-
摘要: 为了解决难以建立精确数学模型或者真实评估实验成本高昂的多目标优化问题, 提出了一种基于径向空间划分的昂贵多目标进化算法. 首先算法使用高斯回归作为代理模型逼近目标函数; 然后将目标空间的个体投影到径向空间, 结合目标空间和径向空间信息保留对种群贡献更高的个体; 之后由径向空间中个体的位置分布决定下一步应该选择哪些个体进行真实评估; 最后, 采用一种双档案管理策略维护代理模型的质量. 数值实验和现实问题上的结果表明, 与5种先进算法相比, 该算法在解决昂贵多目标优化问题时能够提供更高质量的解.Abstract: In order to solve the problem of many-objective optimization that it is difficult to establish an accurate mathematical model or the actual evaluation experiment is expensive, an expensive many-objective evolutionary algorithm based on radial space division is proposed. First, the algorithm uses Gaussian regression as a surrogate model to approximate the objective function; Second the individuals in the objective space are projected to the radial space, and the individuals with higher contributions to the population are retained through the objective space and radial space information; Third the position distribution of the individuals in the radial space determines which individuals should be selected for real evaluation in the next step; Finally, a double archives management strategy is adopted to maintain the quality of the surrogate model. The results of numerical experiments and real problems show that compared with five advanced algorithms, the algorithm proposed in this paper can provide higher quality solutions when solving expensive many-objective optimization problems.
-
表 1 测试问题及特征
Table 1 Test problems and their features
问题 特征 DTLZ1, 3 多模态、DTLZ1 线性 DTLZ2, 4 ~ 6 凹、DTLZ4 有偏好、DTLZ5 退化、
DTLZ6 退化且有偏好DTLZ7 混合、不连续、多模态 WFG1 凸的、混合有偏好 WFG2 凸的、不连续 WFG3 线性、退化 WFG4 ~ 9 凹的、WFG4 多模态、WFG5 具有欺骗性、
WFG6 不可分、WFG7 有偏好、WFG8 不可分
且有偏好、WFG9 多模态、有偏好表 2 6种算法在不同维数的DTLZ测试问题上获得的IGD平均值和标准差
Table 2 The IGD average and standard deviation obtained by the six algorithms on DTLZ test problems of different dimensions
测试问题 目标数 NSGA-III CPS-MOEA CSEA K-RVEA MOEA/D-EGO K-RSEA DTLZ1 3 9.9972 × 101
(2.47 × 101) −8.2935 × 101
(1.74 × 101) =5.6789 × 101
(1.00 × 101) +8.2001 × 101
(1.84 × 101) =8.2705 × 101
(1.33 × 101) =8.6600 × 101
(1.91 × 101)4 7.3063 × 101
(1.63 × 101) −6.4843 × 101
(1.64 × 101) =4.3597 × 101
(1.34 × 101) +5.6857 × 101
(1.25 × 101) =6.9011 × 101
(1.39 × 101) =5.9990 × 101
(1.41 × 101)6 3.3806 × 101
(1.24 × 101) =3.1427 × 101
(7.13 × 100) =1.5953 × 101
(5.45 × 100) +2.7870 × 101
(1.01 × 101) =3.3203 × 101
(1.04 × 101) −2.6831 × 101
(7.05 × 100)8 6.7072 × 100
(3.99 × 100) =1.1629 × 101
(2.84 × 100) −3.6585 × 100
(2.21 × 100) +7.8298 × 100
(2.68 × 100) =1.0297 × 101
(4.54 × 100) =8.0032 × 100
(3.95 × 100)10 5.0209 × 10−1
(3.59 × 10−1) −4.7694 × 10−1
(1.80 × 10−1) −2.8192 × 10−1
(5.67 × 10−2) =3.7187 × 10−1
(8.49 × 10−2) =4.3847 × 10−1
(1.13 × 10−1) −3.3052 × 10−1
(1.04 × 10−1)DTLZ2 3 3.2991 × 10−1
(2.63 × 10−2) −3.2931 × 10−1
(2.69 × 10−2) −2.1298 × 10−1
(2.81 × 10−2) −1.1972 × 10−1
(1.36 × 10−2) −3.4065 × 10−1
(3.28 × 10−2) −1.1075 × 10−1
(7.03 × 10−2)4 3.5643 × 10−1
(2.82 × 10−2) −3.7663 × 10−1
(2.18 × 10−2) −2.9615 × 10−1
(2.61 × 10−2) −2.2144 × 10−1
(1.80 × 10−2) =3.6787 × 10−1
(2.61 × 10−2) −2.3347 × 10−1
(4.97 × 10−2)6 4.8763 × 10−1
(2.37 × 10−2) −4.9201 × 10−1
(2.47 × 10−2) −4.2782 × 10−1
(4.32 × 10−2) −3.6589 × 10−1
(1.98 × 10−2) =4.7191 × 10−1
(2.23 × 10−2) −3.6494 × 10−1
(1.93 × 10−2)8 5.8827 × 10−1
(3.63 × 10−2) −5.8008 × 10−1
(2.61 × 10−2) −5.8141 × 10−1
(3.39 × 10−2) −4.1673 × 10−1
(1.44 × 10−2) +5.3642 × 10−1
(2.73 × 10−2) −4.2547 × 10−1
(1.04 × 10−2)10 6.3227 × 10−1
(2.04 × 10−2) −6.3801 × 10−1
(1.80 × 10−2) −6.7240 × 10−1
(2.38 × 10−2) −5.0316 × 10−1
(1.57 × 10−2) −5.2187 × 10−1
(2.24 × 10−2) −4.7549 × 10−1
(7.36 × 10−3)DTLZ3 3 2.8787 × 102
(6.58 × 101) −2.3395 × 102
(3.82 × 101) =1.5653 × 102
(3.81 × 101) +2.3708 × 102
(4.75 × 101) =1.9962 × 102
(2.65 × 101) +2.3648 × 102
(5.58 × 101)4 2.0889 × 102
(6.54 × 101) =1.6267 × 102
(4.26 × 101) =1.2297 × 102
(2.83 × 101) +1.8558 × 102
(3.48 × 101) =1.5411 × 102
(1.28 × 101) =1.8023 × 102
(5.61 × 101)6 1.0529 × 102
(2.46 × 101) =9.4164 × 101
(1.89 × 101) =5.6044 × 101
(1.64 × 101) +8.4557 × 101
(2.82 × 101) =9.6519 × 101
(1.60 × 101) =8.9132 × 101
(3.24 × 101)8 2.6642 × 101
(9.61 × 100) =2.8860 × 101
(1.24 × 101) =1.3883 × 101
(5.25 × 100) +2.2607 × 101
(8.99 × 100) +3.7525 × 101
(1.23 × 101) =3.0443 × 101
(1.15 × 101)10 1.5073 × 100
(4.05 × 10−1) −1.5000 × 100
(3.78 × 10−1) −1.0257 × 100
(2.63 × 10−1) =1.2960 × 100
