Bit-driven Watt Revolution—A Review of Cyber Energy System
-
摘要:
采用科学知识图谱的方法系统梳理了信息能源系统研究的整体概况, 以数据和知识混合驱动的方式展现了信息能源系统专业领域的热点领域和学术链条, 并聚焦4个重点研究领域: 优化调度、一致控制、用户驱动的优化管理、信息能源深度融合系统. 在共被引分析基础上, 依据文献重要性和贡献度人工筛选出高影响力文献, 梳理了信息能源系统研究演化发展趋势. 分析表明, 当前信息技术作为有力的支撑驱动了能源系统的发展, 但信息与能源之间的联系仍不够紧密, 对能源数据价值的充分挖掘等问题亦需进一步研究.
Abstract:This article uses the scientific knowledge map method to systematically comb the overall overview of the cyber energy system research, and displays the hotspots and academic chains in the professional field of cyber energy systems in a data and knowledge hybrid drive. This article focuses on four key research areas: Optimal scheduling, consistent control, user-driven optimal management, cyber and energy integration system. On the basis of co-citation analysis, it manually selects high-impact literature according to the importance and contribution of literature, and summarizes the evolution and development trend of cyber energy system research. The analysis shows that the current information technology as a powerful support drives the development of the energy system, but the connection between cyber and energy is still not close enough, and the full exploration of the value of energy data needs further research.
-
Key words:
- Cyber energy system /
- integrated energy system /
- energy Internet /
- smart energy /
- academic map
-
表 1 领域内的研究热点文献
Table 1 Hot research literature in the field
表 2 中英文混合关键词突现分析
Table 2 Emergence analysis of keywords in Chinese and English
关键词 强度 起始时
间 (年)终止时
间 (年)2001 ~ 2020 年 信息物理系统 9.39 2015 2017 智能电网 7.90 2014 2016 能源系统 5.10 2005 2015 Control 4.67 2003 2013 分布式能源 4.64 2005 2016 家庭能源管理系统 4.50 2014 2017 分布式能源系统 4.12 2015 2016 能源路由器 4.10 2015 2017 电动汽车 4.01 2001 2017 优化 3.93 2004 2017 energy 3.89 2008 2014 可再生能源 3.50 2007 2016 全球能源互联网 3.21 2016 2017 优化运行 3.19 2015 2018 大数据 3.10 2015 2016 新能源电力系统 3.10 2015 2016 控制 3.01 2007 2016 electricity market 2.93 2006 2017 optimization 2.81 2009 2011 优化规划 2.78 2004 2016 coordination 2.75 2017 2018 reduction 2.72 2016 2018 smart grid 2.64 2014 2015 design 2.40 2009 2010 cyber-physical system 2.36 2010 2014 能源管理 2.35 2011 2016 solar 2.32 2009 2014 -
[1] 周孝信. 新一代电力系统与能源互联网. 电气应用, 2019, 38(1): 4−6Zhou Xiao-Xin. New generation power system and energy internet. Electrotechnical Application, 2019, 38(1): 4−6 [2] 慈松. 数字储能系统. 全球能源互联网, 2018, 1(3): 338−347Ci Song. Digital energy storage system. Journal of Global Energy Interconnection, 2018, 1(3): 338−347 [3] Sun Q Y, Yang L X. From independence to interconnection — A review of AI technology applied in energy systems. CSEE Journal of Power and Energy Systems, 2019, 5(1): 21−34 [4] 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 43(2): 176−194Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 43(2): 176−194 [5] 白昱阳, 黄彦浩, 陈思远, 张俊, 李柏青, 王飞跃. 云边智能: 电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报, 2020, 46(3): 397−410Bai Yu-Yang, Huang Yan-Hao, Chen Si-Yuan, Zhang Jun, Li Bai-Qing, Wang Fei-Yue. Cloud-edge intelligence: Status quo and future prospective of edge computing approaches and applications in power system operation and control. Acta Automatica Sinica, 2020, 46(3): 397−410 [6] 胡旭光, 马大中, 郑君, 张化光, 王睿. 基于关联信息对抗学习的综合能源系统运行状态分析方法. 