2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气压肌动图和改进神经模糊推理系统的手势识别研究

汪雷 黄剑 段涛 伍冬睿 熊蔡华 崔雨琦

李远征, 倪质先, 段钧韬, 徐磊, 杨涛, 曾志刚. 面向高比例新能源电网的重大耗能企业需求响应调度. 自动化学报, 2023, 49(4): 754−768 doi: 10.16383/j.aas.c220034
引用本文: 汪雷, 黄剑, 段涛, 伍冬睿, 熊蔡华, 崔雨琦. 基于气压肌动图和改进神经模糊推理系统的手势识别研究. 自动化学报, 2022, 48(5): 1220−1233 doi: 10.16383/j.aas.c200901
Li Yuan-Zheng, Ni Zhi-Xian, Duan Jun-Tao, Xu Lei, Yang Tao, Zeng Zhi-Gang. Demand response scheduling of major energy-consuming enterprises based on a high proportion of renewable energy power grid. Acta Automatica Sinica, 2023, 49(4): 754−768 doi: 10.16383/j.aas.c220034
Citation: Wang Lei, Huang Jian, Duan Tao, Wu Dong-Rui, Xiong Cai-Hua, Cui Yu-Qi. Research on gesture recognition based on pressure-based mechanomyogram and improved neural fuzzy inference system. Acta Automatica Sinica, 2022, 48(5): 1220−1233 doi: 10.16383/j.aas.c200901

基于气压肌动图和改进神经模糊推理系统的手势识别研究

doi: 10.16383/j.aas.c200901
基金项目: 国家自然科学基金联合基金重点支持项目(U19132207), 湖北省技术创新专项(2019AEA171), 科技部政府间国际科技创新合作重点专项(2017YFE0128300)资助
详细信息
    作者简介:

    汪雷:华中科技大学人工智能与自动化学院硕士研究生. 2019年获得华中科技大学学士学位. 主要研究方向为机器学习, 手势识别. E-mail: wml0531@hust.edu.cn

    黄剑:华中科技大学人工智能与自动化学院教授. 2005年获得华中科技大学博士学位. 主要研究方向为康复机器人, 机器人装配, 网络控制系统和生物信息学. 本文通信作者. E-mail: huang_jan@mail.hust.edu.cn

    段涛:2020年获得华中科技大学硕士学位. 主要研究方向为智能机器人, 模式识别. E-mail: tao_duan@hust.edu.cn

    伍冬睿:华中科技大学人工智能与自动化学院教授. 主要研究方向为机器学习, 脑机接口, 计算智能和情感计算. E-mail: drwu@hust.edu.cn

    熊蔡华:华中科技大学机械科学与工程学院数字制造装备与技术国家重点实验室教授. 1998年获得华中理工大学(现华中科技大学)机械电子工程专业博士学位. 主要研究方向为机器人学, 生机电一体化和康复工程装备. E-mail: chxiong@hust.edu.cn

    崔雨琦:华中科技大学人工智能与自动化学院博士研究生. 2017年获得华中科技大学电子信息工程学士学位. 主要研究方向为模糊系统, 脑机接口和可穿戴设备. E-mail: yqcui@hust.edu.cn

Research on Gesture Recognition Based on Pressure-based Mechanomyogram and Improved Neural Fuzzy Inference System

Funds: Supported by National Natural Science Foundation of China (61873321, U1913207), Technology Innovation Project of Hubei Province of China (2019AEA171), and International Science and Technology Cooperation Program of China (2017YFE0128300)
More Information
    Author Bio:

    WANG Lei Master student at the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology. He received his bachelor degree from Huazhong University of Science and Technology in 2019. His research interest covers machine learning and gesture recognition

    HUANG Jian Professor at the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology. He received his Ph.D. degree from Huazhong University of Science and Technology in 2005. His research interest covers rehabilitation robot, robotic assembly, networked control systems, and bioinformatics. Corresponding author of this paper

    DUAN Tao He received his master degree from Huazhong University of Science and Technology in 2020. His research interest covers intelligent robot and pattern recognition

    WU Dong-Rui Professor at the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology. His research interest covers machine learning, brain-computer interfaces, computational intelligence, and affective computing

    XIONG Cai-Hua Professor at the State Key Laboratory of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology. He received his Ph.D. degree in mechatronics from Huazhong University of Science and Technology in 1998. His research interest covers robotics, biomechatronics, and rehabilitation engineering equipment

    CUI Yu-Qi Ph.D. candidate at the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology. He received his bachelor degree in electronic information engineering from Huazhong University of Science and Technology in 2017. His research interest covers fuzzy systems, brain-computer interfaces, and wearable devices

  • 摘要: 手势识别是人机交互领域的重要研究内容, 为截肢患者控制智能假肢手提供基础. 当前主流方法之一是利用表面肌电图(Electromyogram, EMG)识别手部运动意图, 但肌电信号存在信号弱和易受噪声、汗液、疲劳影响等缺点. 同时肌电图在识别准确率方面, 尤其是截肢患者手势识别方面仍然具有较大的提升空间. 针对这些问题, 设计了基于气压肌动图(Pressure-based mechanomyogram, pMMG)的穿戴式信号采集装置, 为手势识别提供了优质的信号源. 结合深度神经网络中全连接层结构、典型抽样和标准正则化技术, 提出了一种改进多类神经模糊推理系统(Improved multicalss neural fuzzy inference system, IMNFIS), 与传统自适应神经模糊推理系统(Adaptive neural fuzzy inference system, ANFIS)相比, 泛化能力得到显著提升. 招募了7名健康受试者和1名截肢受试者, 并用8种算法开展离线实验. 所提方法在残疾人手势识别实验中取得了97.25%的最高平均准确率, 在健康人手势识别实验中取得了98.18%的最高平均准确率. 与近年公开报道的多种手势识别研究相比, 所提方法的综合性能更优.
  • 自然语言推理(Natural language inference, NLI)又称为文本蕴含识别(Recognizing textual entailment, RTE)[1-2], 是自然语言处理(Natural language processing, NLP)中一个重要的研究问题.自然语言推理是一个确定两个或多个句子之间逻辑关系的任务, 例如:给定一个前提(Premise)和一个假设(Hypothesis), 目标是确定它们之间的逻辑关系是蕴涵、中立还是矛盾. SNLI[3]和Breaking-NLI[4]等一系列高质量、大规模标准数据集的发布推动了自然语言推理的发展, 促进了大量相关研究[5-11], 表 1展示了几个SNLI数据集中的例子.目前基于神经网络的推理模型主要有两类:一类侧重前提和假设分别进行句子嵌入, 然后使用分类器将其组合起来; 另一类不是分别处理两个句子, 而是使用交互注意力机制进行句子之间的交互.本文关注基于句子嵌入的方法, 因为该方法没有限定要求两个句子, 可以延展到更多任务上.