(3.55 × 10−1) =1.2942 × 100
(3.36 × 10−1) =1.1642 × 100
(2.93 × 10−1)DTLZ4 3 7.2107 × 10−1
(1.19 × 10−1) −5.9002 × 10−1
(3.92 × 10−2) −5.1951 × 10−1
(1.51 × 10−1) =3.0267 × 10−1
(7.37 × 10−2) +5.9687 × 10−1
(6.57 × 10−2) −4.8903 × 10−1
(1.47 × 10−1)4 7.0404 × 10−1
(1.25 × 10−1) −6.2009 × 10−1
(4.24 × 10−2) −4.6042 × 10−1
(7.33 × 10−2) +4.0021 × 10−1
(8.08 × 10−2) +6.8696 × 10−1
(4.77 × 10−2) −5.5991 × 10−1
(1.28 × 10−1)6 8.0377 × 10−1
(7.80 × 10−2) −6.5279 × 10−1
(1.84 × 10−2) =4.9747 × 10−1
(5.83 × 10−2) +4.8631 × 10−1
(5.15 × 10−2) +6.8610 × 10−1
(2.90 × 10−2) −6.2727 × 10−1
(6.36 × 10−2)8 7.4087 × 10−1
(4.38 × 10−2) −6.3356 × 10−1
(1.32 × 10−2) −5.8324 × 10−1
(3.16 × 10−2) =5.5700 × 10−1
(2.98 × 10−2) =6.5251 × 10−1
(1.32 × 10−2) −5.7685 × 10−1
(4.08 × 10−2)10 7.3581 × 10−1
(4.34 × 10−2) −6.5510 × 10−1
(1.01 × 10−2) −6.3597 × 10−1
(3.28 × 10−2) −5.9740 × 10−1
(2.69 × 10−2) =6.4268 × 10−1
(9.34 × 10−3) −5.8861 × 10−1
(2.14 × 10−2)DTLZ5 3 2.5926 × 10−1
(3.51 × 10−2) −2.4959 × 10−1
(2.59 × 10−2) −1.1067 × 10−1
(2.85 × 10−2) −8.0805 × 10−2
(2.49 × 10−2) −2.4856 × 10−1
(2.24 × 10−2) −6.5513 × 10−2
(4.58 × 10−2)4 1.9155 × 10−1
(2.36 × 10−2) −2.0562 × 10−1
(2.30 × 10−2) −1.2544 × 10−1
(2.99 × 10−2) −5.9826 × 10−2
(9.29 × 10−3) −2.1704 × 10−1
(2.73 × 10−2) −2.6100 × 10−2
(1.00 × 10−2)6 1.4568 × 10−1
(2.39 × 10−2) −1.2304 × 10−1
(1.85 × 10−2) −7.4651 × 10−2
(2.05 × 10−2) −3.4219 × 10−2
(1.06 × 10−2) −1.5500 × 10−1
(1.93 × 10−2) −1.6379 × 10−2
(1.12 × 10−2)8 8.7377 × 10−2
(1.55 × 10−2) −6.5776 × 10−2
(1.34 × 10−2) −3.8178 × 10−2
(8.52 × 10−3) −2.0890 × 10−2
(5.60 × 10−3) −8.2292 × 10−2
(1.25 × 10−2) −1.2091 × 10−2
(2.70 × 10−3)10 4.7648 × 10−2
(1.45 × 10−2) −2.5322 × 10−2
(4.41 × 10−3) −1.1891 × 10−2
(1.17 × 10−3) −1.2745 × 10−2
(2.29 × 10−3) −2.2116 × 10−2
(2.45 × 10−3) −7.4301 × 10−3
(1.10 × 10−3)DTLZ6 3 6.1232 × 100
(2.01 × 10−1) −4.1051 × 100
(4.45 × 10−1) −4.9049 × 100
(6.04 × 10−1) −3.1198 × 100
(3.59 × 10−1) −1.8762 × 100
(5.59 × 10−1) =2.0558 × 100
(4.60 × 10−1)4 5.4855 × 100
(2.45 × 10−1) −3.4387 × 100
(4.98 × 10−1) −4.9792 × 100
(5.02 × 10−1) −2.4647 × 100
(3.55 × 10−1) −1.6752 × 100
(7.38 × 10−1) =2.0560 × 100
(3.25 × 10−1)6 3.8995 × 100
(2.21 × 10−1) −2.3140 × 100
(5.21 × 10−1) −3.1061 × 100
(5.07 × 10−1) −1.2890 × 100
(3.22 × 10−1) =9.2648 × 10−1
(3.65 × 10−1) +1.2599 × 100
(3.56 × 10−1)8 2.1839 × 100
(2.82 × 10−1) −9.0259 × 10−1
(2.50 × 10−1) −1.4584 × 100
(4.60 × 10−1) −5.3505 × 10−1
(1.82 × 10−1) =5.1243 × 10−1
(2.60 × 10−1) =5.9215 × 10−1
(2.14 × 10−1)10 5.9508 × 10−1
(2.62 × 10−1) −5.2061 × 10−2
(1.55 × 10−2) +1.3300 × 10−1
(9.60 × 10−2) =7.1410 × 10−2
(2.06 × 10−2) =1.9708 × 10−1
(7.72 × 10−2) −8.4350 × 10−2
(2.65 × 10−2)DTLZ7 3 5.7028 × 100
(8.46 × 10−1) −4.9515 × 100
(7.40 × 10−1) −1.7040 × 100
(5.07 × 10−1) −1.4314 × 10−1
(4.87 × 10−2) −2.3750 × 10−1
(9.67 × 10−2) −9.0290 × 10−2
(6.53 × 10−2)4 7.1332 × 100
(8.88 × 10−1) −5.3360 × 100
(1.43 × 100) −2.6700 × 100
(9.51 × 10−1) −3.7612 × 10−1
(1.37 × 10−1) =5.3337 × 10−1
(9.02 × 10−2) −3.3295 × 10−1
(1.07 × 10−1)6 8.6385 × 100
(2.00 × 100) −6.2498 × 100
(1.86 × 100) −4.5051 × 100
(8.80 × 10−1) −6.3454 × 10−1
(8.41 × 10−2) +8.6377 × 10−1
(6.08 × 10−2) +1.0134 × 100
(1.85 × 10−1)8 1.0623 × 101
(2.69 × 100) −4.5094 × 100
(3.09 × 100) −6.1099 × 100
(1.99 × 100) −8.7425 × 10−1
(6.82 × 10−2) +1.0618 × 100
(3.82 × 10−2) +2.2654 × 100
(4.25 × 10−1)10 3.8760 × 100
(1.81 × 100) −1.5793 × 100
(9.05 × 10−2) +2.0827 × 100
(5.27 × 10−1) =1.0910 × 100
(4.35 × 10−2) +1.2142 × 100
(2.27 × 10−2) +2.1206 × 100
(3.77 × 10−1)+/−/= 0/30/5 2/25/8 10/19/6 8/10/17 5/20/10 表 3 6种算法在不同维数的DTLZ测试问题上获得的HV平均值和标准差
Table 3 The HV average and standard deviation obtained by the six algorithms on DTLZ test problems of different dimensions
测试问题 目标数 NSGA-III CPS-MOEA CSEA K-RVEA MOEA/D-EGO K-RSEA DTLZ1 3 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)4 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)6 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)8 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)10 2.6667 × 10−1
(2.12 × 10−1) −1.9822 × 10−1
(1.68 × 10−1) −6.2982 × 10−1
(1.71 × 10−1) +3.2562 × 10−1
(2.12 × 10−1) =1.9434 × 10−1
(1.65 × 10−1) −4.0899 × 10−1
(2.13 × 10−1)DTLZ2 3 1.1734 × 10−1
(2.42 × 10−2) −1.2929 × 10−1
(2.86 × 10−2) −3.1461 × 10−1
