2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行Petri网的制造系统调度与控制一体化方法

李大成 罗继亮 孙莎莎 聂维余 聂卓赟 方慧娟

李大成, 罗继亮, 孙莎莎, 聂维余, 聂卓赟, 方慧娟. 基于平行Petri网的制造系统调度与控制一体化方法. 自动化学报, 2023, 49(4): 845−856 doi: 10.16383/j.aas.c200842
引用本文: 李大成, 罗继亮, 孙莎莎, 聂维余, 聂卓赟, 方慧娟. 基于平行Petri网的制造系统调度与控制一体化方法. 自动化学报, 2023, 49(4): 845−856 doi: 10.16383/j.aas.c200842
Li Da-Cheng, Luo Ji-Liang, Sun Sha-Sha, Nie Wei-Yu, Nie Zhuo-Yun, Fang Hui-Juan. The integrated method of scheduling and control for manufacturing systems based on parallel Petri nets. Acta Automatica Sinica, 2023, 49(4): 845−856 doi: 10.16383/j.aas.c200842
Citation: Li Da-Cheng, Luo Ji-Liang, Sun Sha-Sha, Nie Wei-Yu, Nie Zhuo-Yun, Fang Hui-Juan. The integrated method of scheduling and control for manufacturing systems based on parallel Petri nets. Acta Automatica Sinica, 2023, 49(4): 845−856 doi: 10.16383/j.aas.c200842

基于平行Petri网的制造系统调度与控制一体化方法

doi: 10.16383/j.aas.c200842
基金项目: 国家自然科学基金(61973130), 福建省自然科学基金(2017J01117), 华侨大学研究生科研创新基金(18014082009)资助
详细信息
    作者简介:

    李大成:华侨大学信息科学与工程学院硕士研究生. 主要研究方向为离散事件系统和Petri网理论与应用. E-mail: lidacheng@stu.hqu.edu.cn

    罗继亮:华侨大学信息科学与工程学院教授. 2006年获得浙江大学控制科学与工程博士学位. 主要研究方向为离散事件系统, Petri网, 可编程逻辑控制器, 智能制造和机器人. 本文通信作者. E-mail: jlluo@hqu.edu.cn

    孙莎莎:华侨大学信息科学与工程学院硕士研究生. 主要研究方向为离散事件系统和Petri网理论与应用. E-mail: sunshasha@stu.hqu.edu.cn

    聂维余:华侨大学信息科学与工程学院硕士研究生. 主要研究方向为离散事件系统和Petri网理论与应用. E-mail: nieweiyu@163.com

    聂卓赟:华侨大学信息科学与工程学院副教授. 主要研究方向为鲁棒自适应控制, 干扰抑制控制, 非线性系统和智能机器人. E-mail: yezhuyun2004@sina.com

    方慧娟:华侨大学信息科学与工程学院讲师. 主要研究方向为离散事件系统和脑机接口. E-mail: huijuan.fang@163.com

The Integrated Method of Scheduling and Control for Manufacturing Systems Based on Parallel Petri Nets

Funds: Supported by National Natural Science Foundation of China (61973130), Natural Science Foundation of Fujian Province (2017J01117), and Postgraduates' Innovative Fund in Scientific Research of Huaqiao University (18014082009)
More Information
    Author Bio:

    LI Da-Cheng Master student at the College of Information Science and Engineering, Huaqiao University. His research interest covers discrete event systems and Petri nets theory and applications

    LUO Ji-Liang Professor at the College of Information Science and Engineering, Huaqiao University. He received his Ph.D. degree in control science and engineering from Zhejiang University in 2006. His research interest covers discrete event systems, Petri nets, programmable logic controllers, intelligent manufacturing systems, and robots. Corresponding author of this paper

    SUN Sha-Sha Master student at the College of Information Science and Engineering, Huaqiao University. Her research interest covers discrete event systems and Petri nets theory and applications

    NIE Wei-Yu Master student at the College of Information Science and Engineering, Huaqiao University. His research interest covers discrete event systems and Petri nets theory and applications