    表 1  SNLI数据集上的三个例子
    Table 1  Three examples from the SNLI dataset
    Premise (前提) Hypothesis (假设) Label (标签)
    A soccer game with multiple males playing. Some men are playing a sport. Entailment
    (译文) 一场有多名男子参加的足球比赛. 有些男人在做运动. 蕴涵
    A person on a horse jumps over a broken down airplane. A person is training his horse for a competition. Neutral
    (译文) 一个人骑着马跳过了一架坏掉的飞机. 为了参加比赛, 一个人正在训练他的马. 中立
    A black race car starts up in front of a crowd of people. A man is driving down a lonely road. Contradiction
    (译文) 一辆黑色赛车在一群人面前启动. 一个男人开着车行驶在荒凉的路上. 矛盾
    下载: 导出CSV 
    | 显示表格

    对自然语言推理广泛的研究使得很多复杂模型在基准数据集上取得了越来越高的表现, 但是最近的研究[11]表明多数模型很少关注前提和假设的句义关系, 而是大量利用句子中个别词之间对立或相似等浅显关系进行推理作答, 更有甚者只是根据假设就可以进行推理.可想而知这些推理模型很难应用到复杂的现实场景中, 它们根据句子中特定词之间的关系进行盲目推理, 比如根据前提中的"expensive"词和假设中的"cheap"词, 简单推理出两个句子是对立关系, 而实际上两句话描述的不是同一件事情, 正确的逻辑关系应该是中立.推理模型过度依赖特定词, 说明模型只是抓住数据集中的语言偏置, 而不是依据前提和假设所表达的句义关系进行逻辑推理.

    一种检测语言偏置对推理模型影响的方式是设计一个仅依赖词编码表示进行推理的模型(为了方便描述, 本文使用WIM (Word inference model)表示仅依赖词编码表示进行推理的模型), 事实上WIM也可以作为一个标准的基线模型.本文提出使用对抗正则化方法来降低语言偏置的影响, 具体方法是让一个标准的推理模型和这个只依赖词编码表示进行推理的对手进行博弈, 以减少语言偏置的影响.在对抗机制下, 一方面训练WIM, 使得该模型尽可能推理正确, 其中WIM模型的词编码表示是由标准推理模型提供; 另一方面训练标准推理模型, 调整它的词编码和句编码部分, 目的是在提高自身推理准确率的同时, 尽量降低WIM模型的性能.在这种新颖的对抗正则化机制下, 优化自然语言推理模型.

    本文提出的模型可以端到端训练, 而且扩展和延伸性比较强.在SNLI和Breaking-NLI数据集上的实验结果表明了该方法的有效性:本文提出的方法在SNLI数据集基于句子嵌入的推理模型中取得了最好的结果, 而且在Breaking-NLI数据集中也取得了领先的表现.

    本文的主要贡献如下: 1)通过多样信息整合, 多层级句子编码, 增强自然语言推理模型对句子的表示能力, 以探索更多语义信息. 2)关注自然语言推理中的语言偏置现象, 并使用对抗正则化方法来解决这个问题, 此外该方法没有增加模型的参数, 不会增加模型测试时的复杂度. 3)通过在SNLI和Breaking-NLI数据集上的实验表明本文提出方法的有效性, 模型推理表现取得了有效的提升.

    目前句子嵌入在自然语言推理的众多方法中得到了广泛的应用, 这些方法背后的基本思想是分别对前提语句和假设语句进行编码, 然后将它们的句子表示结合起来使用神经网络进行分类, 具体结构如图 1所示.在已有的工作中, 很多研究工作使用卷积神经网络(Convolution neural network, CNN)和长短时记忆网络(Long short-time memory, LSTM)作为构建模块, 如Liu等[12]提出基于双向长短时记忆网络(Bidirectional LSTM, BiLSTM)的句子编码结构, Mou等[13]提出基于树的CNN句子编码结构.也有很多使用更加复杂的神经网络进行句子嵌入的研究工作, 如Munkhdalai等[14]提出NSE (Neural semantic encoder)的记忆增强神经网络, 用于自然语言推理任务.最近一些研究者开始探索应用于句子嵌入表示的自注意力机制. Shen等[6]提出DiSAN模型, 该模型没有使用CNN和循环神经网络(Recurrent neural network, RNN), 而是完全依赖于研究者提出的多维注意力和双向自注意力机制. Shen等[15]提出ReSAN (Reinforced self-attention network)模型, 该模型使用强化学习将软注意力和硬注意力融合在一起. Im等[16]提出基于距离的自注意力网络模型, 该模型利用距离掩蔽来关注单词之间的距离, 从而对局部依赖关系进行建模.此外, 还有研究者将胶囊网络中的动态路由机制应用到自然语言推理任务中[17], 并且取得了不错的效果.虽然在自然语言推理中, 句子嵌入方法已经显示出其有效性, 但是也有多项研究表明, 将前提和假设句子对在句子编码期间联合处理, 关注它们之间的复杂交互, 模型会得到更好的结果.然而, 这些交互式的方法不能在很多单个句子处理的任务上直接使用, 也不能像句子嵌入一样直接提供关于句子的语义理解.本文选择基于句子嵌入的体系结构, 以便应用于更多NLP任务.