(5.78 × 10−2) −4.4429 × 10−1
(2.12 × 10−2) −1.3839 × 10−1
(4.54 × 10−2) −4.6981 × 10−1
(1.16 × 10−1)4 2.1214 × 10−1
(3.91 × 10−2) −2.0737 × 10−1
(3.04 × 10−2) −3.5746 × 10−1
(7.24 × 10−2) −5.7115 × 10−1
(2.41 × 10−2) =2.2493 × 10−1
(4.31 × 10−2) −5.3573 × 10−1
(1.08 × 10−1)6 3.0640 × 10−1
(3.14 × 10−2) −3.0719 × 10−1
(3.32 × 10−2) −5.0211 × 10−1
(7.01 × 10−2) −6.8636 × 10−1
(3.86 × 10−2) =3.6893 × 10−1
(3.19 × 10−2) −6.9607 × 10−1
(4.86 × 10−2)8 4.4578 × 10−1
(4.27 × 10−2) −4.3830 × 10−1
(2.13 × 10−2) −5.6690 × 10−1
(4.55 × 10−2) −7.6366 × 10−1
(3.84 × 10−2) −5.5566 × 10−1
(2.98 × 10−2) −8.3822 × 10−1
(2.06 × 10−2)10 5.4274 × 10−1
(2.52 × 10−2) −5.9705 × 10−1
(2.81 × 10−2) −6.3060 × 10−1
(2.88 × 10−2) −8.6321 × 10−1
(1.23 × 10−2) −8.1393 × 10−1
(1.64 × 10−2) −9.1251 × 10−1
(7.76 × 10−3)DTLZ3 3 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)4 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)6 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)8 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)10 3.5213 × 10−2
(4.90 × 10−2) −2.8103 × 10−2
(4.73 × 10−2) −2.6473 × 10−1
(1.54 × 10−1) +9.2144 × 10−2
(1.22 × 10−1) =6.5751 × 10−2
(7.30 × 10−2) =8.5208 × 10−2
(8.29 × 10−2)DTLZ4 3 1.1785 × 10−2
(2.18 × 10−2) −1.5375 × 10−2
(2.50 × 10−2) −1.7626 × 10−1
(8.31 × 10−2) +1.7423 × 10−1
(1.08 × 10−1) +1.7616 × 10−2
(2.25 × 10−2) −7.5949 × 10−2
(7.70 × 10−2)4 4.9153 × 10−2
(3.74 × 10−2) =2.4608 × 10−2
(2.91 × 10−2) −3.1304 × 10−1
(6.63 × 10−2) +2.2725 × 10−1
(8.66 × 10−2) +2.8193 × 10−2
(2.68 × 10−2) −1.3719 × 10−1
(1.25 × 10−1)6 1.1881 × 10−1
(4.18 × 10−2) −1.2211 × 10−1
(3.42 × 10−2) −5.6483 × 10−1
(8.07 × 10−2) +4.1915 × 10−1
(1.31 × 10−1) +1.0424 × 10−1
(4.08 × 10−2) −2.1455 × 10−1
(9.54 × 10−2)8 3.1494 × 10−1
(7.82 × 10−2) −4.3521 × 10−1
(5.84 × 10−2) −6.8774 × 10−1
(3.61 × 10−2) +6.2693 × 10−1
(7.95 × 10−2) +3.3577 × 10−1
(6.00 × 10−2) −5.4786 × 10−1
(9.97 × 10−2)10 6.1117 × 10−1
(5.26 × 10−2) −7.4214 × 10−1
(2.37 × 10−2) −8.0539 × 10−1
(3.71 × 10−2) =8.3652 × 10−1
(4.00 × 10−2) =7.4450 × 10−1
(2.53 × 10−2) −8.2411 × 10−1
(4.08 × 10−2)DTLZ5 3 1.7464 × 10−2
(8.81 × 10−3) −2.3213 × 10−2
(1.15 × 10−2) −9.1632 × 10−2
(2.53 × 10−2) −1.2641 × 10−1
(2.94 × 10−2) −1.8468 × 10−2
(2.17 × 10−2) −1.5632 × 10−1
(4.42 × 10−2)4 1.8002 × 10−2
(8.78 × 10−3) −1.8297 × 10−2
(7.45 × 10−3) −5.6265 × 10−2
(2.37 × 10−2) −1.1696 × 10−1
(6.53 × 10−3) −2.6234 × 10−2
(2.37 × 10−2) −1.3582 × 10−1
(1.02 × 10−2)6 1.9682 × 10−2
(1.21 × 10−2) −2.6909 × 10−2
(1.97 × 10−2) −7.5674 × 10−2
(1.88 × 10−2) −1.0592 × 10−1
(3.54 × 10−3) −5.0133 × 10−2
(2.49 × 10−2) −1.1271 × 10−1
(8.05 × 10−3)8 5.2712 × 10−2
(2.30 × 10−2) −6.5698 × 10−2
(1.40 × 10−2) −9.3848 × 10−2
(4.29 × 10−3) −1.0261 × 10−1
(2.69 × 10−3) −8.5375 × 10−2
(6.49 × 10−3) −1.0487 × 10−1
(3.42 × 10−4)10 8.6211 × 10−2
(1.15 × 10−2) −9.7441 × 10−2
(9.74 × 10−4) −9.9494 × 10−2
(5.70 × 10−4) −9.7695 × 10−2
(7.46 × 10−4) −9.6720 × 10−2
(7.96 × 10−4) −1.0031 × 10−1
(2.98 × 10−4)DTLZ6 3 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100)4 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =4.7399 × 10−3
(2.03 × 10−2) +0.0000 × 100
(0.00 × 100)6 0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =0.0000 × 100
(0.00 × 100) =3.2073 × 10−2
(4.49 × 10−2) +4.5458 × 10−3
(2.03 × 10−2)8 0.0000 × 100
(0.00 × 100) −1.8646 × 10−4
(7.43 × 10−4) =9.2532 × 10−4
(4.14 × 10−3) −2.2110 × 10−2
(3.93 × 10−2) =6.0557 × 10−2
(4.40 × 10−2) +8.0524 × 10−3
(2.08 × 10−2)10 1.7423 × 10−2
(3.52 × 10−2) −8.0620 × 10−2
(2.45 × 10−2) =5.7994 × 10−2
(3.98 × 10−2) −9.4737 × 10−2
(1.76 × 10−3) =9.2210 × 10−2
(1.35 × 10−3) −9.2912 × 10−2
(1.31 × 10−2)DTLZ7 3 0.0000 × 100
(0.00 × 100) −0.0000 × 100
(0.00 × 100) −4.2044 × 10−2
(4.24 × 10−2) −2.4684 × 10−1
(5.96 × 10−3) −2.0656 × 10−1
(1.66 × 10−2) −2.7126 × 10−1
(8.89 × 10−3)4 0.0000 × 100
(0.00 × 100) −5.5343 × 10−7
(2.48 × 10−6) −3.3341 × 10−2
(3.99 × 10−2) −2.3586 × 10−1
(7.10 × 10−3) −7.9986 × 10−2
(5.40 × 10−2) −2.5760 × 10−1
(7.67 × 10−3)6 0.0000 × 100
(0.00 × 100) −0.0000 × 100
(0.00 × 100) −2.9404 × 10−2
(3.52 × 10−2) −1.9617 × 10−1
(8.41 × 10−3) −3.0127 × 10−2
(3.37 × 10−2) −2.1700 × 10−1
(5.99 × 10−3)8 0.0000 × 100
(0.00 × 100) −2.5202 × 10−4
(9.83 × 10−4) −3.0467 × 10−2
(3.86 × 10−2) −1.8919 × 10−1
(4.73 × 10−3) =5.7129 × 10−3
(5.65 × 10−3) −1.8593 × 10−1