自动化学报, 2020, 46(9): 1783−1797Hu Xu-Guang, Ma Da-Zhong, Zheng Jun, Zhang Hua-Guang, Wang Rui. An operation state analysis method for integrated energy system based on correlation information adversarial learning. Acta Automatica Sinica, 2020, 46(9): 1783−1797 [7] 张化光, 孙宏斌, 刘德荣, 王剑辉, 孙秋野. 分布式信息能源系统理论与应用专题序言. 自动化学报, 2020, 46(9): 1767−1769Zhang Hua-Guang, Sun Hong-Bin, Liu De-Rong, Wang Jian-Hui, Sun Qiu-Ye. Introduction to the special session on theory and application of distributed information energy systems. Acta Automatica Sinica, 2020, 46(9): 1767−1769 [8] 管晓宏. 智能时代的信息物理融合系统. 网信军民融合, 2020, (1): 14−17Guan Xiao-Hong. Cyber physical system in the intelligent era. Civil-Military Integration on Cyberspace, 2020, (1): 14−17 [9] Mancarella P. MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 2014, 65: 1−17 doi: 10.1016/j.energy.2013.10.041 [10] Huang A Q, Crow M L, Heydt G T, Zheng J P, Dale S J. The future renewable electric energy delivery and management (FREEDM) system: The energy internet. Proceedings of the IEEE, 2011, 99(1): 133−148 doi: 10.1109/JPROC.2010.2081330 [11] Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M. A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Transactions on Smart Grid, 2015, 6(6): 3006−3019 doi: 10.1109/TSG.2015.2412779 [12] Wang K, Yu J, Yu Y, Qian Y R, Zeng D Z, Guo S, et al. A survey on energy internet: Architecture, approach, and emerging technologies. IEEE Systems Journal, 2018, 12(3): 2403−2416 doi: 10.1109/JSYST.2016.2639820 [13] Bui N, Castellani A P, Casari P, Zorzi M. The internet of energy: A web-enabled smart grid system. IEEE Network, 2012, 26(4): 39−45 doi: 10.1109/MNET.2012.6246751 [14] Mathiesen B V, Lund H, Connolly D, Wenzel H, Østergaard P A, Möller B, et al. Smart energy systems for coherent 100% renewable energy and transport solutions. Applied Energy, 2015, 145: 139−154 doi: 10.1016/j.apenergy.2015.01.075 [15] Liu X Z, Mancarella P. Modelling, assessment and sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems. Applied Energy, 2016, 167: 336−352 doi: 10.1016/j.apenergy.2015.08.089 [16] Sun Q Y, Zhang Y B, He H B, Ma D Z, Zhang H G. A novel energy function-based stability evaluation and nonlinear control approach for energy internet. IEEE Transactions on Smart Grid, 2017, 8(3): 1195−1210 doi: 10.1109/TSG.2015.2497691 [17] Bao Z J, Zhou Q, Yang Z H, Yang Q, Xu L Z, Wu T. A multi time-scale and multi energy-type coordinated microgrid scheduling solution—Part I: Model and methodology. IEEE Transactions on Power Systems, 2015, 30(5): 2257−2266 doi: 10.1109/TPWRS.2014.2367127 [18] Zhou K L, Yang S L, Shao Z. Energy internet: The business perspective. Applied Energy, 2016, 178: 212−222 doi: 10.1016/j.apenergy.2016.06.052 [19] 李杰, 刘家豪, 汪金辉, 冯长根. 基于FSJ的火灾安全学术地图研究. 消防科学与技术, 2019, 38(12): 1760−1765 doi: 10.3969/j.issn.1009-0029.2019.12.034Li Jie, Liu Jia-Hao, Wang Jin-Hui, Feng Chang-Gen. Academic map of fire safety science based on the fire safety journal. Fire Science and Technology, 2019, 38(12): 1760−1765 doi: 10.3969/j.issn.1009-0029.2019.12.034 [20] Li H T, Burer M, Song Z P, Favrat D, Marechal F. Green heating system: Characteristics and illustration with multi-criteria optimization of an integrated energy system. Energy, 2004, 29(2): 225−244 doi: 10.1016/j.energy.2003.09.003 [21] Bai L Q, Li F X, Cui H T, Jiang T, Sun H B, Zhu J X. Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty. Applied Energy, 2016, 167: 270−279 doi: 10.1016/j.apenergy.2015.10.119 [22] Quelhas A, Gil E, McCalley J D, Ryan S M. A multiperiod generalized network flow model of the U. S. integrated energy system: Part I—Model description. IEEE Transactions on Power Systems, 2007, 22(2): 829−836 doi: 10.1109/TPWRS.2007.894844 [23] Quelhas A, McCalley J D. A multiperiod generalized network flow model of the U. S. integrated energy system: Part Ⅱ—Simulation results. IEEE Transactions on Power Systems, 2007, 22(2): 837−844 doi: 10.1109/TPWRS.2007.894845 [24] Li G Q, Zhang R F, Jiang T, Chen H H, Bai L Q, Li X J. Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process. Applied Energy, 2017, 194: 696−704 doi: 10.1016/j.apenergy.2016.07.077 [25] Mashayekh S, Stadler M, Cardoso G, Heleno M. A mixed integer linear programming approach for optimal der portfolio, sizing, and placement in multi-energy microgrids. Applied Energy, 2017, 187: 154−168 doi: 10.1016/j.apenergy.2016.11.020 [26] Capuder T, Mancarella P. Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options. Energy, 2014, 71: 516−533 doi: 10.1016/j.energy.2014.04.097 [27] 王成山, 于波, 肖峻, 郭力. 平滑可再生能源发电系统输出波动的储能系统容量优化方法. 中国电机工程学报, 2012, 32(16): 1−8Wang Cheng-Shan, Yu Bo, Xiao Jun, Guo Li. Sizing of energy storage systems for output smoothing of renewable energy systems. Proceedings of the CSEE, 2012, 32(16): 1−8 [28] Ceseña E A M, Mancarella P. Energy systems integration in smart districts: Robust optimisation of multi-energy flows in integrated electricity, heat and gas networks. IEEE Transactions on Smart Grid, 2019, 10(1): 1122−1131 doi: 10.1109/TSG.2018.2828146 [29] Li Z M, Xu Y. Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties. Applied Energy, 2019, 240: 719−729 doi: 10.1016/j.apenergy.2019.02.085 [30] Yang Y, Jia Q S, Deconinck G, Guan X H, Qiu Z F, Hu Z C. Distributed coordination of EV charging with renewable energy in a microgrid of buildings. IEEE Transactions on Smart Grid, 2018, 9(6): 6253−6264 doi: 10.1109/TSG.2017.2707103 [31] 贾庆山, 杨玉, 夏俐, 管晓宏. 基于事件的优化方法简介及其在能源互联网中的应用. 控制理论与应用, 2018, 35(1): 31−40Jia Qing-Shan, Yang Yu, Xia Li, Guan Xiao-Hong. A tutorial on event-based optimization with application in energy internet. Control Theory & Applications, 2018, 35(1): 31−40 [32] Zhang H G, Li Y S, Gao D W, Zhou J G. Distributed optimal energy management for energy internet. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3081−3097 doi: 10.1109/TII.2017.2714199 [33] 司方远, 汪晋宽, 韩英华, 赵强. 信息物理融合的智慧能源系统多级对等协同优化. 自动化学报, 2019, 45(1): 84−97Si Fang-Yuan, Wang Jin-Kuan, Han Ying-Hua, Zhao Qiang. Multilevel peer-to-peer co-optimization for cyber-physical intelligent energy systems. Acta Automatica Sinica, 2019, 45(1): 84−97 [34] 王毅, 张宁, 康重庆. 能源互联网中能量枢纽的优化规划与运行研究综述及展望. 中国电机工程学报, 2015, 35(22): 5669−5681Wang Yi, Zhang Ning, Kang Chong-Qing. Review and prospect of optimal planning and operation of energy hub in energy internet. Proceedings of the CSEE, 2015, 35(22): 5669−5681 [35] Sun Q Y, Zhang N, You S, Wang J W. The dual control with consideration of security operation and economic efficiency for energy hub. IEEE Transactions on Smart Grid, 2019, 10(6): 5930−5941 doi: 10.1109/TSG.2019.2893285 [36] 孙秋野, 滕菲, 张化光, 马大中. 