    图 1  自然语言推理(NLI)整体结构框图
    Fig. 1  The structure of natural language inference (NLI)

    Goodfellow等[18]提出生成对抗网络(Generative adversarial network, GAN)作为一种学习数据分布的新方式.生成对抗网络包含一个生成器$G$和一个判别器$D$, $G$和$D$在一个极小极大的博弈中被同步训练, 优化目标是达到纳什均衡

    $ \begin{align}\label{eq1} &\mathop {\min }\limits_G \mathop {\max }\limits_D V(D, G) = {{\rm E}_{x \sim {p_{\rm data}}}}\left[ {\log D(x)} \right] +\notag\\ &\qquad {{\rm E}_{z \sim {p_z}}}\left[ {\log (1 - D(G(z)))} \right] \end{align} $

    (1)

    其中, 生成器$G$根据从先验分布${p_z}$中采样的隐含输入变量$z$来产生真实的数据, 以愚弄判别器$D$.另一方面, 判别器$D$是一个典型的二元分类器, 它试图去辨别它的输入数据是来自训练集还是来自生成器生成的集合.生成对抗网络通过判别器为生成器提供损失梯度进行训练, 目的是学习一个生成模型, 使该模型的输出满足特定的分布${p_{\rm data}}$.

    生成对抗网络具有强大的模拟复杂分布的能力, 已受到广泛关注, 并且在图像和文本生成等领域演化出很多变体, 取得了大量令人瞩目的效果.如针对对抗网络自身的改进LSGAN[19]和WGAN[20], 对抗网络在图像生成上的应用BicycleGAN[21]和DualGAN[22], 在文本生成上的应用SeqGAN[23]和RankGAN[24]等.最近, 研究人员提出了其他对抗训练的策略[25-26], 以鼓励中间模型表示各种形式的不变性.

    图 2是本文提出的基于对抗正则化的自然语言推理模型框图, 图中上半部分的标准NLI模型对应本文提出的增强的多层级表示推理模型(Enhanced multi-level representations inference model, EMRIM), 下半部分的针对词编码的NLI对手对应前面提到的WIM模型.其中EMRIM模型主要包括词编码器、句编码器、分类器三部分, 该模型通过增强的多层级编码结构探索丰富语言信息.并且本文提出使用对抗正则化方法降低语言偏置的影响, 从而进一步提升模型的推理能力.本文从以下几个方面对提出的方法进行具体描述.

    图 2  基于对抗正则化的自然语言推理模型结构框图
    Fig. 2  The structure of natural language inference model based on adversarial regularization

    丰富的表示信息在自然语言推理中扮演着重要的角色.在我们的模型中, 我们将统筹多种类型的表示, 以更好地挖掘前提和假设句义信息, 这也是这项任务的基本组成部分.首先将前提和假设中的每个单词转换成连续的表示形式, 对词信息进行融合和提取.图 3中展示了词编码的处理方式, 具体包含以下部分:

    图 3  词编码器和句子编码器网络结构
    Fig. 3  Word encoder and sentence encoder network structure

    1) 词嵌入:与之前方法的设置相似, 使用预训练的词向量GloVe[27]将每一个单词映射到向量空间.

    2) 字符嵌入:将卷积神经网络(CNN)应用到每个单词的字符上.实践证明, 该方法对处理集外词(Out of vocabulary, OOV)有一定的帮助[28].

    3) POS和NER标签:使用词性标注(Part-of-speech, POS)和命名实体识别(Named-entity recognition, NER)来获得单词的词性信息和实体信息, 然后每一个单词可以通过查表获得对应的POS嵌入表示和NER嵌入表示.这种方法比常用的独热码包含更多信息.

    4) 精确匹配(Exact match, EM):受机器阅读理解的启发, 使用3个二进制特征来表示这个词是否能与任何词准确匹配, 分别表示原始形式、小写形式和词干形式.

    5) CoVe:通过机器翻译[29]得到词的上下文向量表示, 本文的模型对其进行降维处理, 以减少模型的参数量.

    本文将前面提到的多种词信息串联起来使用, 这样不仅可以从更多角度获得词相关的表示信息, 而且为后续句子编码提供良好的基础表征, 以更准确地理解句子上下文含义, 从而做出合理的推理.

    为了获得句子的语义信息, 将所有向量序列传递给使用BiLSTM和最大池化(Max pooling)的句子编码器.输入一个长度为$T$的序列$({w_1}, {w_2}, {w_3}$, $\cdots $, ${w_T})$, 双向长短时记忆网络的输出是, $\cdots $, ${h_T})$, 序列输出中的每一项计算如下:

    $ \overrightarrow {{h_t}} = \overrightarrow {LST{M_t}} ({w_1}, {w_2}, \cdots , {w_T}) $

    (2)

    $ \overleftarrow {{h_t}} = \overleftarrow {LST{M_t}} ({w_1}, {w_2}, \cdots , {w_T}) $

    (3)

    $ {h_t} = \left[ {\overrightarrow {{h_t}} , \overleftarrow {{h_t}} } \right] $

    (4)

    接下来为了学习每个句子的整体表示, 对序列编码器隐藏层的输出应用最大池化处理, 得到与${h_t}$同维度大小的向量

    $ \begin{align}\label{eq5} x = MaxPooling({h_1}, {h_2}, {h_3}, \cdots , {h_T}) \end{align} $

    (5)

    先进的自然语言推理模型通常将句子编码器实现为多层结构, 鼓励模型模拟复杂函数, 同时捕获复杂的语言结构.此外, 一些研究人员已经证实, 不同层能够提取不同类型的语法和语义信息[30].本文通过设置多层级结构, 探索每一层潜在的语义信息.在推理模型中, 使用基于BiLSTM和Max Pooling的层次化句子编码器, 句子编码器包括三层, 每一层BiLSTM都是将原始输入语句序列作为输入; 而且, 除了第一层BiLSTM之外的其他BiLSTM层, 均使用前一层网络的最终状态来初始化其隐层状态.对每一层BiLSTM的输出进行最大池化, 句子编码的最终输出是每一个最大池化层输出的串联拼接.图 3显示了具体的网络结构.

