[1]
|
Tsitsiklis J N. Problems in decentralized decision making and computation [Ph. D. dissertation], MIT, Cambridge, MA, 1984
|
[2]
|
Tsitsiklis J N, Bertsekas D P, Athans M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control, 1986, 31(9): 803--812 doi: 10.1109/TAC.1986.1104412
|
[3]
|
洪奕光, 张艳琼. 分布式优化: 算法设计和收敛性分析. 控制理论与应用, 2014, 31: 850--857 doi: 10.7641/CTA.2014.40012Hong Yi-Guang, Zhang Yan-Qiong. Distributed optimization: algorithm design and convergence analysis. Control Theory & Applications, 2014, 31: 850--857(in Chinese) doi: 10.7641/CTA.2014.40012
|
[4]
|
衣鹏, 洪奕光. 分布式合作优化及其应用. 中国科学: 数学, 2016, 46(10): 1547--1564Yi Peng, and Hong Yi-Guang. Distributed cooperative optimization and its applications. SCIENTIA SINICA Mathematica, 2016, 46(10): 1547--1564(in Chinese)
|
[5]
|
谢佩, 游科友, 洪奕光, 谢立华. 网络化分布式凸优化算法研究进展. 控制理论与应用, 2018, 35(7): 918--927 doi: 10.7641/CTA.2018.80205Xie Pei, You Ke-You, Hong Yi-Guang, Xie Li-Hua. A survey of distributed convex optimization algorithms over networks. Control Theory & Application, 2018, 35(7): 918--927(in Chinese) doi: 10.7641/CTA.2018.80205
|
[6]
|
Nedić A, Olshevsky A, Rabbat M G. Network topology and communication-computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 2018, 106(5): 953--976 doi: 10.1109/JPROC.2018.2817461
|
[7]
|
王龙, 卢开红, 关永强. 分布式优化的多智能体方法. 控制理论与应用, 2019, 36(11): 1820--1883 doi: 10.7641/CTA.2019.90502Wang Long, Lu Kai-Hong, and Guan Yong-Qiang. Distributed optimization via multi-agent systems. Control Theory & Applications, 2019, 36(11): 1820--1883(in Chinese) doi: 10.7641/CTA.2019.90502
|
[8]
|
Yang T, Yi X L, Wu J F, Yuan Y, Wu D, Meng Z Y, et al A survey of distributed optimization. Annual Reviews in Control, 2019, 47: 278--305 doi: 10.1016/j.arcontrol.2019.05.006
|
[9]
|
Khan U A, Bajwa W U, Nedić A, Rabbat M G, Sayed A H. Optimization for Data-Driven Learning and Control. Proceedings of the IEEE, 2020, 108(11): 1863--1868 doi: 10.1109/JPROC.2020.3031225
|
[10]
|
杨涛, 柴天佑. 分布式协同优化的研究现状与展望. 中国科学: 技术科学, 2020, 50(11): 1414--1425 doi: 10.1360/SST-2020-0040Yang Tao, Chai Tian-You. Research status and prospects of distributed collaborative optimization. SCIENTIA SINICA Technologica, 2020, 50(11): 1414--1425(in Chinese) doi: 10.1360/SST-2020-0040
|
[11]
|
Johansson B, Keviczky T, Johansson M, Johansson K H. Subgradient methods and consensus algorithms for solving convex optimization problems. In: Proceedings of the IEEE Conference on Decision and Control, Cancun, Mexico: IEEE, 2008. 4185−4190
|
[12]
|
Nedić A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 2009, 54(1): 48--61 doi: 10.1109/TAC.2008.2009515
|
[13]
|
Zhu M, Martínez S. On distributed convex optimization under inequality and equality constraints. IEEE Transactions on Automatic Control, 2012, 57(1): 151--164 doi: 10.1109/TAC.2011.2167817
|
[14]
|
Nedić A, Olshevsky A. Distributed optimization over time-varying directed graphs. IEEE Transactions on Automatic Control, 2015, 60(3): 601--615 doi: 10.1109/TAC.2014.2364096
|
[15]
|
Yang T, Lu J, Wu D, Wu J, Shi G, Meng Z, Johansson K H. A distributed algorithm for economic dispatch over time-varying directed networks with delays. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5095--5106 doi: 10.1109/TIE.2016.2617832
|
[16]
|
Matei I, Baras J S. Performance evaluation of the consensus-based distributed subgradient method under random communication topologies. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(4): 754--771 doi: 10.1109/JSTSP.2011.2120593