能源互联网动态协调优化控制体系构建. 中国电机工程学报, 2015, 35(14): 3667−3677Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang, Ma Da-Zhong. Construction of dynamic coordinated optimization control system for energy internet. Proceedings of the CSEE, 2015, 35(14): 3667−3677 [37] 滕菲, 单麒赫, 李铁山. 智能船舶综合能源系统及其分布式优化调度方法. 自动化学报, 2020, 46(9): 1809−1817Teng Fei, Shan Qi-He, Li Tie-Shan. Intelligent ship integrated energy system and its distributed optimal scheduling algorithm. Acta Automatica Sinica, 2020, 46(9): 1809−1817 [38] 张彦, 张涛, 刘亚杰, 郭波. 基于模型预测控制的家庭能源局域网最优能量管理研究. 中国电机工程学报, 2015, 35(14): 3656−3666Zhang Yan, Zhang Tao, Liu Ya-Jie, Guo Bo. Optimal energy management of a residential local energy network based on model predictive control. Proceedings of the CSEE, 2015, 35(14): 3656−3666 [39] Sun Q Y, Zhou J G, Guerrero J M, Zhang H G. Hybrid three-phase/single-phase microgrid architecture with power management capabilities. IEEE Transactions on Power Electronics, 2015, 30(10): 5964−5977 doi: 10.1109/TPEL.2014.2379925 [40] Dou C X, Yue D, Han Q L, Guerrero J M. Multi-agent system-based event-triggered hybrid control scheme for energy internet. IEEE Access, 2017, 5: 3263−3272 doi: 10.1109/ACCESS.2017.2670778 [41] Ramirez H, Maschke B, Sbarbaro D. Modelling and control of multi-energy systems: An irreversible port-hamiltonian approach. European Journal of Control, 2013, 19(6): 513−520 doi: 10.1016/j.ejcon.2013.09.009 [42] Pan Z G, Wu J Z, Sun H B, Guo Q L, Abeysekera M. Quasi-dynamic interactions and security control of integrated electricity and heating systems in normal operations. CSEE Journal of Power and Energy Systems, 2019, 5(1): 120−129 [43] Liu Y, Gao S, Zhao X, Zhang C, Zhang N Y. Coordinated operation and control of combined electricity and natural gas systems with thermal storage. Energies, 2017, 10(7): 917 doi: 10.3390/en10070917 [44] 辛斌, 陈杰, 彭志红. 智能优化控制: 概述与展望. 自动化学报, 2013, 39(11): 1831−1848 doi: 10.3724/SP.J.1004.2013.01831Xin Bin, Chen Jie, Peng Zhi-Hong. Intelligent optimized control: Overview and prospect. Acta Automatica Sinica, 2013, 39(11): 1831−1848 doi: 10.3724/SP.J.1004.2013.01831 [45] 陈刚, 李志勇. 集合约束下多智能体系统分布式固定时间优化控制. 自动化学报, DOI: 10.16383/j.aas.c190416Chen Gang, Li Zhi-Yong. Distributed fixed-time optimization control for multi-agent systems with set constraints. Acta Automatica Sinica, DOI: 10.16383/j.aas.c190416 [46] 石庆升, 张承慧, 崔纳新. 新型双能量源纯电动汽车能量管理问题的优化控制. 电工技术学报, 2008, 23(8): 137−142 doi: 10.3321/j.issn:1000-6753.2008.08.023Shi Qing-Sheng, Zhang Cheng-Hui, Cui Na-Xin. Optimal control of energy management in novel electric vehicles with dual-source energy storage system. Transactions of China Electrotechnical Society, 2008, 23(8): 137−142 doi: 10.3321/j.issn:1000-6753.2008.08.023 [47] 陈杨杨, 田玉平. 多智能体沿多条给定路径编队运动的有向协同控制. 自动化学报, 2009, 35(12): 1541−1549Chen Yang-Yang, Tian Yu-Ping. Directed coordinated control for multi-agent formation motion on a set of given curves. Acta Automatica Sinica, 2009, 35(12): 1541−1549 [48] Hua H C, Qin Y C, Hao C T, Cao J W. Stochastic optimal control for energy internet: A bottom-up energy management approach. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1788−1797 doi: 10.1109/TII.2018.2867373 [49] 艾欣, 赵阅群, 周树鹏. 