    句子编码器的输出是前提和假设的固定维度的向量表示$u$和$v$, 然后将它们传递给顶层分类器.在自然语言推理任务中, 顶层分类器一般使用多层感知机(Multilayer perceptron, MLP)和Softmax函数来预测每个类别的概率.本文以多种方式将这两个句子的表示聚合在一起, 并作为多层感知机的输入, 然后把多层感知机的输出传递给Softmax函数, 公式表示如下所示:

    $ x = [u;v;u \odot v;|u - v|] $

    (6)

    $ Output ={\rm Softmax} (MLP(x)) $

    (7)

    其中, $ \odot$表示逐个对应元素相乘, 多层感知机包含两个带有修正线性单元(Rectified linear unit, ReLU)激活函数的隐层.最后通过最小化带有L2正则项的多类交叉熵损失函数, 对整个模型进行端到端训练.

    1) 标准推理模型:给定数据集$D = \{{p_i}, {q_i}, {a_i}\}$, 其中包含前提句${p_i} \in {\cal P}$、假设句${q_i} \in {\cal Q}$、推理标签${a_i}$ $\in$ ${\cal A}$三部分, 自然语言推理任务就是从前提和假设句子中推理出它们的逻辑关系.为了描述方便, 定义词编码器的操作为$G$, 定义句子编码器为$H$, 最后的分类层为$F$, $p$和$q$为数据集$D$中某样本的两个句子, 所以我们的推理模型可以表示为, 首先这两个句子通过词编码器分别得到表示${g_u}$和${g_v}$

    $ {g_u} = G(p) $

    (8)

    $ {g_v} = G(q) $

    (9)

    然后输出的结果经过句编码器的处理得到句子表示$u$和$v$

    $ u = H({g_u}) $

    (10)

    $ v = H({g_v}) $

    (11)

    最后将两者的句子表示传递给顶层分类器预测逻辑关系

    $ \begin{align}\label{eq12} P({\cal A}|p, q) = F(u, v) \end{align} $

    (12)

    现有的自然语言推理模型一般都遵循类似的模式, 通过标准的交叉熵函数进行训练, 通过优化参数最小化损失函数

    $ \begin{align}\label{eq13} {{\cal L}_{NLI}}(G, H, F) = {{\mathbb{E}}_{{\cal P}, {\cal Q}, {\cal A}}}[ - \log (P({a_i}|{p_i}, {q_i}))] \end{align} $

    (13)

    2) WIM:对NLI中关于词的语言偏置强弱直观的度量是模型仅从词编码就可以预测答案的能力.我们将这个模型形式化为一个映射${F_G}$, 如上所述, 我们假设${F_G}$是可微的, 并把从标准推理模型获得的词编码作为输入, 以便${F_G}$可以进行预测

    $ \begin{align}\label{eq14} {P_{{F_G}}}({\cal A}|p, q) = {F_G}({g_u}, {g_v}) \end{align} $

    (14)

    将这个模型参数化为与顶层分类器相似的结构, 只是为了便于后续处理.在其基础上加入了最大池化层.如上所述, 该模型可以用交叉熵函数进行训练

    $ \begin{align}\label{eq15} {{\cal L}_G}(G, {F_G}) = {{\mathbb{E}}_{{\cal P}, {\cal Q}, {\cal A}}}[ - \log ({P_{{F_G}}}({a_i}|{p_i}, {q_i}))] \end{align} $

    (15)

    3) 对抗正则化减少语言偏置:如图 2所示, 本文将标准推理模型和只依赖词编码的推理模型设置为对抗状态, 引入对抗正则化的方法优化自然语言推理模型.其中只依赖词编码的推理模型为了推理成功, 需要学习训练数据集中的语言偏置, 但是因为这种语言偏置忽略了句义信息, 导致标准推理模型推理错误.为了减少语言偏置, 将两个模型设置为对抗状态, 通过修改词编码部分来降低只依赖词编码模型的表现; 同时强化句子编码部分, 以捕获更多上下文信息和语义信息, 从而达到在提升标准推理模型推理表现的同时减少对语言偏置的依赖的目的.可以将这两个模型的对立关系描述为

    $ \begin{align}\label{eq16} \mathop {\min }\limits_{G, H, F} \mathop {\max }\limits_{{F_G}} ({{\cal L}_{NLI}}(G, H, F) - \lambda {{\cal L}_G}(G, {F_G})) \end{align} $

    (16)

    基于对抗正则化的自然语言推理模型的训练过程如下, 首先训练只依赖词编码的推理模型, 该模型的训练目标是最小化其对应的交叉熵损失函数, 但是词编码器$G(\cdot)$不会根据这个梯度信息更新, 这个操作对应了图 2中的梯度拒绝部分.潜在地, 这迫使分类器${F_G}$要基于标准推理模型给出的词编码表示尽可能好地进行推理.然后训练更新标准推理模型, 该模型的梯度信息来自于两部分:一部分是标准推理模型本身对应的交叉熵损失函数; 另一部分来自于只依赖词编码的推理模型负的加权的交叉熵损失函数, 其中分类器${F_G}$的参数是不更新的, 分类器只是起到梯度传递的作用.最后这两个训练过程进行交替训练更新, 通过不断对抗博弈, 以到达理想的纳什均衡状态.

    我们使用正则化系数$\lambda $来调控推理模型的性能和语言偏置的权衡. $\lambda $取值较小表明较少的正则化发生, 标准推理模型继续学习语言偏置.另一方面, 当$\lambda $取值较大时, 表示去除较多语言偏置, 可能导致标准推理模型和只依赖词编码的模型的表现都不好; 此外权重过大会加重对词编码的影响, 以至于词编码器没有能力学习合理的词表示, 从而进一步影响句子表征等高层表示.所以要设置合适的权重来权衡两者之间的重要性.