(8.01 × 10−3)10 3.3199 × 10−3
(5.02 × 10−3) −7.5420 × 10−4
(8.53 × 10−4) −3.5750 × 10−2
(3.02 × 10−2) −1.7539 × 10−1
(4.01 × 10−3) =1.3231 × 10−2
(1.67 × 10−2) −1.7687 × 10−1
(4.85 × 10−3)+/−/= 0/23/12 0/22/13 6/17/12 4/11/20 3/22/10 表 4 6种算法在不同维数的WFG测试问题上获得的IGD平均值和标准差
Table 4 The IGD average and standard deviation obtained by the six algorithms on WFG test problems of different dimensions
测试问题 目标数 NSGAIII CPS-MOEA CSEA K-RVEA MOEA/D-EGO K-RSEA WFG1 3 2.3044 × 100
(7.04 × 10−2) −2.2817 × 100
(6.96 × 10−2) −1.7246 × 100
(7.58 × 10−2) +1.7654 × 100
(9.23 × 10−2) +2.1936 × 100
(6.64 × 10−2) −1.8391 × 100
(8.45 × 10−2)4 2.1642 × 100
(1.32 × 10−1) =1.9453 × 100
(1.71 × 10−2) +1.9531 × 100
(1.11 × 10−1) +2.0752 × 100
(1.55 × 10−1) =2.0130 × 100
(7.58 × 10−2) +2.0919 × 100
(1.31 × 10−1)6 2.7873 × 100
(5.89 × 10−2) −2.8059 × 100
(6.16 × 10−2) −2.4902 × 100
(5.09 × 10−2) =2.4594 × 100
(9.80 × 10−2) +2.7526 × 100
(5.35 × 10−2) −2.5304 × 100
(1.00 × 10−1)8 3.1194 × 100
(5.49 × 10−2) −3.1420 × 100
(4.58 × 10−2) −2.8827 × 100
(6.05 × 10−2) =2.8566 × 100
(8.07 × 10−2) =3.0855 × 100
(5.32 × 10−2) −2.8335 × 100
(2.54 × 10−1)10 3.4110 × 100
(4.80 × 10−2) −3.4220 × 100
(4.68 × 10−2) −3.1817 × 100
(8.33 × 10−2) =3.1589 × 100
(5.88 × 10−2) =3.3937 × 100
(3.38 × 10−2) −3.1129 × 100
(2.06 × 10−1)WFG2 3 8.8153 × 10−1
(1.09 × 10−1) −7.8323 × 10−1
(4.94 × 10−2) −5.3426 × 10−1
(4.34 × 10−2) −3.9180 × 10−1
(4.71 × 10−2) −6.9725 × 10−1
(4.98 × 10−2) −3.4170 × 10−1
(4.16 × 10−2)4 1.4386 × 100
(2.16 × 10−1) −1.2247 × 100
(1.92 × 10−1) −1.2237 × 100
(3.42 × 10−1) −9.9551 × 10−1
(1.34 × 10−1) −1.1293 × 100
(1.61 × 10−1) −9.1510 × 10−1
(1.09 × 10−1)6 1.9640 × 100
(4.29 × 10−1) −1.5348 × 100
(1.38 × 10−1) −1.2796 × 100
(4.14 × 10−1) −7.6122 × 10−1
(5.92 × 10−2) −1.3485 × 100
(1.72 × 10−1) −7.1461 × 10−1
(3.51 × 10−2)8 2.5026 × 100
(5.75 × 10−1) −2.0548 × 100
(2.06 × 10−1) −1.8266 × 100
(7.53 × 10−1) −1.0294 × 100
(4.52 × 10−2) =1.7364 × 100
(2.53 × 10−1) −1.0125 × 100
(3.41 × 10−2)10 3.8506 × 100
(7.40 × 10−1) −3.0779 × 100
(4.97 × 10−1) −3.1377 × 100
(9.98 × 10−1) −1.1813 × 100
(5.78 × 10−2) +2.1748 × 100
(3.75 × 10−1) −1.2223 × 100
(6.17 × 10−2)WFG3 3 6.0295 × 10−1
(4.49 × 10−2) −6.0035 × 10−1
(2.83 × 10−2) −4.7826 × 10−1
(7.08 × 10−2) −3.8454 × 10−1
(5.62 × 10−2) =6.3111 × 10−1
(3.08 × 10−2) −4.2141 × 10−1
(8.51 × 10−2)4 5.6516 × 10−1
(5.35 × 10−2) −5.5932 × 10−1
(3.92 × 10−2) −3.6608 × 10−1
(6.42 × 10−2) −2.2293 × 10−1
(3.65 × 10−2) +6.0164 × 10−1
(4.47 × 10−2) −2.5478 × 10−1
(2.73 × 10−2)6 1.0518 × 100
(1.02 × 10−1) −9.8651 × 10−1
(8.00 × 10−2) −7.0767 × 10−1
(9.63 × 10−2) −6.6060 × 10−1
(8.61 × 10−2) −9.7316 × 10−1
(4.10 × 10−2) −4.9911 × 10−1
(9.35 × 10−2)8 9.2359 × 10−1
(1.11 × 10−1) −7.8556 × 10−1
(7.35 × 10−2) −4.4627 × 10−1
(1.18 × 10−1) −5.3840 × 10−1
(7.52 × 10−2) −8.2687 × 10−1
(8.87 × 10−2) −3.4794 × 10−1
(5.25 × 10−2)10 1.0022 × 100
(8.69 × 10−2) −8.7818 × 10−1
(1.11 × 10−1) −5.9822 × 10−1
(1.14 × 10−1) −6.3955 × 10−1
(8.21 × 10−2) −9.2789 × 10−1
(7.38 × 10−2) −4.2756 × 10−1
(6.74 × 10−2)WFG4 3 6.3183 × 10−1
(6.30 × 10−2) −5.3726 × 10−1
(2.65 × 10−2) −4.4571 × 10−1
(3.28 × 10−2) +4.5254 × 10−1
(1.90 × 10−2) +5.8593 × 10−1
(3.46 × 10−2) −5.0332 × 10−1
(2.65 × 10−2)4 1.7199 × 100
(1.84 × 10−1) −1.2114 × 100
(8.23 × 10−2) −1.5483 × 100
(2.75 × 10−1) −8.1670 × 10−1
(8.21 × 10−2) =9.8678 × 10−1
(7.18 × 10−2) −7.7364 × 10−1
(7.65 × 10−2)6 3.6040 × 100
(3.76 × 10−1) −2.5352 × 100
(1.50 × 10−1) −2.9141 × 100
(3.36 × 10−1) −1.7992 × 100
(4.76 × 10−2) +2.1228 × 100
(1.22 × 10−1) −1.8370 × 100
(5.25 × 10−2)8 5.9740 × 100
(4.07 × 10−1) −4.3118 × 100
(2.44 × 10−1) −5.8308 × 100
(4.61 × 10−1) −3.2283 × 100
(2.39 × 10−1) =3.4432 × 100
(1.44 × 10−1) −3.3000 × 100
(2.59 × 10−1)10 9.1735 × 100
(5.27 × 10−1) −7.2985 × 100
(3.71 × 10−1) −8.6988 × 100
(9.68 × 10−1) −5.9483 × 100
(5.44 × 10−1) −5.0437 × 100
(2.82 × 10−1) +5.4156 × 100
(3.45 × 10−1)WFG5 3 6.9770 × 10−1
(3.25 × 10−2) −5.8013 × 10−1
(1.71 × 10−2) −5.2657 × 10−1
(3.82 × 10−2) −4.3283 × 10−1
(6.77 × 10−2) −5.8135 × 10−1
(2.95 × 10−2) −3.8674 × 10−1
(6.33 × 10−2)4 1.3558 × 100
(1.03 × 10−1) −1.3003 × 100
(4.72 × 10−2) −1.1067 × 100
(1.51 × 10−1) −7.8509 × 10−1
(6.09 × 10−2) −9.8506 × 10−1
(4.70 × 10−2) −7.1114 × 10−1
(4.18 × 10−2)6 2.7646 × 100
(1.73 × 10−1) −2.5373 × 100
(1.03 × 10−1) −2.4254 × 100
