2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积神经网络表征可视化研究综述

司念文 张文林 屈丹 罗向阳 常禾雨 牛铜

陈成, 何玉庆, 卜春光, 韩建达. 基于四阶贝塞尔曲线的无人车可行轨迹规划. 自动化学报, 2015, 41(3): 486-496. doi: 10.16383/j.aas.2015.c140295
引用本文: 司念文, 张文林, 屈丹, 罗向阳, 常禾雨, 牛铜. 卷积神经网络表征可视化研究综述. 自动化学报, 2022, 48(8): 1890−1920 doi: 10.16383/j.aas.c200554
CHEN Cheng, HE Yu-Qing, BU Chun-Guang, HAN Jian-Da. Feasible Trajectory Generation for Autonomous Vehicles Based on Quartic Bézier Curve. ACTA AUTOMATICA SINICA, 2015, 41(3): 486-496. doi: 10.16383/j.aas.2015.c140295
Citation: Si Nian-Wen, Zhang Wen-Lin, Qu Dan, Luo Xiang-Yang, Chang He-Yu, Niu Tong. Representation visualization of convolutional neural networks: A survey. Acta Automatica Sinica, 2022, 48(8): 1890−1920 doi: 10.16383/j.aas.c200554

卷积神经网络表征可视化研究综述

doi: 10.16383/j.aas.c200554
基金项目: 国家自然科学基金(61673395, U1804263)和中原科技创新领军人才项目(214200510019)资助
详细信息
    作者简介:

    司念文:信息工程大学信息系统工程学院博士研究生. 主要研究方向为深度学习的安全性与可解释性. E-mail: snw1608@163.com

    张文林:信息工程大学信息系统工程学院副教授. 主要研究方向为深度学习和语音识别. 本文通信作者. E-mail: zwlin_2004@163.com

    屈丹:信息工程大学信息系统工程学院教授. 主要研究方向为机器学习, 深度学习和语音识别. E-mail: qudanqudan@163.com

    罗向阳:信息工程大学网络空间安全学院教授. 主要研究方向为人工智能与信息安全. E-mail: xiangyangluo@126.com

    常禾雨:信息工程大学密码工程学院博士研究生. 主要研究方向为深度学习与行人重识别. E-mail: okaychy@163.com

    牛铜:信息工程大学信息系统工程学院副教授. 主要研究方向为深度学习和语音识别. E-mail: jerry_newton@sina.com

Representation Visualization of Convolutional Neural Networks: A Survey

Funds: Supported by National Natural Science Foundation of China (61673395, U1804263) and Zhongyuan Science and Technology Innovation Leading Talent Project (214200510019)
More Information
    Author Bio:

    SI Nian-Wen Ph.D. candidate at the College of Information System Engineering, Information Engineering University. His research interest covers deep learning security and interpret ability

    ZHANG Wen-Lin Associate professor at the College of Information System Engineering, Information Engineering University. His research interest covers deep learning and speech recognition. Corresponding author of this paper

    QU Dan Professor at the College of Information System Engineering, Information Engineering University. Her research interest covers machine learning, deep learning and speech recognition

    LUO Xiang-Yang Professor at the College of Cyberspace Security, Information Engineering University. His research interest covers artificial intelligence and information security

    CHANG He-Yu Ph.D. candidate at the College of Cryptographic Engineering, Information Engineering University. Her research interest covers deep learning and person re-identification

    NIU Tong Associate professor at the College of Information System Engineering, Information Engineering University. His research interest covers deep learning and speech recognition