    我们在SNLI和Breaking-NLI数据集上验证本文的方法.

    SNLI (Stanford natural language inference)[3]数据集大约有57万人工标注的句子对, 该数据集比其他同类数据集大两个数量级.其中前提数据来源于Flickr30k语料库中的字幕, 而假设句数据和标签是人工合成的.数据集提供的标签分别是"entailment", "neutral", "contradiction", "-".其中"-"表示注释者之间无法达成共识.遵照Bowman等[3]提出的方式删除标签为"-"的句子对, 然后生成训练集、验证集和测试集.

    Breaking-NLI[4]数据集是一个自然语言推理的测试集, 包括8 193个前提和假设句子对, 其中前提和假设只是有一个词或短语被替换了, 其他成分是相同的.该数据集被用来测试自然语言推理模型, 推理模型需要一定的词汇和世界知识才能实现合理的表现.

    本文在实验中使用预先训练好的300维的GloVe 840B词向量来初始化词嵌入向量, 词嵌入中的集外词使用[-0.1, 0.1]随机初始化, 在模型训练期间词嵌入向量被不断更新, 以学习适合NLI任务的更有效的表示.我们使用Spacy对单词进行标记并生成POS和NER标签, POS和NER的嵌入维度分别是26和20.所有BiLSTM的隐层大小设置为250, 为了避免过拟合, 在层间使用dropout[31]和层归一化(Layer normalization)[32]处理方法.使用Adam[33]算法优化模型参数, 并设置学习率为0.0001, 权重衰减为$1\times 10^{-8}$.设置批次大小为32, 以进行更多探索.在对抗训练过程中, 两个模型交替训练的频率为$1$ : $1$.在所有方法中都是使用500维的BiLSTM (250维前向LSTM + 250维后向LSTM).

    表 2显示了使用句子嵌入方法的不同模型在SNLI训练集和测试集的结果.我们使用以下几种方法进行实验对比:

    表 2  不同方法在SNLI上的实验结果(%)
    Table 2  Experimental results for different methods on SNLI (%)
    对比方法 模型 训练准确率 测试准确率
    Mou等[13] (2015) 300D Tree-based CNN encoders 83.3 82.1
    Liu等[12] (2016) 600D (300 + 300) BiLSTM encoders 86.4 83.3
    Liu等[12] (2016) 600D BiLSTM encoders with intra-attention 84.5 84.2
    Conneau等[34] (2017) 4096D BiLSTM with max-pooling 85.6 84.5
    Shen等[6] (2017) Directional self-attention network encoders 91.1 85.6
    Yi等[7] (2018) 300D CAFE (no cross-sentence attention) 87.3 85.9
    Im等[16] (2017) Distance-based Self-Attention Network 89.6 86.3
    Kim等[35] (2018) DRCN (-Attn, -Flag) 91.4 86.5
    Talman等[36] (2018) 600D HBMP 89.9 86.6
    Chen等[37] (2018) 600D BiLSTM with generalized pooling 94.9 86.6
    Kiela等[38] (2018) 512D Dynamic Meta-Embeddings 91.6 86.7
    Yoon等[17] (2018) 600D Dynamic Self-Attention Model 87.3 86.8
    Yoon等[17] (2018) Multiple-Dynamic Self-Attention Model 89.0 87.4
    本文方法 BiLSTM_MP 89.46 86.51
    本文方法 EMRIM 92.71 87.36
    本文方法 BiLSTM_MP + AR 89.02 86.73
    本文方法 EMRIM + AR 93.26 $\textbf{87.60}$
    下载: 导出CSV 
    | 显示表格

    1) BiLSTM_MP:该模型的词编码器使用本文提出的多信息融合编码方式, 但是句编码器使用了简单堆叠的三层BiLSTM网络, 并根据最后一层BiLSTM的输出进行最大池化处理, 最后经过顶层分类器得到推理结果.

    2) BiLSTM_MP + AR:该方法是在BiLSTM_ MP基础上使用对抗正则化.

    3) EMRIM:该方法是第2节提出的增强的多层级表示推理模型.

    4) EMRIM + AR:在EMRIM中加入对抗正则化方法.

    表 2显示了本文实验结果与SNLI官方排行榜结果, 根据实验对比, 本文提出的EMRIM方法达到了87.36 %的准确率, 已经接近排行榜中的最好结果87.4 %, 这说明在推理模型中使用多种类型信息增强的词编码器和多层级的句编码器, 确实可以提取更丰富更准确的语义表示, 从而利于模型推理.当分别为标准推理模型BiLSTM_MP和EMRIM增加只依赖词编码进行推理的对抗模型之后, 在不断博弈的进化过程中, 两个标准模型的推理性能进一步提升, BiLSTM_MP + AR比BiLSTM_MP高出约0.22 %的准确率, EMRIM + AR比EMRIM高出约0.24 %的准确率.这表明了本文提出的对抗正则化方法的有效性:该方法可以减少标准推理模型对语言偏置的依赖, 避免依据词间浅显的关系进行盲目推理; 而是强调语义理解, 通过对句义的整体把握做出选择.需要注意的是对抗正则方法没有增加标准推理模型的参数量, 并且不会增加模型测试时的复杂度.

    表 3是不同方法在Breaking-NLI测试集上的实验结果[4], 这些模型都是在SNLI数据集上训练, 然后在Breaking-NLI数据集上测试.实验发现在SNLI测试集上表现不错的ESIM模型, 在这个测试集上的性能急剧下降.本文提出的EMRIM + AR模型在该测试集上取得了目前公开的最高准确率, 这说明本文提出的模型具有良好的词汇知识和世界知识; 通过应用对抗正则化方法, 推理模型在理解词汇的同时, 关注句义表达, 整体把握推理需求, 做出合理推理.