(2.43 × 10−1) −1.7916 × 100
(8.92 × 10−2) =2.1839 × 100
(1.45 × 10−1) −1.8386 × 100
(8.92 × 10−2)8 4.7298 × 100
(2.08 × 10−1) −4.5985 × 100
(1.45 × 10−1) −4.7238 × 100
(4.32 × 10−1) −3.0908 × 100
(7.65 × 10−2) +4.4346 × 100
(2.48 × 10−1) −3.1917 × 100
(1.30 × 10−1)10 7.3037 × 100
(2.91 × 10−1) −7.0171 × 100
(3.14 × 10−1) −7.0938 × 100
(3.27 × 10−1) −4.8049 × 100
(3.18 × 10−1) +6.6075 × 100
(4.97 × 10−1) −5.0163 × 100
(2.42 × 10−1)WFG6 3 8.0656 × 10−1
(3.30 × 10−2) −7.8806 × 10−1
(2.19 × 10−2) −7.1317 × 10−1
(3.92 × 10−2) =7.1713 × 10−1
(4.87 × 10−2) =8.0570 × 10−1
(4.64 × 10−2) −7.2868 × 10−1
(3.97 × 10−2)4 1.3827 × 100
(8.35 × 10−2) −1.2283 × 100
(5.92 × 10−2) −1.0173 × 100
(8.09 × 10−2) =1.0307 × 100
(9.56 × 10−2) =1.1020 × 100
(4.08 × 10−2) −1.0481 × 100
(4.41 × 10−2)6 2.8461 × 100
(2.15 × 10−1) −2.6368 × 100
(1.36 × 10−1) −2.3941 × 100
(1.92 × 10−1) −2.2878 × 100
(1.10 × 10−1) −2.1672 × 100
(5.45 × 10−2) −2.1051 × 100
(7.48 × 10−2)8 4.9875 × 100
(3.24 × 10−1) −4.6116 × 100
(2.17 × 10−1) −4.7585 × 100
(5.04 × 10−1) −3.6354 × 100
(8.70 × 10−2) −3.7239 × 100
(1.43 × 10−1) −3.4682 × 100
(1.18 × 10−1)10 7.4853 × 100
(4.37 × 10−1) −6.9814 × 100
(4.94 × 10−1) −7.2251 × 100
(6.41 × 10−1) −5.1438 × 100
(1.55 × 10−1) =5.3090 × 100
(3.81 × 10−1) =5.0901 × 100
(1.35 × 10−1)WFG7 3 6.6448 × 10−1
(4.60 × 10−2) =6.3768 × 10−1
(3.13 × 10−2) =5.8351 × 10−1
(3.07 × 10−2) +6.0448 × 10−1
(2.89 × 10−2) +6.6027 × 10−1
(3.26 × 10−2) =6.5385 × 10−1
(4.34 × 10−2)4 1.5156 × 100
(1.31 × 10−1) −1.4000 × 100
(1.10 × 10−1) −1.3798 × 100
(1.35 × 10−1) −8.9610 × 10−1
(6.80 × 10−2) =1.2373 × 100
(1.22 × 10−1) −8.6343 × 10−1
(6.67 × 10−2)6 3.0239 × 100
(2.27 × 10−1) −2.6972 × 100
(1.90 × 10−1) −2.5951 × 100
(2.70 × 10−1) −1.9468 × 100
(4.95 × 10−2) +2.4804 × 100
(1.69 × 10−1) −2.0185 × 100
(5.45 × 10−2)8 5.2874 × 100
(2.64 × 10−1) −4.9740 × 100
(4.19 × 10−1) −5.4691 × 100
(4.66 × 10−1) −3.4310 × 100
(1.05 × 10−1) =5.1211 × 100
(3.92 × 10−1) −3.4353 × 100
(7.80 × 10−2)10 8.0948 × 100
(4.84 × 10−1) −7.6933 × 100
(4.38 × 10−1) −8.1050 × 100
(5.92 × 10−1) −5.1689 × 100
(1.77 × 10−1) =6.9773 × 100
(6.25 × 10−1) −5.2380 × 100
(3.09 × 10−1)WFG8 3 8.7226 × 10−1
(3.67 × 10−2) −8.4186 × 10−1
(2.79 × 10−2) −7.3788 × 10−1
(5.34 × 10−2) −7.2196 × 10−1
(3.90 × 10−2) −8.6180 × 10−1
(2.30 × 10−2) −6.7398 × 10−1
(4.58 × 10−2)4 1.7785 × 100
(1.02 × 10−1) −1.7130 × 100
(8.86 × 10−2) −1.7122 × 100
(1.64 × 10−1) −1.3654 × 100
(5.98 × 10−2) −1.3509 × 100
(3.48 × 10−2) −1.2069 × 100
(5.72 × 10−2)6 3.2270 × 100
(2.38 × 10−1) −2.8330 × 100
(1.62 × 10−1) −3.0250 × 100
(2.19 × 10−1) −2.3476 × 100
(9.36 × 10−2) −2.4530 × 100
(5.19 × 10−2) −2.2095 × 100
(4.49 × 10−2)8 5.2767 × 100
(2.91 × 10−1) −5.1048 × 100
(3.42 × 10−1) −5.4616 × 100
(3.15 × 10−1) −3.5830 × 100
(1.18 × 10−1) =4.2845 × 100
(2.58 × 10−1) −3.5916 × 100
(1.02 × 10−1)10 7.8537 × 100
(3.65 × 10−1) −7.3927 × 100
(4.54 × 10−1) −7.9521 × 100
(4.13 × 10−1) −5.0690 × 100
(1.21 × 10−1) +5.6966 × 100
(2.55 × 10−1) −5.1969 × 100
(1.70 × 10−1)WFG9 3 8.1617 × 10−1
(4.19 × 10−2) −7.8612 × 10−1
(4.07 × 10−2) −6.2832 × 10−1
(6.58 × 10−2) =6.6725 × 10−1
(4.52 × 10−2) =7.8107 × 10−1
(5.79 × 10−2) −6.6782 × 10−1
(5.50 × 10−2)4 1.3187 × 100
(8.63 × 10−2) −1.3147 × 100
(7.88 × 10−2) −1.1780 × 100
(1.25 × 10−1) −1.1332 × 100
(2.03 × 10−1) =1.3423 × 100
(1.28 × 10−1) −1.0305 × 100
(1.72 × 10−1)6 3.0388 × 100
(2.54 × 10−1) −3.0806 × 100
(1.69 × 10−1) −2.9442 × 100
(2.94 × 10−1) −2.1042 × 100
(1.22 × 10−1) +2.7797 × 100
(3.25 × 10−1) −2.4146 × 100
(1.84 × 10−1)8 5.1537 × 100
(3.04 × 10−1) −5.1279 × 100
(3.30 × 10−1) −5.2404 × 100
(4.41 × 10−1) −3.9706 × 100
(6.27 × 10−1) =4.8820 × 100
(4.82 × 10−1) −4.0674 × 100
(5.76 × 10−1)10 7.6142 × 100
(4.20 × 10−1) −7.6831 × 100
(3.48 × 10−1) −7.5833 × 100
(5.26 × 10−1) −6.2079 × 100
(5.79 × 10−1) =7.2823 × 100
(5.75 × 10−1) −6.0729 × 100
(6.67 × 10−1)+/−/= 0/43/2 1/43/1 4/35/6 12/14/19 2/41/2 表 5 6种算法在不同维数的WFG测试问题上获得的HV平均值和标准差
Table 5 The HV average and standard deviation obtained by the six algorithms on WFG test problems of different dimensions
测试问题 目标数 NSGA-III CPS-MOEA CSEA K-RVEA MOEA/D-EGO K-RSEA WFG1 3 0.0000 × 100
(0.00 × 100) −2.3754 × 10−3
(5.39 × 10−3) −1.5551 × 10−1
(4.56 × 10−2) =1.6255 × 10−1
(2.88 × 10−2) =5.6758 × 10−3
(1.33 × 10−2) −1.4541 × 10−1