空调负荷直接负荷控制虚拟储能特性研究. 中国电机工程学报, 2016, 36(6): 1596−1603Ai Xin, Zhao Yue-Qun, Zhou Shu-Peng. Study on virtual energy storage features of air conditioning load direct load control. Proceedings of the CSEE, 2016, 36(6): 1596−1603 [50] 梅生伟, 朱建全. 智能电网中的若干数学与控制科学问题及其展望. 自动化学报, 2013, 39(2): 119−131 doi: 10.1016/S1874-1029(13)60014-2Mei Sheng-Wei, Zhu Jian-Quan. Mathematical and control scientific issues of smart grid and its prospects. Acta Automatica Sinica, 2013, 39(2): 119−131 doi: 10.1016/S1874-1029(13)60014-2 [51] 陈来军, 王任, 郑天文, 司杨, 梅生伟. 改善独立微网频率动态特性的虚拟同步发电机模型预测控制. 电力系统自动化, 2018, 42(3): 40−47 doi: 10.7500/AEPS20170312003Chen Lai-Jun, Wang Ren, Zheng Tian-Wen, Si Yang, Mei Sheng-Wei. Model predictive control of virtual synchronous generator to improve dynamic characteristic of frequency for isolated microgrid. Automation of Electric Power Systems, 2018, 42(3): 40−47 doi: 10.7500/AEPS20170312003 [52] Liu B L, Zha Y B, Zhang T. D-Q frame predictive current control methods for inverter stage of solid state transformer. IET Power Electronics, 2017, 10(6): 687−696 doi: 10.1049/iet-pel.2016.0011 [53] Long S, Marjanovic O, Parisio A. Generalised control-oriented modelling framework for multi-energy systems. Applied Energy, 2019, 235: 320−331 doi: 10.1016/j.apenergy.2018.10.074 [54] Eynard J, Grieu S, Polit M. Predictive control and thermal energy storage for optimizing a multi-energy district boiler. Journal of Process Control, 2012, 22(7): 1246−1255 doi: 10.1016/j.jprocont.2012.05.011 [55] Paris B, Eynard J, Grieu S, Talbert T, Polit M. Heating control schemes for energy management in buildings. Energy and Buildings, 2010, 42(10): 1908−1917 doi: 10.1016/j.enbuild.2010.05.027 [56] 李晖, 康重庆, 夏清. 考虑用户满意度的需求侧管理价格决策模型. 电网技术, 2004, 28(23): 1−6 doi: 10.3321/j.issn:1000-3673.2004.23.001Li Hui, Kang Chong-Qing, Xia Qing. Price based decision making for demand side management considering customer satisfaction index. Power System Technology, 2004, 28(23): 1−6 doi: 10.3321/j.issn:1000-3673.2004.23.001 [57] 薛禹胜, 罗运虎, 李碧君, 罗建裕, Dong Zhao-Yang, Ledwich Gerard. 关于可中断负荷参与系统备用的评述. 电力系统自动化, 2007, 31(10): 1−6 doi: 10.3321/j.issn:1000-1026.2007.10.001Xue Yu-Sheng, Luo Yun-Hu, Li Bi-Jun, Luo Jian-Yu, Dong Zhao-Yang, Ledwich Gerard. A review of interruptible load participating in system reserve. Automation of Electric Power Systems, 2007, 31(10): 1−6 doi: 10.3321/j.issn:1000-1026.2007.10.001 [58] 卢强, 陈来军, 梅生伟. 博弈论在电力系统中典型应用及若干展望. 中国电机工程学报, 2014, 34(29): 5009−5017Lu Qiang, Chen Lai-Jun, Mei Sheng-Wei. Typical applications and prospects of game theory in power system. Proceedings of the CSEE, 2014, 34(29): 5009−5017 [59] 王瑞琪, 张承慧, 李珂. 基于改进混沌优化的多目标遗传算法. 控制与决策, 2011, 26(9): 1391−1397Wang Rui-Qi, Zhang Cheng-Hui, Li Ke. Multi-objective genetic algorithm based on improved chaotic optimization. Control and Decision, 2011, 26(9): 1391−1397 [60] Gabrielli P, Gazzani M, Martelli E, Mazzotti M. Optimal design of multi-energy systems with seasonal storage. Applied Energy, 2018, 219: 408−424 doi: 10.1016/j.apenergy.2017.07.142 [61] Salah C B, Chaabene M, Ammar M B. Multi-criteria fuzzy algorithm for energy management of a domestic photovoltaic panel. Renewable Energy, 2008, 33(5): 993−1001 doi: 10.1016/j.renene.2007.05.036 [62] 贾星蓓, 窦春霞, 岳东, 徐式蕴. 