Technology, 2019, 100(4): 673−682 [4] Lu X, Sun J, Song Z X, Li G T, Wang Z H, Hu Y J, et al. Prediction and analysis of cold rolling mill vibration based on a data-driven method. Applied Soft Computing, 2020, 96: 106706. doi: 10.1016/j.asoc.2020.106706 [5] 郜志英, 臧勇, 曾令强. 轧机颤振建模及理论研究进展. 机械工程学报, 2015, 51(16): 87–105+112. doi: 10.3901/JME.2015.16.087Gao Zhi-Ying, Zang Yong, Zeng Ling-Qiang. Review of modelling and theoretical studies on chatter in the rolling mills. Journal of Mechanical Engineering, 2015, 51(16): 87–105+112. (in Chinese). doi: 10.3901/JME.2015.16.087 [6] 王瑞鹏, 彭艳, 张阳, 孙建亮. 轧机耦合振动机理研究. 机械工程学报, 2013, 49(12): 66–71. doi: 10.3901/JME.2013.12.066Wang Rui-Peng, Peng Yan, Zhang Yang, Sun Jian-Liang. Mechanism research of rolling mill coupled vibration. Journal of Mechanical Engineering, 2013, 49(12): 66–71 (in Chinese). doi: 10.3901/JME.2013.12.066 [7] Lim H B, Yang H I. Experimental and numerical investigation of the vibration characteristics in a hot plate rolling mill based on multibody dynamics. ISIJ International, 2020, 60(11): 2477−2484. [8] 闫晓强, 吴先峰, 杨喜恩, 吴索团, 许建忠. 热连轧机扭振与轴向振动耦合研究. 工程力学, 2014, 31(02): 214–218.Yan Xiao-Qiang, Wu Xian-Feng, Yang Xi-En, Wu Suo-Tuan, Xu Jian-Zhong. Coupling research on torsional vibration and axial vibration of hot strip rolling mill. Engineering Mechanics. 2014, 31(02): 214-218 (in Chinese). [9] 凌启辉, 赵前程, 王宪, 康煜华. 热连轧机工作辊水平-垂直非线性振动特性及抑制. 中国机械工程, 2017, 28(16): 1943–1950+2007. doi: 10.3969/j.issn.1004-132X.2017.16.008Ling Qi-Hui, Zhao Qian-Cheng, Wang Xian, Kang Yu-Hua. Work roll horizontal-vertical nonlinear vibration characteristics and suppression of hot strip tandem mills. China Mechanical Engineering, 2017, 28(16): 1943–1950+2007 (in Chinese). doi: 10.3969/j.issn.1004-132X.2017.16.008 [10] 曾令强, 臧勇, 郜志英, 刘晓潺. 轧机整体耦合建模问题研究. 机械工程学报, 2015, 51(14): 46–53. doi: 10.3901/JME.2015.14.046Zeng Ling-Qiang, Zang Yong, Gao Zhi-Ying, Liu Xiao-Chan. Study on overall coupled modeling of the rolling mill. Journal of Mechanical Engineering, 2015, 51(14): 46–53 (in Chinese). doi: 10.3901/JME.2015.14.046 [11] 刘晓潺, 臧勇, 郜志英, 曾令强. 多方向耦合振动连轧机再生颤振建模及应用. 中南大学学报(自然科学版), 2017, 48(03): 635–643.Liu Xiao-Chan, Zang Yong, Gao Zhi-Ying, Zeng Ling-Qiang. Multidirectional regenerative chatter model of tandem rolling mills and its application. Journal of Central South University(Science and Technology), 2017, 48(03): 635–643 (in Chinese). [12] 张阳, 彭艳, 孙建亮, 臧勇. 板带轧机刚体柔体耦合振动系统的建模研究. 机械强度, 2016, 38(03): 429–434.Zhang Yang, Peng Yan, Sun Jian-Liang, Zang Yong. Strip rolling mill’s rigid-flexible coupling vibration modeling. Journal of Mechanical Strength, 2016, 38(03): 429–434 (in Chinese). [13] 钟掘, 唐华平. 高速轧机若干振动问题—复杂机电系统耦合动力学研究. 振动、测试与诊断, 2002, (01): 3–10+69.Zhong Jue, Tang Hua-Ping. Vibration problems of high speed rolling mill- study of dynamics of complex electromechanically coupled system. Journal of Vibration, Measurement and Diagnosis, 2002, (01): 3–10+69 (in Chinese). [14] 张瑞成, 卓丛林. 