    NIE Zhuo-Yun Associate professor at the College of Information Science and Engineering, Huaqiao University. His research interest covers robust adaptive control, disturbance rejection control, nonlinear systems, and intelligent robot

    FANG Hui-Juan Lecturer at the College of Information Science and Engineering, Huaqiao University. Her research interest covers discrete event systems and brain-computer interface

  • 摘要: 为了消除制造系统调度层与控制层之间的隔阂, 实现对生产事件快速灵活响应, 本文提出了一种调度与控制一体化的方法. 首先, 定义了一种新型Petri网模型, 即平行Petri网, 从而集成地描述了传感器、执行器、任务和资源信息, 构建制造系统的信息物理系统模型; 其次, 提出了一种从平行Petri网到赋时Petri网的抽象简化方法, 大规模压缩优化调度所需搜索的状态空间; 再次, 定义了策略Petri网以描述最优调度策略. 最后, 给出了平行Petri网与策略Petri网同步执行算法, 使得平行Petri网与物理系统同步执行.
  • 图  1  平行Petri网到赋时Petri网简化过程

    Fig.  1  Process of simplifying parallel Petri nets into timed Petri nets

    图  2  基于平行Petri网的调度与控制一体化执行框架

    Fig.  2  Integrated execution framework of scheduling and control based on parallel Petri nets

    图  3  柔性组装实验系统

    Fig.  3  Experiment system of flexible assembly

    图  4  柔性组装实验系统平行Petri网

    Fig.  4  Parallel Petri nets of flexible assembly system

    图  5  柔性组装实验系统赋时Petri网

    Fig.  5  Timed Petri nets of flexible assembly system

    图  6  柔性组装实验系统策略Petri网

    Fig.  6  Strategy Petri nets of flexible assembly system

    图  7  柔性组装实验系统最优调度甘特图

    Fig.  7  Optimal scheduling Gantt chart of flexible assembly system

    表  1  平行Petri网到赋时Petri网转换表

    Table  1  Conversion table from parallel Petri nets to timed Petri nets

    $t\in\omega$ $p\not\in\omega$ $p\in\omega$ $p_w$ $\lambda_{\rm{z}}(p)$ $\bar{\lambda}_{\rm d}(p)$ $\bar{\lambda}_{\rm d}(p_w)$
    $t_{16}$, $t_{17}$ $p_{15}$, $p_{16}$, $p_{17}$ $p_{14}$ 3, 70, 3 76
    $t_{20}$, $t_{21}$ $p_{18}$, $p_{19}$, $p_{20}$ $p_{15}$ 2, 35, 3 40
    $t_{28}$, $t_{29}$ $p_{29}$, $p_{30}$, $p_{31}$ $p_{20}$ 2, 35, 3 40
    $t_{32}$, $t_{33}$ $p_{32}$, $p_{33}$, $p_{34}$ $p_{21}$ 2, 35, 3 40
    $t_{40}$, $t_{41}$ $p_{41}$, $p_{42}$, $p_{43}$ $p_{24}$ 3, 70, 3 76
    $t_{44}$, $t_{45}$ $p_{44}$, $p_{45}$, $p_{46}$ $p_{25}$ 2, 35, 3 40
    $t_{14}$ $p_{13}$, $p_{14}$ $p_{13}$ 0, 30 30
    $t_{23}$, $t_{24}$ $p_{21}$, $p_{22}$, $p_{23}$ $p_{16}$ 0, 35, 0 35
    $t_{25}$, $t_{26}$ $p_{24}$, $p_{25}$, $p_{26}$ $p_{17}$ 0, 40, 0 40
    $t_{35}$, $t_{36}$ $p_{35}$, $p_{36}$, $p_{37}$ $p_{22}$ 0, 40, 0 40
    $t_{37}$, $t_{38}$ $p_{38}$, $p_{39}$, $p_{40}$ $p_{23}$ 0, 45, 0 45
    $p_{1}$, $p_{3}$, $p_{5}$ 0 0
    $p_{7}$, $p_{12}$, $p_{49}$ 0 0
    $p_{2}$, $p_{4}$, $p_{6}$ 35 35
    $p_{8}$, $p_{9}$, $p_{10}$, $p_{47}$ 35 35
    下载: 导出CSV
  • [1] 王飞跃. 平行系统方法与复杂系统的管理和控制. 控制与决策, 2004, 19(5): 485−490 doi: 10.3321/j.issn:1001-0920.2004.05.002