基于多代理系统的微电网多尺度能量管理. 电工技术学报, 2016, 31(17): 63−73 doi: 10.3969/j.issn.1000-6753.2016.17.007Jia Xing-Bei, Dou Chun-Xia, Yue Dong, Xu Shi-Yun. Multiple-time-scales optimal energy management in microgrid system based on multi-agent-system. Transactions of China Electrotechnical Society, 2016, 31(17): 63−73 doi: 10.3969/j.issn.1000-6753.2016.17.007 [63] 别朝红, 胡国伟, 谢海鹏, 李更丰. 考虑需求响应的含风电电力系统的优化调度. 电力系统自动化, 2014, 38(13): 115−120, 159 doi: 10.7500/AEPS20131014001Bie Zhao-Hong, Hu Guo-Wei, Xie Hai-Peng, Li Geng-Feng. Optimal dispatch for wind power integrated systems considering demand response. Automation of Electric Power Systems, 2014, 38(13): 115−120, 159 doi: 10.7500/AEPS20131014001 [64] 窦春霞, 罗维, 岳东, 齐航, 孟驰华, 张亚民, 等. 基于多智能体的微网群内电力市场交易策略. 电网技术, 2019, 43(5): 1735−1744Dou Chun-Xia, Luo Wei, Yue Dong, Qi Hang, Meng Chi-Hua, Zhang Ya-Min, et al. Multi-agent system based electricity market trading strategy within microgrid groups. Power System Technology, 2019, 43(5): 1735−1744 [65] Lund H, Münster E. Integrated energy systems and local energy markets. Energy Policy, 2006, 34(10): 1152−1160 doi: 10.1016/j.enpol.2004.10.004 [66] Chen X Y, Kang C Q, O'Malley M, Xia Q, Bai J H, Liu C, et al. Increasing the flexibility of combined heat and power for wind power integration in china: Modeling and implications. IEEE Transactions on Power Systems, 2015, 30(4): 1848−1857 doi: 10.1109/TPWRS.2014.2356723 [67] Chicco G, Mancarella P. Matrix modelling of small-scale trigeneration systems and application to operational optimization. Energy, 2009, 34(3): 261−273 doi: 10.1016/j.energy.2008.09.011 [68] Kienzle F, Ahčin P, Andersson G. Valuing investments in multi-energy conversion, storage, and demand-side management systems under uncertainty. IEEE Transactions on Sustainable Energy, 2011, 2(2): 194−202 doi: 10.1109/TSTE.2011.2106228 [69] Zhou Y Z, Wei Z N, Sun G Q, Cheung K, Zang H X, Chen S. A robust optimization approach for integrated community energy system in energy and ancillary service markets. Energy, 2018, 148: 1−15 [70] Ilić M D, Xie L, Khan U A, Moura J M F. Modeling of future cyber-physical energy systems for distributed sensing and control. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 40(4): 825−838 doi: 10.1109/TSMCA.2010.2048026 [71] 郭庆来, 辛蜀骏, 孙宏斌, 王剑辉. 电力系统信息物理融合建模与综合安全评估: 驱动力与研究构想. 中国电机工程学报, 2016, 36(6): 1481−1489, 1761Guo Qing-Lai, Xin Shu-Jun, Sun Hong-Bin, Wang Jian-Hui. Power system cyber-physical modelling and security assessment: Motivation and ideas. Proceedings of the CSEE, 2016, 36(6): 1481−1489, 1761 [72] Dong Z Y, Luo F J, Liang G Q. Blockchain: A secure, decentralized, trusted cyber infrastructure solution for future energy systems. Journal of Modern Power Systems and Clean Energy, 2018, 6(5): 958−967 doi: 10.1007/s40565-018-0418-0 [73] Palensky P, Widl E, Elsheikh A. Simulating cyber-physical energy systems: Challenges, tools and methods. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(3): 318−326 doi: 10.1109/TSMCC.2013.2265739 [74] 孙秋野, 胡旌伟, 杨凌霄, 张化光. 基于GAN技术的自能源混合建模与参数辨识方法. 