考虑电机内部因素影响的轧机主传动系统机电耦合振动特性研究. 机械科学与技术, 2017, 36(02): 184–189.Zhang Rui-Cheng, Zhuo Cong-Ling. Study on electromechanical coupling vibration characteristics of main drive system of rolling mill considering motor impact. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(02): 184–189 (in Chinese). [15] Wu J M, Yan X Q. Coupling vibration model for hot rolling mills and its application. Journal of Vibroengineering, 2019, 21(07): 1795–1809. doi: 10.21595/jve.2019.20226 [16] Dong L, Lakes R S. Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness, International Journal of Solids and Structures, 2013, 50(14): 2416–2423. [17] Mosayebi M, Zarrinkolah F, Farmanesh K. Calculation of stiffness parameters and vibration analysis of a cold rolling mill stand. International Journal of Advanced Manufacturing, 2017, 91(9): 4359–4369. [18] Heidari A, Forouzan M R, Niroomand M R. Development and evaluation of friction models for chatter simulation in cold strip rolling. International Journal of Advanced Manufacturing Technology, 2018, 96(5): 2055–2075. [19] 李崇坚, 段巍. 轧机传动交流调速机电振动控制. 北京: 冶金工业出版社, 2003.Li Chong-Jian, Duan Wei. Electromechanical Vibration Control of Rolling Mill Drive AC Speed Regulation. Beijing: Metallurgical Industry Press, 2003. [20] Song Y H, He W, He X Y, Han Z J. Vibration control of a high-rise building structure:Theory and experiment. IEEE/CAA Journal of Automatica Sinica, 2021, 8(04): 866−875. doi: 10.1109/JAS.2021.1003937 [21] 周丹峰, 李杰, 余佩倡, 陈强, 李亚楗. 磁浮交通轨排耦合自激振动分析及自适应控制方法. 自动化学报, 2019, 45(12): 2328−2343.Zhou D F, Li J, Yu P C, Chen Q, Li Y J. Analysis and adaptive control of the track induced self-excited vibration for the maglev transport. Acta Automatica Sinica, 2019, 45(12): 2328−2343 (in Chinese). [22] 苏建涛. 基于智能制造高品质薄带钢轧机振动控制关键技术研究. 电子技术, 2020, 49(01): 59–61.Su Jian-Tao. Study on key of vibration control for high quality thin strip mill based on intelligent manufacturing. Electronic Technology, 2020, 49(01): 59–61 (in Chinese). [23] Zhang R C, Tong C N. Torsional vibration control of the main drive system of a rolling mill based on an extended state observer and linear quadratic control. Journal of Vibration & Control, 2006, 12(3): 313–327. [24] 张登山, 李华德. H∞扭振抑制控制器在热连轧机组上的应用. 电工技术学报, 2006, (01): 92–97. doi: 10.3321/j.issn:1000-6753.2006.01.018Zhang Deng-Shan, Li De-Hua. H∞ vibration suppression controller in the hot continues rolling mill machine. Transactions of China Electrotechnical Society, 2006, (01): 92–97 (in Chinese). doi: 10.3321/j.issn:1000-6753.2006.01.018 [25] Qian C, Zhang L L, Hua C C. Adaptive torsional vibration control of the nonlinear rolling mill main drive system with performance constraints and sensor errors. International Journal of Control Automation and Systems, 2021, 19(03): 1264–1272. doi: 10.1007/s12555-020-0092-7 [26] Yan X Q, Qi J B, Wang X X. An active method suppressing rolling mill vibration: disturbance estimation and compensation algorithm. Journal of Iron and Steel Research International, 2019, 26(7): 697–703. doi: 10.1007/s42243-019-00300-3 [27] Yang X, Peng K X, Tong C N. Robust backstepping control for cold rolling main drive system with nonlinear uncertainties. Abstract and Applied Analysis, 2013, 387890. [28] 李小华, 胡利耀. 