(3.90 × 10−2)4 1.9475 × 10−1
(3.30 × 10−2) =2.9110 × 10−1
(6.17 × 10−3) +2.7323 × 10−1
(3.27 × 10−2) +2.3182 × 10−1
(4.43 × 10−2) =2.7638 × 10−1
(1.47 × 10−2) +2.1878 × 10−1
(6.03 × 10−2)6 3.0659 × 10−2
(2.10 × 10−2) −9.9187 × 10−2
(1.20 × 10−2) −2.0714 × 10−1
(3.65 × 10−2) =2.0241 × 10−1
(5.23 × 10−2) =1.2496 × 10−1
(2.73 × 10−2) −1.8319 × 10−1
(6.40 × 10−2)8 1.0632 × 10−1
(2.34 × 10−2) −1.7126 × 10−1
(9.62 × 10−3) =2.0631 × 10−1
(2.29 × 10−2) =2.0651 × 10−1
(3.16 × 10−2) =1.8449 × 10−1
(1.97 × 10−2) =1.9834 × 10−1
(1.06 × 10−1)10 1.0646 × 10−1
(2.91 × 10−2) −1.9083 × 10−1
(6.61 × 10−3) =2.1349 × 10−1
(2.85 × 10−2) =2.1469 × 10−1
(7.69 × 10−3) =1.8981 × 10−1
(1.13 × 10−2) =1.8994 × 10−1
(6.85 × 10−2)WFG2 3 5.7155 × 10−1
(3.23 × 10−2) −6.0180 × 10−1
(1.47 × 10−2) −7.0816 × 10−1
(2.55 × 10−2) −7.6969 × 10−1
(2.32 × 10−2) −6.3021 × 10−1
(2.06 × 10−2) −7.9608 × 10−1
(3.12 × 10−2)4 6.0584 × 10−1
(3.12 × 10−2) −6.5097 × 10−1
(2.87 × 10−2) −6.8373 × 10−1
(5.07 × 10−2) −7.5823 × 10−1
(3.40 × 10−2) −6.5436 × 10−1
(3.73 × 10−2) −7.8405 × 10−1
(2.80 × 10−2)6 6.4455 × 10−1
(3.97 × 10−2) −6.8126 × 10−1
(2.19 × 10−2) −7.9691 × 10−1
(6.05 × 10−2) −8.6678 × 10−1
(3.48 × 10−2) −6.9228 × 10−1
(2.95 × 10−2) −9.3463 × 10−1
(1.69 × 10−2)8 8.1555 × 10−1
(6.07 × 10−2) −8.6795 × 10−1
(1.99 × 10−2) −9.1947 × 10−1
(4.73 × 10−2) −9.6566 × 10−1
(1.18 × 10−2) −8.5448 × 10−1
(3.00 × 10−2) −9.9044 × 10−1
(4.99 × 10−3)10 7.6764 × 10−1
(4.56 × 10−2) −8.3857 × 10−1
(3.36 × 10−2) −8.7953 × 10−1
(5.73 × 10−2) −9.6830 × 10−1
(1.01 × 10−2) −8.4508 × 10−1
(4.68 × 10−2) −9.9466 × 10−1
(2.01 × 10−3)WFG3 3 1.5521 × 10−1
(1.05 × 10−2) −1.6033 × 10−1
(9.18 × 10−3) −1.9966 × 10−1
(2.70 × 10−2) =2.4291 × 10−1
(2.18 × 10−2) +1.4825 × 10−1
(9.09 × 10−3) −2.0974 × 10−1
(3.45 × 10−2)4 8.3428 × 10−2
(2.38 × 10−2) −8.8702 × 10−2
(2.16 × 10−2) −1.6360 × 10−1
(3.01 × 10−2) −2.2785 × 10−1
(2.52 × 10−2) +8.1881 × 10−2
(1.96 × 10−2) −2.0271 × 10−1
(2.29 × 10−2)6 0.0000 × 100
(0.00 × 100) −0.0000 × 100
(0.00 × 100) −6.2531 × 10−3
(1.43 × 10−2) −7.5288 × 10−3
(1.24 × 10−2) −1.2130 × 10−3
(5.42 × 10−3) −2.7253 × 10−2
(2.58 × 10−2)8 4.5931 × 10−3
(2.01 × 10−2) −2.6674 × 10−4
(9.23 × 10−4) −3.3423 × 10−2
(4.46 × 10−2) =1.4620 × 10−2
(2.21 × 10−2) −9.6695 × 10−3
(2.28 × 10−2) −4.9333 × 10−2
(3.21 × 10−2)10 0.0000 × 100
(0.00 × 100) −8.4506 × 10−5
(3.78 × 10−4) =2.1320 × 10−3
(8.52 × 10−3) =2.5236 × 10−3
(1.13 × 10−2) =0.0000 × 100
(0.00 × 100) −5.1517 × 10−3
(1.19 × 10−2)WFG4 3 3.1526 × 10−1
(1.26 × 10−2) −3.3905 × 10−1
(1.08 × 10−2) =3.8760 × 10−1
(2.00 × 10−2) +3.6710 × 10−1
(1.16 × 10−2) +3.3783 × 10−1
(1.33 × 10−2) −3.4727 × 10−1
(1.35 × 10−2)4 3.1231 × 10−1
(1.20 × 10−2) −3.8630 × 10−1
(1.57 × 10−2) −3.6772 × 10−1
(3.32 × 10−2) −4.7669 × 10−1
(2.16 × 10−2) −4.3451 × 10−1
(2.48 × 10−2) −4.8908 × 10−1
(1.89 × 10−2)6 3.6756 × 10−1
(2.66 × 10−2) −4.6632 × 10−1
(1.82 × 10−2) −4.6846 × 10−1
(2.89 × 10−2) −5.8503 × 10−1
(3.32 × 10−2) −5.1160 × 10−1
(2.69 × 10−2) −6.3545 × 10−1
(2.31 × 10−2)8 4.2581 × 10−1
(1.93 × 10−2) −5.5373 × 10−1
(2.95 × 10−2) −5.0393 × 10−1
(4.44 × 10−2) −7.0749 × 10−1
(3.11 × 10−2) −6.5901 × 10−1
(2.55 × 10−2) −7.7127 × 10−1
(3.11 × 10−2)10 4.1946 × 10−1
(2.30 × 10−2) −5.4379 × 10−1
(2.16 × 10−2) −4.9750 × 10−1
(5.18 × 10−2) −6.5396 × 10−1
(3.22 × 10−2) −6.5974 × 10−1
(3.52 × 10−2) −7.6087 × 10−1
(2.71 × 10−2)WFG5 3 2.4395 × 10−1
(1.12 × 10−2) −2.9918 × 10−1
(7.98 × 10−3) −3.4805 × 10−1
(2.40 × 10−2) −3.9021 × 10−1
(3.64 × 10−2) −3.6004 × 10−1
(1.89 × 10−2) −4.2110 × 10−1
(3.46 × 10−2)4 2.7954 × 10−1
(1.14 × 10−2) −3.3688 × 10−1
(1.26 × 10−2) −3.9549 × 10−1
(3.14 × 10−2) −4.7832 × 10−1
(2.30 × 10−2) −4.0185 × 10−1
(1.44 × 10−2) −5.0051 × 10−1
(2.40 × 10−2)6 3.2385 × 10−1
(1.38 × 10−2) −4.0172 × 10−1
(1.59 × 10−2) −4.9501 × 10−1
(3.25 × 10−2) −5.6239 × 10−1
(4.28 × 10−2) −5.0007 × 10−1
(1.55 × 10−2) −5.9915 × 10−1
(3.21 × 10−2)8 3.6783 × 10−1
(2.95 × 10−2) −4.6548 × 10−1
(1.24 × 10−2) −5.4239 × 10−1
(3.56 × 10−2) −6.6693 × 10−1
(4.28 × 10−2) −5.3718 × 10−1
(2.14 × 10−2) −7.2794 × 10−1
(2.07 × 10−2)10 3.7342 × 10−1
(2.07 × 10−2) −4.6464 × 10−1
(1.42 × 10−2) −5.2257 × 10−1
(2.90 × 10−2) −6.2569 × 10−1
(4.07 × 10−2) −5.5522 × 10−1
(3.41 × 10−2) −7.1028 × 10−1
(3.10 × 10−2)WFG6 3 2.0832 × 10−1
(1.01 × 10−2) −2.0973 × 10−1
(7.97 × 10−3) −2.5872 × 10−1
(1.90 × 10−2) +2.5438 × 10−1