    表 3  不同方法在Breaking-NLI上的测试结果
    Table 3  Experimental results for different methods on Breaking-NLI
    模型 测试准确率(%)
    Decomposable Attention[39] 51.9
    Residual-Stacked-Encoder[40] 62.2
    ESIM[8] 65.6
    KIM[41] 83.5
    EMRIM 88.37
    EMRIM + AR $\textbf{89.96}$
    下载: 导出CSV 
    | 显示表格

    注意到在对抗训练过程中, 随着标准推理模型在SNLI测试集上的表现提升, 只依赖词编码进行推理的模型的性能上升到一定程度之后不再增加, 而且有稍微下降的趋势.这表明对抗优化策略执行得很好, 这也是和我们的直觉是一致的.

    表 4是权重$\lambda$对SNLI测试集推理准确率的影响.根据权重和准确率的变化趋势, 可以得到以下分析.在较高的权值下, 基于词编码的大部分判别信息都已经丢失, 即标准推理模型是通过牺牲自己的性能, 从而降低了只作用于词编码模型的性能, 但是事实上在推理中根据词信息进行判别还是占有一定重要地位的, 不应完全忽略; 另外, 权重过大也导致模型底层学习不到合理的词向量表示, 继而影响模型高层网络对句子编码能力和推理能力.在权值较小时, 标准推理模型的性能相较之前也没有明显提升, 毕竟完全根据词中的判别信息进行推理是片面的, 因为忽略了对句子内容的整体理解和把握, 会导致模型的推理脱离了对应的描述场景, 从而难于做出正确抉择.只有兼顾词中表达的判别信息和句义分析这两方面, 自然语言推理模型才会做出正确的推理.

    表 4  权重$\lambda$对NLI准确率的影响
    Table 4  Impact of weight $\lambda$ on NLI accuracy
    权重值 测试准确率(%)
    0.5 86.90
    0.25 87.14
    0.10 87.60
    0.05 87.35
    0.01 87.39
    下载: 导出CSV 
    | 显示表格

    本文提出增强的多层级表示推理模型, 通过多样信息整合和多层级句子编码, 增强模型对句子的表示能力, 探索更多语义信息.在标准推理模型中引入对抗正则化方法, 通过标准推理模型和只依赖词编码进行推理的模型进行博弈训练, 以减少语言偏置对推理模型的影响, 使模型能够基于上下文进行有效推理.在SNLI和Breaking-NLI数据集上的实验结果验证了本文方法的有效性.在未来的研究工作中, 我们希望将该方法应用到更多任务中去.


  • 收稿日期 2020-10-27 录用日期 2021-03-02 Manuscript received October 27, 2020; accepted March 2, 2021 国家自然科学基金联合基金重点支持项目 (U1913207), 湖北省技术创新专项 (2019AEA171), 科技部政府间国际科技创新合作重点专项 (2017YFE0128300) 资助 Supported by National Natural Science Foundation of China (U1913207), Technology Innovation Project of Hubei Province(2019AEA171), and International Science and Technology Cooperation Program of China (2017YFE0128300) 本文责任编委 郑伟诗 Recommended by Associate Editor ZHENG Wei-Shi 1. 华中科技大学人工智能与自动化学院图像信息处理与智能控制教育部重点实验室 武汉 430074 2. 华中科技大学机械科学与
  • 工程学院数字制造装备与技术国家重点实验室 武汉 430074 1. Ministry of Education Key Laboratory on Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074 2. State Key Laboratory of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
  • 图  1  pMMG原理图

    Fig.  1  The schematic diagram of pMMG

    图  2  手势识别装置及其佩戴位置

    Fig.  2  The gesture recognition device and it's wearing position

    图  3  每一轮的手势数据采集过程

    Fig.  3  Each round of gesture data acquisition process

    图  4  采集的原始手势数据流

    Fig.  4  The collected raw gesture data stream

    图  5  手势数据处理过程

    Fig.  5  Gesture data processing

    图  6  MC_ANFIS结构图

    Fig.  6  Structure of MC_ANFIS

    图  7  本文研究的6种手势

    Fig.  7  Six gestures studied in this paper

    图  8  MC_TS_UR融合算法在每名受试者数据集上的混淆矩阵

    Fig.  8  The CM of the MC_TS_UR fusion algorithm applied to the datasets of every subject

    图  9  4种基于MC_ANFIS的算法在训练过程中的分类误差随时间变化曲线

    Fig.  9  The classification error changes curve of four MC_ANFIS based algorithms with time during the training process

    表  1  参与手势识别实验的受试者信息

    Table  1  Information of the subjects participating in the gesture recognition experiment

    受试者性别年龄身高 (cm)体重 (kg)腕围 (cm)健康状况
    Subject-125180.472.418.8健康
    Subject-224169.558.516.5健康
    Subject-356164.661.215.8手部截肢
    Subject-425172.362.817.9健康
    Subject-522177.557.016.8健康
    Subject-626166.665.718.4健康
    Subject-723170.173.319.1健康
    Subject-825175.566.917.1健康
    下载: 导出CSV

    表  2  6种手腕手势对应的肌肉信息

    Table  2  Muscles information of the corresponding six gestures

    手势肌肉作用
    屈腕尺侧腕屈肌手腕屈曲和尺侧偏移
    握拳指浅屈肌手指弯曲
    尺侧倾桡侧腕屈肌手腕弯曲和径向偏移
    伸腕尺侧腕伸肌手腕伸展和尺侧偏移
    伸掌指伸肌手指伸展
    桡侧倾桡侧腕伸肌手腕伸展和径向偏移
    下载: 导出CSV

    表  3  8种算法在健康人数据集上的离线实验结果

    Table  3  The offline experiment results of eight algorithms on datasets of the normal

    指标SVMGBDTLDATSK_GD_LSEMCMC_TSMC_URMC_TS_UR
    ${\rm{RER}}$6.07%7.82%5.15%5.26%3.16%2.52%2.30%1.82%
    ${\rm{BER}}$6.18%8.74%5.21%5.35%2.83%2.41%2.33%1.77%
    $\kappa$0.92580.90180.93750.93580.96600.97110.97200.9787
    $T_t$224.64.40.61121.9796.1886.5734.7310.2
    下载: 导出CSV