一类 p 规范型非线性系统预设性能有限时间H∞跟踪控制. 自动化学报, 2021, 47(12): 2870−2880Li Xiao-Hua, Hu Li-Yao. Prescribed performance finite-time H∞ tracking control for a class of p-normal form nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2870−2880 [29] Hua C C, Li K, Li Y F, Guan X P. Decentralized adaptive tracking quantized control for interconnected pure feedback time delay nonlinear systems. Journal of the Franklin Institute. 2018, 335: 2313–2328. [30] Zhao K, Song Y D. Chen C L P, Chen L. Control of nonlinear systems under dynamic constraints: A unified barrier function-based approach. Automatica. 2020, 119: 109102. doi: 10.1016/j.automatica.2020.109102 [31] 沈智鹏, 毕艳楠, 王宇, 郭晨. 输入输出受限船舶的轨迹跟踪自适应递归滑模控制. 控制理论与应用, 2020, 37(06): 1419–1427.Shen Zhi-Peng, Bi Yan-Nan, Wang Yu, Guo Chen. Adaptive recursive sliding mode control for surface vessel trajectory tracking with input and output constraints. Control Theory & Applications, 2020, 37(06): 1419–1427 (in Chinese). [32] Liu Y L, Ma H J, Ma H. Adaptive fuzzy fault-tolerant control for uncertain nonlinear switched stochastic systems with time-varying output constraints. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 2487–2498. doi: 10.1109/TFUZZ.2018.2814596 [33] Liu Y J, Gong M Z, Liu L, Tong S C, Chen C L P. Fuzzy observer constraint based on adaptive control for uncertain nonlinear MIMO systems with time-varying state constraints. IEEE Transactions on Cybernetics, 2021, 51(03): 1380–1389. doi: 10.1109/TCYB.2019.2933700 [34] 方一鸣, 许衍泽, 李建雄. 具有输入饱和的电液伺服位置系统自适应动态面控制. 控制理论与应用, 2014, 31(04): 511–518.Fang Yi-Ming, Xu Yan-Ze, Li Jian-Xiong. Adaptive dynamic surface control for electro-hydraulic servo position system with input saturation. Control Theory and Applications, 2014, 31(4): 511–518 (in Chinese). [35] Wang C L, Lin Y. Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems. Automatic, 2015, 54: 16–24. doi: 10.1016/j.automatica.2015.01.041 [36] Liu F, Hua Y Z, Dong X W, Li Q D, Ren Z. Adaptive fault-tolerant time-varying formation tracking for multi-agent systems under actuator failure and input saturation. ISA Transactions, 2020, 104: 145–153. doi: 10.1016/j.isatra.2019.01.024 [37] 郭涛, 梁燕军. 不确定非线性时滞关联大系统自适应分散容错控制. 自动化学报, 2017, 43(03): 486–492.Guo Tao, Liang Yan-Jun. Adaptive decentralized fault-tolerant control for uncertain nonlinear time-delay large scale systems. Acta Automatica Sinica, 2017, 43(03): 486–492 (in Chinese). [38] 赵光同, 曹亮, 周琪, 李鸿一. 具有未建模动态的互联大系统事件触发自适应模糊控制. 自动化学报, 2021, 47(8): 1932−1942Zhao Guang-Tong, Cao Liang, Zhou Qi, Li Hong-Yi. Event-triggered adaptive fuzzy control for interconnected large-scale systems with unmodeled dynamics. Acta Automatica Sinica, 2021, 47(8): 1932−1942