  • 摘要: 近年来, 深度学习在图像分类、目标检测及场景识别等任务上取得了突破性进展, 这些任务多以卷积神经网络为基础搭建识别模型, 训练后的模型拥有优异的自动特征提取和预测性能, 能够为用户提供“输入–输出”形式的端到端解决方案. 然而, 由于分布式的特征编码和越来越复杂的模型结构, 人们始终无法准确理解卷积神经网络模型内部知识表示, 以及促使其做出特定决策的潜在原因. 另一方面, 卷积神经网络模型在一些高风险领域的应用, 也要求对其决策原因进行充分了解, 方能获取用户信任. 因此, 卷积神经网络的可解释性问题逐渐受到关注. 研究人员针对性地提出了一系列用于理解和解释卷积神经网络的方法, 包括事后解释方法和构建自解释的模型等, 这些方法各有侧重和优势, 从多方面对卷积神经网络进行特征分析和决策解释. 表征可视化是其中一种重要的卷积神经网络可解释性方法, 能够对卷积神经网络所学特征及输入–输出之间的相关关系以视觉的方式呈现, 从而快速获取对卷积神经网络内部特征和决策的理解, 具有过程简单和效果直观的特点. 对近年来卷积神经网络表征可视化领域的相关文献进行了综合性回顾, 按照以下几个方面组织内容: 表征可视化研究的提起、相关概念及内容、可视化方法、可视化的效果评估及可视化的应用, 重点关注了表征可视化方法的分类及算法的具体过程. 最后是总结和对该领域仍存在的难点及未来研究趋势进行了展望.
  • 图  1  传统机器学习与深度学习的学习过程对比[8]

    Fig.  1  Comparison of the learning process between traditional machine learning and deep learning[8]

    图  2  可解释性深度学习的研究内容划分

    Fig.  2  The division of the research content of the interpretable deep learning

    图  3  CNN表征可视化的研究思路

    Fig.  3  The research idea of CNN representation visualization

    图  4  CNN表征可视化的研究内容

    Fig.  4  Research content of the CNN representation visualization

    图  5  基于扰动的方法的解释流程

    Fig.  5  Interpretation process of the perturbation based method

    图  6  使用随机采样产生扰动掩码的过程[43]

    Fig.  6  The process of generating a perturbation mask using random sampling[43]

    图  7  使用生成式模型生成扰动[45] ((a)原图, (b)模糊; (c)灰度; (d)生成扰动; (e)随机噪声)

    Fig.  7  Using generative models to generate perturbation[45] ((a) Original image; (b) Blur; (c) Gray;(d) Generated perturbation; (e) Random noise)

    图  8  基于反向传播的方法的解释流程

    Fig.  8  Interpretation process of the backpropagation based method

    图  9  VBP方法的过程[49]

    Fig.  9  The process of the VBP method[49]

    图  10  梯度不稳定导致解释结果的不确定性[51]

    Fig.  10  Uncertainty of interpretation results due to gradient instability[51]

    图  11  梯度方法产生的显著图含有大量噪声[44]

    Fig.  11  The saliency map generated by the gradient method contains a lot of noise[44]

    图  12  单个像素的梯度值的不稳定性[52]

    Fig.  12  The instability of the gradient value of a single pixel[52]

    图  13  反卷积可视化方法的过程

    Fig.  13  The process of deconvolution visualization method

    图  14  VBP、GBP和反卷积三者之间的关系[49]

    Fig.  14  The relationship of VBP, GBP and deconvolution[49]

    图  15  LRP的过程

    Fig.  15  The process of the LRP

    图  16  LRP正向传播的过程[19]

    Fig.  16  The forward propagation process of the LRP[19]

    图  17  LRP反向传播的过程[19]

    Fig.  17  The backpropagation process of the LRP[19]

    图  18  CAM的过程

    Fig.  18  The process of the CAM

    图  19  Grad-CAM的过程

    Fig.  19  The process of the Grad-CAM

    图  20  Score-CAM的过程[66]

    Fig.  20  The process of the Score-CAM[66]

    图  21  AM的过程

    Fig.  21  The process of the AM

    图  22  DGN-AM的过程

    Fig.  22  The process of the DGN-AM

    图  23  在MNIST数据集上使用AM方法对目标CNN模型的可视化结果对比[19]

    Fig.  23  Comparison of the visualization results of the target CNN model using the AM method on the MNIST dataset[19]

    图  24  Squeeze and excitation模块[18]

    Fig.  24  Squeeze and excitation module[18]

    图  25  通道–空间注意力模块[72]

    Fig.  25  Channel-spatial attention module[72]

    图  26  通道注意力模块[72]

    Fig.  26  Channel attention module[72]

    图  27  空间注意力模块[72]

    Fig.  27  Spatial attention module[72]

