2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时变障碍李雅普诺夫函数的变体无人机有限时间控制

李新凯 张宏立 范文慧

李新凯, 张宏立, 范文慧. 基于时变障碍李雅普诺夫函数的变体无人机有限时间控制. 自动化学报, 2022, 48(8): 2062−2074 doi: 10.16383/j.aas.c200712
引用本文: 李新凯, 张宏立, 范文慧. 基于时变障碍李雅普诺夫函数的变体无人机有限时间控制. 自动化学报, 2022, 48(8): 2062−2074 doi: 10.16383/j.aas.c200712
Li Xin-Kai, Zhang Hong-Li, Fan Wen-Hui. Finite-time control for morphing aerospace vehicle based on time-varying barrier Lyapunov function. Acta Automatica Sinica, 2022, 48(8): 2062−2074 doi: 10.16383/j.aas.c200712
Citation: Li Xin-Kai, Zhang Hong-Li, Fan Wen-Hui. Finite-time control for morphing aerospace vehicle based on time-varying barrier Lyapunov function. Acta Automatica Sinica, 2022, 48(8): 2062−2074 doi: 10.16383/j.aas.c200712

基于时变障碍李雅普诺夫函数的变体无人机有限时间控制

doi: 10.16383/j.aas.c200712
基金项目: 国家自然科学基金(51967019, 52065064), 新疆维吾尔自治区天山雪松计划(2020XS03), 新疆维吾尔自治区天山青年计划(2019Q064, 2020Q066) 资助
详细信息
    作者简介:

    李新凯:新疆大学电气工程学院博士研究生. 主要研究方向为电力巡检无人机控制, 非线性动力学. E-mail: lxk318@foxmail.com

    张宏立:新疆大学电气工程学院教授. 主要研究方向为复杂系统动力学分析, 非线性控制理论, 群智能优化和机器学习. 本文通信作者. E-mail: zhlxju@163.com

    范文慧:清华大学自动化系教授. 主要研究方向为多智能体建模与仿真, 复杂网络, 仿真系统和应用工程. E-mail: fanwenhui@tsinghua.edu.cn

Finite-time Control for Morphing Aerospace Vehicle Based on Time-varying Barrier Lyapunov Function

Funds: Supported by National Natural Science Foundation of China (51967019, 52065064), Tianshan Cedar Program of Xinjiang Uygur Autonomous Region (2020XS03), and Tianshan Youth Program of Xinjiang Uygur Autonomous Region (2019Q064, 2020Q066)
More Information
    Author Bio:

    LI Xin-Kai Ph.D. candidate at the School of Electrical Engineering, Xinjiang University. His research interest covers electric power inspection UAV control and nonlinear dynamics

    ZHANG Hong-Li Professor at the School of Electrical Engineering, Xinjiang University. His research interest covers complex system dynamics analysis, nonlinear control theory, swarm intelligence optimization, and machine learning. Corresponding author of this paper

    FAN Wen-Hui Professor in the Department of Automation, Tsinghua University. His research interest covers multi-agent modeling and simulation, complex network, simulation system, and application engineering

  • 摘要: 针对复杂扰动下可执行多种任务的复合式变体无人机, 提出了一种基于浸入与不变(Immersion and invariance, I&I)理论和隐含系统状态受限条件的复合时变障碍Lyapunov函数(Composite time-varying barrierLyapunov function, CTV-BLF)的控制方案. 设计了一种基于浸入与不变理论的扰动观测器, 构建了一种基于监督因子的有限时间动态尺度因子(Finite-time dynamic scaling factor, FT-DSF)调节器. 在此基础上, 设计了一种基于复合时变障碍Lyapunov函数和动态滑模面的控制器, 保证系统状态始终在约束条件之内. 通过衍生定理证明轨迹跟踪误差是有限时间稳定的. 最终仿真结果验证了所提方案的有效性.
  • 图  1  飞行模式切换示意图

    Fig.  1  Schematic diagram of flight mode switch

    图  2  变体无人机机体受力及坐标示意图

    Fig.  2  Schematic diagram of body force and coordinates of the morphing aerospace vehicle

    图  3  所提控制策略示意图

    Fig.  3  Schematic diagram of the proposed control strategy

    图  4  算例1中三维轨迹跟踪效果

    Fig.  4  The 3D trajectory tracking effects in case 1

    图  5  算例1中轨迹及姿态跟踪误差

    Fig.  5  Trajectory and attitude tracking errors in case 1

    图  6  算例1中2种基于I&I理论扰动观测器的扰动观测误差

    Fig.  6  Disturbances observation errors of two observers based on I&I theory in case 1

    图  7  算例1中2种方法的输入信号

    Fig.  7  Input signals of the two methods in case 1

    图  8  算例2中3种方法的空间位置跟踪效果

    Fig.  8  Position tracking effects of the three methods in case 2

    图  9  算例 2中3种方法轨迹跟踪误差及箱线图分析

    Fig.  9  Trajectory tracking errors and boxplot analysis of the three methods in case 2