自动化学报, 2018, 44(5): 901−914Sun Qiu-Ye, Hu Jing-Wei, Yang Ling-Xiao, Zhang Hua-Guang. We-energy hybrid modeling and parameter identification with GAN technology. Acta Automatica Sinica, 2018, 44(5): 901−914 [75] Moradi-Pari E, Nasiriani N, Fallah Y P, Famouri P, Bossart S, Dodrill K. Design, modeling, and simulation of on-demand communication mechanisms for cyber-physical energy systems. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2330−2339 doi: 10.1109/TII.2014.2326080 [76] Georg H, Muller S C, Rehtanz C, Wietfeld C. Analyzing cyber-physical energy systems: The INSPIRE cosimulation of power and ICT systems using HLA. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2364−2373 doi: 10.1109/TII.2014.2332097 [77] 汤奕, 陈倩, 李梦雅, 王琦, 倪明, 梁云. 电力信息物理融合系统环境中的网络攻击研究综述. 电力系统自动化, 2016, 40(17): 59−69Tang Yi, Chen Qian, Li Meng-Ya, Wang Qi, Ni Ming, Liang Yun. Overview on cyber-attacks against cyber physical power system. Automation of Electric Power Systems, 2016, 40(17): 59−69 [78] 刘烃, 田决, 王稼舟, 吴宏宇, 孙利民, 周亚东, 等. 信息物理融合系统综合安全威胁与防御研究. 自动化学报, 2019, 45(1): 5−24Liu Ting, Tian Jue, Wang Jia-Zhou, Wu Hong-Yu, Sun Li-Min, Zhou Ya-Dong, et al. Integrated security threats and defense of cyber-physical systems. Acta Automatica Sinica, 2019, 45(1): 5−24 [79] Wang H Z, Ruan J Q, Ma Z W, Zhou B, Fu X Q, Cao G Z. Deep learning aided interval state prediction for improving cyber security in energy internet. Energy, 2019, 174: 1292−1304 doi: 10.1016/j.energy.2019.03.009 [80] 王宇飞, 高昆仑, 赵婷, 邱健. 基于改进攻击图的电力信息物理系统跨空间连锁故障危害评估. 中国电机工程学报, 2016, 36(6): 1490−1499, 1762Wang Yu-Fei, Gao Kun-Lun, Zhao Ting, Qiu Jian. Assessing the harmfulness of cascading failures across space in electric cyber-physical system based on improved attack graph. Proceedings of the CSEE, 2016, 36(6): 1490−1499, 1762 [81] Wang H Z, Meng A J, Liu Y T, Fu X Q, Cao G Z. Unscented kalman filter based interval state estimation of cyber physical energy system for detection of dynamic attack. Energy, 2019, 188: 116036 doi: 10.1016/j.energy.2019.116036 [82] 温景容, 武穆清, 宿景芳. 信息物理融合系统. 自动化学报, 2012, 38(4): 507−517 doi: 10.3724/SP.J.1004.2012.00507Wen Jing-Rong, Wu Mu-Qing, Su Jing-Fang. Cyber-physical system. Acta Automatica Sinica, 2012, 38(4): 507−517 doi: 10.3724/SP.J.1004.2012.00507 [83] Rahman S, Mahmud A, Oo A M T, Pota H R. Multi-agent approach for enhancing security of protection schemes in cyber-physical energy systems. IEEE Transactions on Industrial Informatics, 2017, 13(2): 436−447 doi: 10.1109/TII.2016.2612645 [84] 薛禹胜, 赖业宁. 大能源思维与大数据思维的融合 (二)应用及探索. 电力系统自动化, 2016, 40(8): 1−13 doi: 10.7500/AEPS20160311004Xue Yu-Sheng, Lai Ye-Ning. Integration of macro energy thinking and big data thinking part two applications and explorations. Automation of Electric Power Systems, 2016, 40(8): 1−13 doi: 10.7500/AEPS20160311004 [85] 刘东, 盛万兴, 王云, 陆一鸣, 孙辰. 电网信息物理系统的关键技术及其进展. 中国电机工程学报, 2015, 35(14): 3522−3531Liu Dong, Sheng Wan-Xing, Wang Yun, Lu Yi-Ming, Sun Chen. Key technologies and trends of cyber physical system for power grid. Proceedings of the CSEE, 2015, 35(14): 3522−3531 [86] Cheng L F, Yu T. Smart dispatching for energy internet with complex cyber-physical-social systems: A parallel dispatch perspective. International Journal of Energy Research, 2019, 43(8): 3080−3133 doi: 10.1002/er.4384 [87] Wang F Y. The emergence of intelligent enterprises: From CPS to CPSS. IEEE Intelligent Systems, 2010, 25(4): 85−88 doi: 10.1109/MIS.2010.104