(1.91 × 10−2) +2.5210 × 10−1
(1.88 × 10−2) +2.2621 × 10−1
(1.93 × 10−2)4 2.6812 × 10−1
(1.80 × 10−2) −2.9358 × 10−1
(1.92 × 10−2) −3.5227 × 10−1
(2.85 × 10−2) +3.7527 × 10−1
(4.14 × 10−2) +2.9643 × 10−1
(1.56 × 10−2) −3.3339 × 10−1
(3.07 × 10−2)6 3.0489 × 10−1
(1.75 × 10−2) −3.4169 × 10−1
(1.88 × 10−2) −4.0660 × 10−1
(3.70 × 10−2) =3.9532 × 10−1
(4.83 × 10−2) =4.1998 × 10−1
(1.48 × 10−2) =4.0315 × 10−1
(3.75 × 10−2)8 3.9079 × 10−1
(4.10 × 10−2) −4.6339 × 10−1
(2.22 × 10−2) −5.1016 × 10−1
(4.92 × 10−2) −6.6623 × 10−1
(2.77 × 10−2) −5.1183 × 10−1
(2.19 × 10−2) −7.3524 × 10−1
(4.15 × 10−2)10 3.9579 × 10−1
(2.55 × 10−2) −4.7448 × 10−1
(2.34 × 10−2) −4.9997 × 10−1
(4.80 × 10−2) −6.7299 × 10−1
(3.78 × 10−2) −5.3339 × 10−1
(2.18 × 10−2) −7.9146 × 10−1
(4.70 × 10−2)WFG7 3 2.7294 × 10−1
(1.31 × 10−2) =2.7768 × 10−1
(1.21 × 10−2) =3.2790 × 10−1
(2.16 × 10−2) +2.9637 × 10−1
(1.66 × 10−2) +2.8180 × 10−1
(1.13 × 10−2) =2.7832 × 10−1
(1.80 × 10−2)4 3.0770 × 10−1
(1.53 × 10−2) −3.3113 × 10−1
(1.54 × 10−2) −3.6574 × 10−1
(2.60 × 10−2) −4.5508 × 10−1
(2.66 × 10−2) =3.5393 × 10−1
(1.72 × 10−2) −4.6052 × 10−1
(2.59 × 10−2)6 3.5607 × 10−1
(1.68 × 10−2) −4.0546 × 10−1
(1.42 × 10−2) −4.6728 × 10−1
(2.93 × 10−2) −5.1981 × 10−1
(3.50 × 10−2) −4.1921 × 10−1
(1.60 × 10−2) −5.5770 × 10−1
(4.09 × 10−2)8 4.1954 × 10−1
(3.00 × 10−2) −4.7747 × 10−1
(2.38 × 10−2) −5.3422 × 10−1
(4.07 × 10−2) −6.6874 × 10−1
(3.33 × 10−2) −4.9354 × 10−1
(2.52 × 10−2) −7.9566 × 10−1
(1.82 × 10−2)10 4.3978 × 10−1
(2.68 × 10−2) −4.9236 × 10−1
(1.55 × 10−2) −5.3589 × 10−1
(3.53 × 10−2) −6.4650 × 10−1
(4.91 × 10−2) −5.2947 × 10−1
(3.36 × 10−2) −8.2131 × 10−1
(3.53 × 10−2)WFG8 3 2.0563 × 10−1
(9.02 × 10−3) −2.1117 × 10−1
(9.38 × 10−3) −2.5649 × 10−1
(1.96 × 10−2) =2.7987 × 10−1
(1.16 × 10−2) +2.0196 × 10−1
(9.26 × 10−3) −2.5619 × 10−1
(2.12 × 10−2)4 2.2504 × 10−1
(1.58 × 10−2) −2.4391 × 10−1
(1.41 × 10−2) −2.7342 × 10−1
(2.59 × 10−2) =3.0350 × 10−1
(2.26 × 10−2) =2.6327 × 10−1
(1.60 × 10−2) −2.9119 × 10−1
(2.71 × 10−2)6 2.9374 × 10−1
(2.14 × 10−2) −3.1166 × 10−1
(1.44 × 10−2) −3.5815 × 10−1
(3.05 × 10−2) −3.4101 × 10−1
(1.70 × 10−2) −3.4154 × 10−1
(1.45 × 10−2) −3.8034 × 10−1
(1.95 × 10−2)8 3.3827 × 10−1
(2.25 × 10−2) −3.9489 × 10−1
(2.24 × 10−2) −4.3731 × 10−1
(2.62 × 10−2) −4.9176 × 10−1
(3.96 × 10−2) −4.3251 × 10−1
(3.33 × 10−2) −5.4014 × 10−1
(4.21 × 10−2)10 3.7424 × 10−1
(1.66 × 10−2) −4.1948 × 10−1
(1.39 × 10−2) −4.3470 × 10−1
(2.64 × 10−2) −5.0197 × 10−1
(4.74 × 10−2) −4.7105 × 10−1
(2.48 × 10−2) −6.1406 × 10−1
(5.41 × 10−2)WFG9 3 2.1195 × 10−1
(1.55 × 10−2) −2.2346 × 10−1
(2.06 × 10−2) −2.8163 × 10−1
(3.02 × 10−2) =2.6005 × 10−1
(1.97 × 10−2) =2.2416 × 10−1
(2.21 × 10−2) −2.6152 × 10−1
(3.23 × 10−2)4 3.1377 × 10−1
(2.84 × 10−2) −3.3327 × 10−1
(1.77 × 10−2) −3.5582 × 10−1
(4.06 × 10−2) −3.8240 × 10−1
(6.37 × 10−2) =3.0577 × 10−1
(1.98 × 10−2) −4.1389 × 10−1
(6.77 × 10−2)6 3.1971 × 10−1
(2.97 × 10−2) −3.3719 × 10−1
(1.64 × 10−2) −3.8869 × 10−1
(4.85 × 10−2) −4.8276 × 10−1
(5.15 × 10−2) =3.4419 × 10−1
(2.18 × 10−2) −4.7707 × 10−1
(6.45 × 10−2)8 4.5419 × 10−1
(3.01 × 10−2) −4.7014 × 10−1
(2.00 × 10−2) −5.4358 × 10−1
(3.44 × 10−2) −6.3781 × 10−1
(6.24 × 10−2) =4.9095 × 10−1
(3.53 × 10−2) −6.5968 × 10−1
(6.23 × 10−2)10 4.8221 × 10−1
(2.31 × 10−2) −4.7502 × 10−1
(1.84 × 10−2) −5.6346 × 10−1
(4.24 × 10−2) −6.1737 × 10−1
(3.46 × 10−2) −5.0326 × 10−1
(3.14 × 10−2) −6.7554 × 10−1
(4.40 × 10−2)+/−/= 0/43/2 1/39/5 5/29/11 7/25/13 2/39/4 表 6 汽车碰撞优化设计问题上获得的IGD和HV的平均值
Table 6 The average values of IGD and HV obtained on the car crash optimization design problem
算法名称 IGD HV NSGA-III 2.4975 0.0308 CPS-MOEA 2.3665 0.0340 CSEA 1.3144 0.0368 K-RVEA 0.7142 0.0374 MOEA/D-EGO 0.6793 0.0384 K-RSEA 0.4920 0.0389 -