    图  10  算例 2中3种方法姿态角跟踪误差及箱线图分析

    Fig.  10  Attitude tracking errors and boxplot analysis of the three methods in case 2

    图  12  算例2中3种方法的控制输入信号响应

    Fig.  12  Control input signal responses of the three methods in case 2

    图  13  算例2中3种方法的虚拟控制输入信号响应

    Fig.  13  Virtual control input signal responses of the three methods in case 2

    图  11  算例2中3种方法对外部扰动的估计效果

    Fig.  11  Estimation effects on external disturbances of the three methods in case 2

    图  15  算例2测试周期中本文方法机翼与机身夹角${\theta _f}$与机体速度变化的对应过程

    Fig.  15  The corresponding process of the angle ${\theta _f}$ between wing and fuselage, and the change of airframe velocity of the proposed method in case 2

    图  14  算例2测试周期中机翼与机身夹角${\theta _f}$自适应响应过程

    Fig.  14  The adaptive response of the angle ${\theta _f}$ between wing and fuselage during the test period in case 2

    图  16  ${\alpha _i} = 2$时6个控制通道FT-DSF自适应过程

    Fig.  16  FT-DSF adaptive process of six control channels when ${\alpha _i} = 2$

    图  17  监督因子${\alpha _1}$的变化对FT-DSF${r_1}$及动态尺度误差${z_1}$的响应过程(以$x$子系统为例) ((a) 随着${\alpha _1}$不同取值${r_1}$的自适应收敛响应; (b) ${\alpha _1}$不同取值对应${r_1}$的最终收敛值的变化趋势; (c) 随着${\alpha _1}$不同取值${z_1}$的自适应收敛响应)

    Fig.  17  The responses of FT-DSF ${r_1}$ and dynamic scaling error ${z_1}$ in response to the supervision factor ${\alpha _1}$ (take the $x$ subsystem as an example) ((a) Adaptive convergent response of ${r_1}$ with different values of ${\alpha _1}$; (b) Different values of ${\alpha _1}$ correspond to the change trend of the final convergence value of ${r_1}$; (c) Adaptive convergent response of ${z_1}$with different values of ${\alpha _1}$)

  • [1] Totoki H, Ochi Y, Sato M, et al. Design and testing of a low-order flight control system for Quad-tilt-wing UAV. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2426–2433. doi: 10.2514/1.G001577
    [2] Tran A T, Sakamoto N, Sato M, et al. Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 357–369. doi: 10.1109/TAES.2017.2650618
    [3] Ritz R, D'Andrea R. A Global Strategy for Tailsitter Hover Control. Cham: Springer International Publishing AG, 2018. 21−37
    [4] Wang K, Ke Y, Chen B M. Autonomous reconfigurable hybrid tail-sitter UAV U-Lion. Science China Information Sciences, 2017, 60(3): 033201. doi: 10.1007/s11432-016-9002-x
    [5] 李斌斌, 马磊, 孙小通, 等. 一种多旋翼飞行器的设计及实验验证. 机器人, 2020, 42(03): 257–266.

    Li Bin-Bin, Ma Lei, Sun Xiao-Tong, et al. Design and experimental verification of a multirotor aircraft. Robot, 2020, 42(3): 257–266 (in Chinese).
    [6] 卢凯文, 杨忠, 张秋雁, 等. 推力矢量可倾转四旋翼自抗扰飞行控制方法. 控制理论与应用, 2020, 37(6): 1377–1387.

    Lu Kai-Wen, Yang Zhong, Zhang Qiu-Yan, et al. Active disturbance rejection flight control method for thrust-vectored quadrotor with tiltable rotors. Control Theory & Applications, 2020, 37(6): 1377–1387.
    [7] 钱辰, 方勇纯, 李友朋. 面向扑翼飞行控制的建模与奇异摄动分析. 自动化学报, 2022, 48(2): 434−443