    Wang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5): 485−490 doi: 10.3321/j.issn:1001-0920.2004.05.002
    [2] 杨林瑶, 陈思远, 王晓, 张俊, 王成红. 数字孪生与平行系统: 发展现状、对比及展望. 自动化学报, 2019, 45(11): 2001−2031

    Yang Lin-Yao, Chen Si-Yuan, Wang Xiao, Zhang Jun, Wang Cheng-Hong. Digital twins and parallel systems: state of the art, comparisons and prospect. Acta Automatica Sinica, 2019, 45(11): 2001−2031
    [3] 傅健丰, 董利达, 徐珊珊, 朱丹, 朱承丞. 一种改进型的S4PR网活性条件. 自动化学报, 2013, 39(9): 1439−1446

    Fu Jian-Feng, Dong Li-Da, Xu Shan-Shan, Zhu Dan, Zhu Cheng-Cheng. An improved liveness condition for S4PR nets. Acta Automatica Sinica, 2013, 39(9): 1439−1446
    [4] Luo J L, Zhou M C. Petri-net controller synthesis for partially controllable and observable discrete event systems. IEEE Transaction on Automatic Control, 2017, 62(3): 1301−1313 doi: 10.1109/TAC.2016.2586604
    [5] Basile F, Faraut G, Ferrara L, Lesage J. An optimization-based approach to discover the unobservable behaviour of a discrete-event system through interpreted Petri nets. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 784−798 doi: 10.1109/TASE.2019.2944299
    [6] Yu H Y, Wu X Y, Wu X Y. An extended object-oriented Petri net model for mission reliability evaluation of phased-mission system with time redundancy Reliability Engineering and System Safety, 2020, 197: Article No. 106786
    [7] Uzam M, Ko B, Gelen G, Aksebzeci B H. Asynchronous implementation of discrete event controllers based on safe automation Petri nets. The International Journal of Advanced Manufacturing Technology, 2009, 41(5): 595−612
    [8] Yadav A, Jayswal S C. Modeling of flexible manufacturing system: a review. International Journal of Production Research, 2018, 56(7): 2467−2487
    [9] Moreira M V, Basilio J C. Bridging the gap between design and implementation of discrete-event controllers. IEEE Transactions on Automation Science and Engineer, 2014, 11(1): 48−65 doi: 10.1109/TASE.2013.2281733
    [10] Jakovljevic Z, Lesi V, Mitrovic S, Pajic M. Distributing sequential control for manufacturing systems. IEEE Transactions on Control Systems Technology, 2020, 28(4): 1586−1594 doi: 10.1109/TCST.2019.2912776
    [11] Kaid H, Al-Ahmari A, Li Z W, Davidrajuh R. Intelligent colored token Petri nets for modeling, control, and validation of dynamic changes in reconfigurable manufacturing systems. Processes, 2020, 8(3): Article No. 358
    [12] Luo J L, Zhang Q, Chen X K, Zhou M C. Modeling and race detection of ladder diagrams via ordinary Petri nets. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(7): 1166−1176 doi: 10.1109/TSMC.2016.2647219
    [13] Lu J, Ou C Y, Liao C, Zhang Z K, Chen K, Liao X P. Formal modelling of a sheet metal smart manufacturing system by using Petri nets and first-order predicate logic. Journal of Intelligent Manufacturing, 2020
    [14] Hajduk Z, Wojtowicz J. FPGA Implementation of Fuzzy Interpreted Petri Net. IEEE Access, 2020, 8: 61442−61452 doi: 10.1109/ACCESS.2020.2983276
    [15] Lee G B, Zandong H, Lee J S. Automatic generation of ladder diagram with control Petri net. Journal of Intelligent Manufacturing, 2004, 15(2): 245−252 doi: 10.1023/B:JIMS.0000018036.84607.37
    [16] 李大成, 罗继亮, 孙莎莎, 聂维余, 方慧娟. 可编程逻辑控制器的平行Petri网设计与实现方法. 控制理论与应用, 2020, 37(12): 2611−2617