    表  4  8种算法在残疾人数据集上的离线实验结果

    Table  4  The offline experiment results of eight algorithms on datasets of the disabled

    指标SVMGBDTLDATSK_GD_LSEMCMC_TSMC_URMC_TS_UR
    ${\rm{RER}}$5.94%8.13%4.46%5.77%4.64%3.83%3.77%2.75%
    ${\rm{BER}}$6.10%8.27%4.48%6.11%4.72%3.98%3.65%2.73%
    $\kappa$0.92680.90080.94620.92670.94340.95220.95620.9672
    $T_t$173.05.30.71006.5766.8942.9768.6313.1
    下载: 导出CSV

    表  5  与近期同类研究工作文献的比较

    Table  5  Comparison with similar research work literature

    文献传感器实验对象是否为公共数据集分类算法手势类别数识别准确率
    [25]6 通道 pMMG6 名健康人Fuzzy logic695.30%
    [26]8 通道 FMG10 名健康人SVM693.00%
    [27]2 通道 sEMG7 名健康人SVM495.00%
    [28]4 通道 sEMG + 1 通道 IMU10 名健康人LDA892.60%
    [29]8 通道 sEMG21 名健康人LDA694.70%
    [30]8 通道 sEMG8 名健康人Hidden Markov model 694.20%
    Proposed6 通道 pMMG + 1 通道 IMU7 名健康人MC_TS_UR698.18%
    [31]8 通道 sEMG4 名残疾人LDA792.00%
    [32]7 通道 sEMG3 名残疾人SVM594.02%
    Proposed6 通道 pMMG + 1 通道 IMU1 名残疾人MC_TS_UR697.25%
    下载: 导出CSV
  • [1] Liu H Y, Wang L H. Gesture recognition for human-robot collaboration: A review. International Journal of Industrial Ergonomics, 2018, 68(1): 355-367
    [2] Ding J, Lin R Z, Lin Z Y. Service robot system with integration of wearable Myo armband for specialized hand gesture human–computer interfaces for people with disabilities with mobility problems. Computers Electrical Engineering, 2018, 69(1): 815-827
    [3] 丁其川, 赵新刚, 李自由, 韩建达. 基于自更新混合分类模型的肌电运动识别方法. 自动化学报, 2019, 45(8): 1464-1474

    Ding Q C, Zhao X G, Li Z Y, Han J D. An EMG-motion recognition method with self-update hybrid classification model. Acta Automatica Sinica, 2019, 45(8): 1464-1474
    [4] Zhang X, Chen X, Li Y, Lantz V, Wang K, Yang J. A framework for hand gesture recognition based on accelerometer and EMG sensors. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2011, 41(6): 1064-1076 doi: 10.1109/TSMCA.2011.2116004
    [5] Duan T, Huang J, Xie Z, Wang L, Xiong C H. Continuous control of wrist-hand prosthesis by extracting independent sEMG signals from cross-talk muscle groups. In: Proceedings of the 2019 Chinese Control Conference. Guangzhou, China: IEEE, 2019. 4537−4542
    [6] 李自由, 王丰焱, 赵新刚, 丁其川, 张道辉, 韩建达. 基于 Myo 旋转偏移估计与自适应校正的手势识别方法. 自动化学报, 2020, 46(9): 1896-1907