[1] Coello Coello C A, González Brambila S, Figueroa Gamboa J, Castillo Tapia M G, Hernández Gómez R. Evolutionary multiobjective optimization: open research areas and some challenges lying ahead. Complex & Intelligent Systems, 2020, 6(2): 221~236 [2] Koziel S, Leifsson L. Multi-level CFD-based airfoil shape optimization with automated low-fidelity model selection. Procedia Computer Science, 2013, 18(1): 889~898 [3] Lim D, Jin Y, Ong Y, Sendhoff B. Generalizing surrogate-assisted evolutionary computation. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 329~355 doi: 10.1109/TEVC.2009.2027359 [4] Jin Y. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation, 2011, 1(2): 61~70 doi: 10.1016/j.swevo.2011.05.001 [5] Chugh T, Sindhya K, Hakanen J, Miettinen K. A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms. Soft Computing, 2019, 23(9): 3137~3166 doi: 10.1007/s00500-017-2965-0 [6] 刘晓路, 陈盈果, 贺仁杰, 陈英武. Kriging代理模型在对地观测卫星系统优化中的应用. 自动化学报, 2012, 38(01): 120~127 doi: 10.3724/SP.J.1004.2012.00120Liu Xiao-Lu, Chen Ying-Guo, He Ren-Jie, Chen Ying-Wu. Application of kriging proxy model in the optimization of earth observation satellite system. Acta Automatica Sinica, 2012, 38(01): 120~127(in Chinese) doi: 10.3724/SP.J.1004.2012.00120 [7] Knowles J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50~66 doi: 10.1109/TEVC.2005.851274 [8] Hochstrate N, Naujoks B, Emmerich M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 2007, 181(3): 1653~1669 doi: 10.1016/j.ejor.2006.08.008 [9] Zhang Qing-Fu, Liu Wu-Dong, Tsang E, Virginas B. Expensive multiobjective optimization by MOEA/D With gaussian process model. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 456~474 doi: 10.1109/TEVC.2009.2033671 [10] Chugh T, Jin Y, Miettinen K, Hakanen J, Sindhya K. A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129~142 doi: 10.1109/TEVC.2016.2622301 [11] Zhang J Y, Zhou A M, Zhang G X. A classification and pareto domination based multiobjective evolutionary algorithm. In: Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC). Sendai, Japan: IEEE, 2015. 2883−2890 [12] Pan Lin-Qiang, He Cheng, Tian Ye, Wang Han-Ding, Zhang Xing-Yi, Jin Y. A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 74~88 doi: 10.1109/TEVC.2018.2802784 [13] Shahriari B, Swersky K, Wang Z, Adams R P, De Freitas N. Taking the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 2015, 104(1): 148~175 [14] Rasmussen C E. Gaussian processes in machine learning. In: Proceedings of the 2003 Summer School on Machine Learning. Berlin, Germany: 2003. 63−71 [15] Hoffman P, Grinstein G, Marx K, Grosse I, Stanley E. DNA visual and analytic data mining. In: Proceedings of the Visualization' 97. Phoenix, USA: 1997. 437−441 [16] Walker D J, Everson R, Fieldsend J E. Visualizing mutually nondominating solution sets in many-objective optimization. IEEE Transactions on Evolutionary Computation, 2013, 17(2): 165~184 doi: 10.1109/TEVC.2012.2225064 [17] Ibrahim A, Rahnamayan S, Martin M V, Deb K. 3D-RadVis: Visualization of pareto front in many-objective optimization. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, Canada: 2016. 736−745 [18] He Cheng, Tian Ye, Jin Y, Zhang Xing-Yi, Pan Lin-Qiang. A radial space division based evolutionary algorithm for many-objective optimization. Applied Soft Computing, 2017, 61: 603~621 doi: 10.1016/j.asoc.2017.08.024 [19] McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 2000, 42(1): 55~61 doi: 10.1080/00401706.2000.10485979 [20] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577~601 doi: 10.1109/TEVC.2013.2281535 [21] Tian Ye, Cheng Ran, Zhang Xing-Yi, Jin Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational Forum]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73~87 doi: 10.1109/MCI.2017.2742868 [22] Deb K, Thiele L, Laumanns M, Zitzler E. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. London: Springer, 2005. 105−145 [23] Huband S, Hingston P, Barone L, While L. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477~506 doi: 10.1109/TEVC.2005.861417 [24] Zhou A M, Jin Y, Zhang Q F, Sendhoff B, Tsang E. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the 2006 IEEE International Conference on Evolutionary Computation. Vancouver, Canada: 2006. 892−899 [25] While L, Hingston P, Barone L, Huband S. A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 29~38 doi: 10.1109/TEVC.2005.851275 [26] Ishibuchi H, Imada R, Masuyama N, Nojima Y. Comparison of hypervolume, IGD and IGD+ from the viewpoint of optimal distributions of solutions. In: Proceedings of the 2019 Evolutionary Multi-Criterion Optimization. East Lansing, USA: 2019. 332− 345 [27] Liao Xing-Tao, Li Qing, Yang Xu-Jing, Zhang Wei-Gang, Li Wei. Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Structural and Multidisciplinary Optimization, 2008, 35(6): 561~569 doi: 10.1007/s00158-007-0163-x