|
[17]
|
Yuan K, Ling Q, Yin W. On the convergence of decentralized gradient descent. SIAM Journal on Optimization, 2015, 26(3): 1835--1854
|
[18]
|
Shi W, Ling Q, Wu G, Yin W. EXTRA: An exact first-order algorithm for decentralized consensus optimization. SIAM Journal on Optimization, 2015, 25(2): 944--966 doi: 10.1137/14096668X
|
[19]
|
Yao L, Yuan Y, Sundaram S, Yang T. Distributed finite-time optimization. In: Proceedings of the 14th International Conference on Control and Automation. Anchorage, AK, USA: IEEE, 2018. 147−154
|
[20]
|
Qu G, Li N. Harnessing smoothness to accelerate distributed optimization. IEEE Transactions on Control of Network Systems, 2018, 5(3): 1245--1260 doi: 10.1109/TCNS.2017.2698261
|
[21]
|
Xu J, Zhu S, Soh Y C, Xie L. Augmented distributed gradient methods for multi-agent optimization under uncoordinated constant stepsizes. In: Proceedings of the 54th IEEE Conference on Decision and Control. Osaka, Japan: IEEE, 2015. 2055−2060
|
[22]
|
Yang S, Tan S, Xu J X. Consensus based approach for economic dispatch problem in a smart grid. IEEE Transactions on Power Systems, 2013, 28(4): 4416--4426 doi: 10.1109/TPWRS.2013.2271640
|
[23]
|
Du W, Yao L, Wu D, Li X, Liu G, Yang T. Accelerated distributed energy management for microgrids. In: Proceedings of the 2018 IEEE Power & Energy Society General Meeting. Portland, OR, USA: IEEE, 2018. 1−5
|
[24]
|
Pu S, Shi W, Xu J, Nedić A. A push-pull gradient method for distributed optimization in networks. In: Proceedings of the 57th IEEE Conference on Decision and Control. Miami, FL, USA: IEEE, 2018. 3385−3390
|
[25]
|
Xin R, Khan U A. A linear algorithm for optimization over directed graphs with geometric convergence. IEEE Control Systems Letters, 2018, 2(3): 325--330
|
[26]
|
Zhu M, Martínez S. Discrete-time dynamic average consensus. Automatica, 2010, 46(2): 322--329 doi: 10.1016/j.automatica.2009.10.021
|
[27]
|
Wang J, Elia N. Control approach to distributed optimization. In: Proceedings of the 48th Annual Allerton Conference on Communication, Control, and Computing. Allerton, Illinois, USA: IEEE, 2010. 557−561
|
[28]
|
Gharesifard B, Cortés J. Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Transactions on Automatic Control, 2014, 59(3): 781--786 doi: 10.1109/TAC.2013.2278132
|
[29]
|
Kia S S, Cortés J, Martínez S. Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica, 2015, 55: 254--264 doi: 10.1016/j.automatica.2015.03.001
|
[30]
|
Lu J, Tang C Y. Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case. IEEE Transactions on Automatic Control, 2012, 57(9): 2348--2354 doi: 10.1109/TAC.2012.2184199
|
[31]
|
Varagnolo D, Zanella F, Cenedese A, Pillonetto G, Schenato L. Newton-Raphson consensus for distributed convex optimization. IEEE Transactions on Automatic Control, 2016, 61(4): 994--1009 doi: 10.1109/TAC.2015.2449811
|
[32]
|
Wei E, Ozdaglar A, Jadbabaie A. A distributed Newton method for network utility maximization-I: Algorithm. IEEE Transactions on Automatic Control, 2013, 58(9): 2162--2175 doi: 10.1109/TAC.2013.2253218
|
[33]
|
Aström K J, Bernhardsson B M. Comparison of Riemann and Lebesgue sampling for first order stochastic systems. In: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA: IEEE, 2002. 2011−2016
|
[34]
|
Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control, 2007, 52(9): 1680--1685 doi: 10.1109/TAC.2007.904277
|
[35]
|