    Li Z Y, Wang F Y, Zhao X G, Ding Q C, Zhang D H, Han J D. The method for gestures recognition based on Myo rotation shifts estimation and adaptive correction. Acta Automatica Sinica, 2020, 46(9): 1896-1907
    [7] Orizio C, Liberati D, Locatelli C, et al. Surface mechanomyogram reflects muscle fibres twitches summation. Journal of Biomechanics, 1996, 29(4): 475-481 doi: 10.1016/0021-9290(95)00063-1
    [8] Akataki K, Mita K, Watakabe M, Itoh K. Mechanomyogram and force relationship during voluntary isometric ramp contractions of the biceps brachii muscle. European Journal of Applied Physiology, 2001, 84(1-2): 19-25 doi: 10.1007/s004210000321
    [9] McIntosh J, Marzo A, Fraser M, Phillips C. Echoflex: Hand gesture recognition using ultrasound imaging. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver, USA: ACM, 2017. 1923−1934
    [10] Liu M K, Lin Y T, Qiu Z W, Kuo C K, Wu C K. Hand Gesture Recognition by a MMG-Based Wearable Device. Journal of The Neurological Sciences, 2020, 20(24): 14703-14712
    [11] Feng W, Xia C, Zhang Y, Yu J, Jiang W. Research on Chinese sign language recognition methods based on mechanomyogram signals analysis. In: Proceedings of the 4th International Conference on Signal and Image Processing. Wuxi, China: IEEE, 2019. 46−50
    [12] Stokes M J, Dalton P A. Acoustic myographic activity increases linearly up to maximal voluntary isometric force in the human quadriceps muscle. Journal of The Neurological Sciences, 1991, 101(2): 163-167 doi: 10.1016/0022-510X(91)90041-5
    [13] Ahsan M R, Ibrahimy M I, Khalifa O O. Electromygraphy (EMG) signal based hand gesture recognition using artificial neural network (ANN). In: Proceedings of the 4th International Conference on Mechatronics. Kuala Lumpur, Malaysia: IEEE, 2011. 1−6
    [14] Zhang Z, Yang K, Qian J, Zhang L. Real-time surface emg pattern recognition for hand gestures based on an artificial neural network. Sensors, 2019, 19(14): 3170-3184 doi: 10.3390/s19143170
    [15] Yao B, Hagras H, Alhaddad M J, Alghazzawi D. A fuzzy logic-based system for the automation of human behavior recognition using machine vision in intelligent environments. Soft Computing, 2015, 19(2): 499-506 doi: 10.1007/s00500-014-1270-4
    [16] Hachaj T, Ogiela M R. Rule-based approach to recognizing human body poses and gestures in real time. Multimedia Systems, 2014, 20(1): 81-99 doi: 10.1007/s00530-013-0332-2
    [17] Mufarroha F A, Utaminingrum F. Hand gesture recognition using adaptive network based fuzzy inference system and k-nearest neighbor. International Journal of Technology, 2017, 8(3): 559-567 doi: 10.14716/ijtech.v8i3.3146
    [18] Khezri M, Jahed M. A neuro–fuzzy inference system for sEMG-based identification of hand motion commands. IEEE Transactions on Industrial Electronics, 2010, 58(5): 1952-60
    [19] Hill A V. The Heat of Shortening and the Dynamic Constants of Muscle. Proceedings of the Royal Society of London, 1938, 126(843): 136-195
    [20] Belyea A, Englehart K, Scheme E. FMG Versus EMG: A comparison of usability for real-time pattern recognition based control. IEEE Transactions on Biomedical Engineering, 2019, 66(11): 3098-3104 doi: 10.1109/TBME.2019.2900415
    [21] Peng X Y, Li L, Wang F Y. Accelerating minibatch stochastic gradient descent using typicality sampling. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(11): 4649-4659
    [22] Cui Y Q, Wu D R, Huang J. Optimize TSK fuzzy systems for classification problems: Mini-batch gradient descent with uniform regularization and batch normalization. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3065-3075 doi: 10.1109/TFUZZ.2020.2967282
    [23] You H, Ma Z, Tang Y, Wang Y, Yan J, Ni M, Cen K, Huang Q. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators. Waste Management, 2017, 68(10): 186-197
    [24] Shariati S, Haghighi M M. Comparison of anfis neural network with several other ANNs and support vector the machine for diagnosing hepatitis and thyroid diseases. In: Proceedings of the 2010 International Conference on Computer Information Systems and Industrial Management Applications. Krackow, Poland: IEEE, 2010. 596−599
    [25] Jung P G, Lim G, Kim S, Kong K. A wearable gesture recognition device for detecting muscular activities based on air-pressure sensors. IEEE Transactions on Industrial Informatics, 2015, 11(2): 485-494
    [26] Anvaripour M, Saif M. Hand gesture recognition using force myography of the forearm activities and optimized features. In: Proceedings of the 2018 IEEE International Conference on Industrial Technology. Lyon, France: IEEE, 2018. 187−192
    [27] Tavakoli M, Benussi C, Lopes P A, et al. Robust hand gesture recognition with a double channel surface EMG wearable armband and SVM classifier. Biomedical Signal Processing and Control, 2018, 46(1): 121-130
    [28] Jiang S, Lv B, Guo W, Zhang C, Wang H, Sheng X, Shull P B. Feasibility of wrist-worn, real-time hand, and surface gesture recognition via sEMG and IMU Sensing. IEEE Transactions on Industrial Informatics, 2017, 14(8): 3376-3385
    [29] Botros F, Phinyomark A, Scheme E. EMG-based gesture recognition: Is it time to change focus from the forearm to the wrist?. IEEE Transactions on Industrial Informatics, 2022, 18(1), 174−184
    [30] Shaabana A, Legere J, Li J, Zheng R, Mohrenschildt MV, Shedden JM. Portable electromyography: A case study on ballistic finger movement recognition. IEEE Sensors Journal, 2019, 19(16): 7043-55 doi: 10.1109/JSEN.2019.2908312
    [31] Powell M A, Kaliki R R, Thakor N V. User training for pattern recognition-based myoelectric prostheses: Improving phantom limb movement consistency and distinguishability. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(3): 522-532 doi: 10.1109/TNSRE.2013.2279737
    [32] Kartsch V, Benatti S, Mancini M, Magno M, Benini L. Smart wearable wristband for EMG based gesture recognition powered by solar energy harvester. In: Proceedings of the 2018 IEEE International Symposium on Circuits and Systems. Florence, Italy: IEEE, 2018. 1−5
  • 期刊类型引用(9)

    1. 任姗. 基于动态手势识别算法的VSTi系统研究. 自动化与仪器仪表. 2025(01): 214-217+222 . 百度学术
    2. 李婷婷,王靖,骆亚丽,刘红梅. 基于Leap Motion传感器的弹琴触键手势自动控制系统设计. 自动化与仪器仪表. 2025(02): 223-227 . 百度学术
    3. 邹灵果,张美花. 基于数理统计特征的人机交互图像手势识别. 黑龙江工业学院学报(综合版). 2024(01): 97-104 . 百度学术
    4. 边宝丽. 基于手势识别的幼儿游戏机器系统设计. 自动化与仪器仪表. 2024(03): 171-174+179 . 百度学术
    5. 闫颢月,王伟,田泽. 复杂环境下基于改进YOLOv5的手势识别方法. 计算机工程与应用. 2023(04): 224-234 . 百度学术
    6. 张琳钦. 基于支持向量机的人机交互媒体播放界面手势识别方法. 西安航空学院学报. 2023(03): 83-88 . 百度学术
    7. 盛博莹,侯进,李嘉新,党辉. 面向复杂交通场景的道路目标检测方法. 计算机工程与应用. 2023(15): 87-96 . 百度学术
    8. 李俊文,张红英,韩宾. 深层特征聚合引导的轻量级显著性目标检测. 计算机工程与应用. 2023(19): 122-129 . 百度学术
    9. 王鹏飞,黄汉明,王梦琪. 改进YOLOv5的复杂道路目标检测算法. 计算机工程与应用. 2022(17): 81-92 . 百度学术

    其他类型引用(4)

  • AAS-CN-2020-0901手势数据.zip
  • 加载中
  • 图(9) / 表(5)
    计量
    • 文章访问数:  1480
    • HTML全文浏览量:  817
    • PDF下载量:  227
    • 被引次数: 13
    出版历程
    • 收稿日期:  2020-10-27
    • 网络出版日期:  2021-05-22
    • 刊出日期:  2022-05-13

    目录

    /

    返回文章
    返回