    Li Da-Cheng, Luo Ji-Liang, Sun Sha-Sha, Nie Wei-Yu, Fang Hui-Juan. Methods on synthesis and implementation of programmable logical controllers via parallel Petri nets. Control Theory & Applications, 2020, 37(12): 2611−2617
    [17] Al-Ahmari A. Optimal robotic cell scheduling with controllers using mathematically based timed Petri nets. Information Sciences, 2016, 329: 638−648 doi: 10.1016/j.ins.2015.09.053
    [18] Kammoun M A, Ezzeddine W, Rezg N, Achour Z. FMS scheduling under availability constraint with supervisor based on timed Petri nets. Applied Sciences, 2017, 7(4): 399−418 doi: 10.3390/app7040399
    [19] Li C, Wu W M. Scheduling FMS problems with heuristic search function and transition-timed Petri nets. Journal of Intelligent Manufacturing, 2015, 26: 933−944 doi: 10.1007/s10845-014-0943-2
    [20] Lee T, Kim H, Roh D, Sreenivas R S. Characterizing token delays of timed event graphs for k-cyclic schedules. IEEE Transaction on Automatic Control, 2017, 62(2): 961−966 doi: 10.1109/TAC.2016.2570122
    [21] Declerck P. Extremum cycle times in time interval models. IEEE Transactions on Automatic Control, 2018, 63(6): 1821−1827 doi: 10.1109/TAC.2017.2757085
    [22] Lee Y D, DiCesare F. Scheduling flexible manufacturing ststems using Petri nets and heuristic search. IEEE Transactions on Robotics and Automation, 1994, 10(2): 123−132 doi: 10.1109/70.282537
    [23] Huang B, Zhou M C, Abusorrah A, Sedraoui K. Scheduling robotic cellular manufacturing systems with timed Petri nets, A* search, and admissible heuristic function. IEEE Transactions on Automation Science and Engineering, 2020: 1−8
    [24] Mejia G, Nino K, Montoya C, Sanchez M A, Palacios J, Amodeo L. A Petri net based framework for realistic project management and scheduling: an application in animation and videogames. Computer & Operations, 2016, 66: 190−198
    [25] 任磊, 王峰, 邢科义. 基于Petri网的柔性制造系统无死锁遗传调度算法. 控制理论与应用, 2010, 27(1): 13−18

    Ren Lei, Wang Feng, Xing Ke-Yi. A Petri-net-based deadlock-free genetic scheduling for flexible manufacturing systems. Control Theory & Applications, 2010, 27(1): 13−18
    [26] 李勇, 李坤成, 孙柏青, 张秋豪, 王义娜, 杨俊友. 智能体 Petri 网融合的多机器人-多任务协调框架. 自动化学报, 2019, 45: 1−21

    Li Yong, Li Kun-Cheng, Sun Bai-Qing, Zhang Qiu-Hao, Wang Yi-Na, Yang Jun-You. Multi-robot-multi-task coordination framework based on the integration of intelligent agent and Petri net. Acta Automatica Sinica, 2019, 45: 1−21
    [27] Davidrajuh R. Modeling humanoid robot as a discrete event system: A modular approach based on Petri nets. In: Proceedings of the 3rd International Conference on Artificial Intelligence, Modelling and Simulation. Kota Kinabalu, Malaysia: IEEE, 2015. 277−282
    [28] Zeller A, Jazdi N, Weyrich M. Functional verification of distributed automation systems. The International Journal of Advanced Manufacturing Technology, 2019, 105: 3991−4004 doi: 10.1007/s00170-019-03791-2
    [29] Hoffman A J, Basson A H. IEC 61131-3-based holonic control of a reconfigurable manufacturing subsystem. International Journal of Computer Integrated Manufacturing, 2016, 29(5): 520−534 doi: 10.1080/0951192X.2015.1067915
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1389
  • HTML全文浏览量:  857
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 录用日期:  2021-02-09
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2023-04-20

目录

    /

    返回文章
    返回