Girard A. Dynamic triggering mechanisms for event-triggered control. IEEE Transactions on Automatic Control, 2015, 60(7): 1992--1997 doi: 10.1109/TAC.2014.2366855
|
[36]
|
Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems. IEEE Transactions on Automatic Control, 2012, 57(5): 1291--1297 doi: 10.1109/TAC.2011.2174666
|
[37]
|
Seyboth G S, Dimarogonas D V, Johansson K H. Event-based broadcasting for multi-agent average consensus. Automatica, 2013, 49(1): 245--252 doi: 10.1016/j.automatica.2012.08.042
|
[38]
|
Meng X, Xie L, Soh Y C, Nowzari C, Pappas G J. Periodic event-triggered average consensus over directed graphs. In: Proceedings of the 54th IEEE Transactions on Decision and Control. Osaka, Japan: IEEE, 2015. 4151−4156
|
[39]
|
Meng X, Xie L, Soh Y C. Asynchronous periodic event-triggered consensus for multi-agent systems. Automatica, 2017, 84: 214--220 doi: 10.1016/j.automatica.2017.07.008
|
[40]
|
Yi X. Resource-constrained multi-agent control systems: Dynamic event-triggering, input saturation, and connectivity preservation. [Master thesis], Royal Institute of Technology, Sweden, 2017
|
[41]
|
Nowzari C, Cortés J, Pappas G. Event-triggered control for multi-agent average consensus. Cooperative Control of Multi-Agent Systems. John Wiley & Sons, Ltd, 2018, 177−208
|
[42]
|
Yi X, Yang T, Wu J, Johansson K H. Distributed event-triggered control for global consensus of multi-agent systems with input saturation. Automatica, 2019, 100: 1--9 doi: 10.1016/j.automatica.2018.10.032
|
[43]
|
Liu S, Xie L, Quevedo D E. Event-triggered quantized communication-based distributed convex optimization. IEEE Transactions on Control of Network Systems, 2018, 5(1): 167--178 doi: 10.1109/TCNS.2016.2585305
|
[44]
|
Chen W, Ren W. Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. Automatica, 2016, 65: 90--97 doi: 10.1016/j.automatica.2015.11.015
|
[45]
|
Du W, Yi X, Jemin G, Johansson K H, Yang T. Distributed optimization with dynamic event-triggered mechanisms. In: Proceedings of the 57th IEEE Conference on Decision and Control, Miami, FL, USA: IEEE, 2018. 969−974
|
[46]
|
Yi X, Yao L, Yang T, George J, Johansson K H. Distributed optimization for second-order multi-agent systems with dynamic event-triggered communication. In: Proceedings of the 57th IEEE Conference on Decision and Control, Miami, FL, USA: IEEE, 2018. 3397−3402
|
[47]
|
Wang D, Gupta V, Wang W. An event-triggered protocol for distributed optimal coordination of double-integrator multi-agent systems. Neurocomputing, 2018, 319(30): 34--41
|
[48]
|
Liu C, Li H, Shi Y, Xu D. Event-triggered broadcasting for distributed smooth optimization. In: Proceedings of the 58th IEEE Conference on Decision and Control, Nice, France: IEEE, 2019. 716−721
|
[49]
|
Liu C, Li H, Shi Y, Xu D. Distributed event-triggered gradient method for constrained convex minimization. IEEE Transactions on Automatic Control, 2020, 65(2): 778--785 doi: 10.1109/TAC.2019.2916985
|
[50]
|
Li M, Su L, Liu T. Distributed optimization with event-triggered communication via input feedforward passivity. IEEE Control Systems Letters, 2020, 5(1): 283--288
|
[51]
|
Johansson K H, Egerstedt M, Lygeros J, Sastry S. On the regularization of Zeno hybrid automata. Systems & Control Letters, 1999, 38(3): 141--150
|
[52]
|
Godsi C, Royle G F, Algebraic Graph Theory, ser. Graduate Texts in Mathematics. New York: Springer-Verlag, 2001, 207
|
[53]
|
Khalil H K, Nonlinear Systems, 3rd ed. Prentice-Hall, New Jersey, 2002
|