    Qian Chen, Fang Yong-Chun, Li You-Peng. Control oriented modeling and singular perturbation analysis in flapping-wing flight. Acta Automatica Sinica, 2022, 48(2): 434−443
    [8] Astolfi A, Ortega R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control, 2003, 48(4): 590–606. doi: 10.1109/TAC.2003.809820
    [9] Hu J, Zhang H. Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles. Automatica, 2013, 49(7): 2160–2167. doi: 10.1016/j.automatica.2013.03.019
    [10] Li J, Chen S, Li C, et al. Adaptive control of underactuated flight vehicles with moving mass. Aerospace Science and Technology, 2019, 85: 75–84. doi: 10.1016/j.ast.2018.12.003
    [11] Zou Y, Meng Z. Immersion and invariance-based adaptive controller for quadrotor systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49(11): 2288-2297.
    [12] Karagiannis D, Sassano M, Astolfi A. Dynamic scaling and observer design with application to adaptive control. Automatica, 2009, 45(12): 2883–2889. doi: 10.1016/j.automatica.2009.09.013
    [13] Hu J, Zhang H. Bounded output feedback of rigid-body attitude via angular velocity observers. Journal of Guidance, Control, and Dynamics, 2013, 36(4): 1240–1248. doi: 10.2514/1.57187
    [14] Lee K W, Singh S N. Quaternion-based adaptive attitude control of asteroid-orbiting spacecraft via immersion and invariance. Acta Astronautica, 2020, 167: 164–180. doi: 10.1016/j.actaastro.2019.10.031
    [15] Zhang B, Cai Y. Immersion and invariance based adaptive backstepping control for body-fixed hovering over an asteroid. IEEE Access, 2019, 7: 34850–34861. doi: 10.1109/ACCESS.2019.2904590
    [16] Yang S, Akella M R, Mazenc F. Immersion and invariance observers for gyro-free attitude control systems. Journal of Guidance, Control, and Dynamics, 2016: 2570–2577.
    [17] Shao X, Wang L, Li J, et al. High-order ESO based output feedback dynamic surface control for quadrotors under position constraints and uncertainties. Aerospace Science and Technology, 2019, 89: 288–298. doi: 10.1016/j.ast.2019.04.003
    [18] Ngo K B, Mahony R, Jiang Z P. Integrator backstepping using barrier functions for systems with multiple state constraints. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005. 8306–8312
    [19] Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918–927. doi: 10.1016/j.automatica.2008.11.017
    [20] Tee K P, Ge S S. Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. International Journal of Control, 2011, 84(12): 2008–2023. doi: 10.1080/00207179.2011.631192
    [21] Liu N, Shao X, Li J, et al. Attitude restricted back-stepping anti-disturbance control for vision based quadrotors with visibility constraint. ISA transactions, 2020, 100: 109-125. doi: 10.1016/j.isatra.2019.11.004
    [22] Yuan Y, Wang Z, Guo L, Liu H. Barrier Lyapunov functions-based adaptive fault tolerant control for flexible hypersonic flight vehicles with full state constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018: 1–10
    [23] Xu B, Shi Z, Sun F, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults. IEEE transactions on cybernetics, 2018, 49(3): 1047–1057.
    [24] Liu Y J, Lu S, Tong S, et al. Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints. Automatica, 2018, 87: 83–93. doi: 10.1016/j.automatica.2017.07.028
    [25] Kim B S, Yoo S J. Approximation-based adaptive tracking control of nonlinear pure-feedback systems with time-varying output constraints. International Journal of Control, Automation and Systems, 2015, 13(2): 257–265. doi: 10.1007/s12555-014-0084-6
    [26] Liu Y J, Ma L, Liu L, Tong S C, Chen L. Adaptive neural network learning controller design for a class of nonlinear systems with time-varying state constraints. IEEE Transactions on Neural Networks and Learning Systems, 2019: 1–10
    [27] Tang L, Chen A, Li D. Time-varying Tan-type barrier Lyapunov function-based adaptive fuzzy control for switched systems with unknown dead zone. IEEE Access, 2019, 7: 110928–110935
    [28] Wang H, Bai W, Liu P X. Finite-time adaptive fault-tolerant control for nonlinear systems with multiple faults. IEEE/CAA Journal of Automatica Sinica, 2019, 6(6): 1417–1427. doi: 10.1109/JAS.2019.1911765
    [29] 王璐, 郭毓, 吴益飞. SGCMGs 驱动的挠性航天器有限时间自适应鲁棒控制. 自动化学报, 2021, 47(3): 641−651

    Wang Lu, Guo Yu, Wu Yi-Fei. Finite-time adaptive robust control for SGCMGs-based flexible spacecraft. Acta Automatica Sinica, 2021, 47(3): 641−651
    [30] Tian B, Liu L, Lu H, Zuo Z Y. Multivariable finite time attitude control for quadrotor UAV: Theory and experimentation. IEEE Transactions on Industrial Electronics, 2017, 65(3): 2567–2577
    [31] 张春燕, 戚国庆, 李银伢, 等. 一种基于有限时间稳定的环绕控制器设计. 自动化学报, 2018, 44(11): 2056–2067.

    Zhang Chun-Yan, Qi Guo-Qing, Li Yin-Ya, et al. Standoff tracking control with respect to moving target via finite-time stabilization. Acta Automatica Sinica, 2018, 44(11): 2056–2067 (in Chinese).
    [32] Hu Q, Jiang B, Zhang Y. Observer-based output feedback attitude stabilization for spacecraft with finite-time convergence. IEEE Transactions on Control Systems Technology, 2017, 27(2): 781–789.
    [33] Jacobs E N, Sherman A. Airfoil section characteristics as affected by variations of the Reynolds number. NACA report, 1937, 586: 227–264.
  • 加载中
图(17)
计量
  • 文章访问数:  2257
  • HTML全文浏览量:  711
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回