    图  28  ResNet50、集成SENet的ResNet50 (ResNet50 + SE)和集成CBAM的ResNet50 (ResNet50 + CBAM)的最高层特征图的可视化[72]

    Fig.  28  Visualization of the highest-level feature maps of ResNet50, ResNet50 integrated with SEnet (ResNet50 + SE), and ResNet50 integrated with CBAM (ResNet50 + CBAM)[72]

    图  29  LIME的样本处理流程

    Fig.  29  The sample processing flow of the LIME

    图  30  LIME在AlexNet、VGGNet16及ResNet50模型上可视化结果示例

    Fig.  30  Example of LIME visualization results on AlexNet, VGGNet16 and ResNet50 models

    图  31  热力图的后处理与效果对比

    Fig.  31  Post-processing and effect comparison of heatmap

    图  32  可视化方法的效果比较. 每张输入图像分别展示了灰度和彩色两种可视化结果

    Fig.  32  Comparison of the effects of visualization methods. Each input image shows two visualization results of grayscale and color image

    图  33  FGSM生成对抗样本的过程[87]

    Fig.  33  The process of generating adversarial example by FGSM[87]

    图  34  使用FGSM对抗样本测试Grad-CAM的稳定性[63] ((a)原图; (b)对抗图像; (c) Grad-CAM “Dog”; (d) Grad-CAM “Cat”)

    Fig.  34  Using FGSM adversarial example to test the stability of Grad-CAM[63] ((a) Original image; (b) Adversarial image; (c) Grad-CAM “Dog”; (d) Grad-CAM “Cat”)

    图  35  针对可视化结果的攻击

    Fig.  35  Attacks on the visualization results

    图  36  使用GAN生成的目标图像诱导对LRP显著图的攻击[82, 90]

    Fig.  36  Using the target image generated by GAN to induce an attack on the LRP saliency map[82, 90]

    表  1  梯度方法及其变种的特点比较

    Table  1  Comparison of the characteristics of the gradient method and its variants

    方法显著图生成依据特点
    VBP普通梯度过程简单, 但存在梯度噪声问题
    GBP每一层使用 ReLU过程简单, 但存在梯度噪声问题
    积分梯度梯度图的平均过程复杂, 需多次迭代, 耗时
    平滑梯度梯度图的平均过程复杂, 需多次迭代, 耗时
    整流梯度阈值过滤后的梯度过程较复杂, 阈值的选取需要经验
    下载: 导出CSV

    表  2  类激活映射方法的比较

    Table  2  Comparision of the class activation mapping methods

    方法通道权重优点缺点
    CAMSoftmax 层权重类别区分性依赖 GAP 层
    Grad-CAM各通道的梯度平均值类别区分性, 结构通用梯度不稳定
    Grad-CAM++各通道的梯度平均值, 高阶梯度类别区分性, 结构通用梯度不稳定, 高阶梯度计算复杂
    Score-CAM对各通道的预测值类别区分性, 结构通用, 权重稳定权重计算过程复杂, 重复迭代耗时
    下载: 导出CSV

    表  3  可视化方法的特点比较

    Table  3  Comparison of characteristics of visualization methods

    方法分类方法名称发表年份细粒度/
    区域级
    类别相关在线/
    离线
    模型明晰/
    模型不可知
    可视化视角局部解释/
    全局解释
    扰动简单扰动[13, 4243]2014、2018区域级离线模型不可知输出类局部
    有意义的扰动[44]2017区域级离线模型明晰的输出类局部
    生成式扰动[4546]2019区域级离线模型明晰输出类局部
    反向传播梯度类反向传播VBP[2223]2010、2013细粒度离线模型明晰输出类局部
    GBP[50]2014细粒度离线模型明晰输出类局部
    Smooth gradient[52]2017细粒度离线模型明晰输出类局部
    Integrated gradient[53]2017细粒度离线模型明晰输出类局部
    Rectified gradient[54]2019细粒度离线模型明晰输出类局部
    规则类反向传播Deconvolution[13]2013细粒度离线模型明晰的神经元/层局部
    LRP[58]2015细粒度离线模型明晰输出类局部
    DTD[61]2017细粒度离线模型明晰输出类局部
    CLRP[59]、SGLRP[60]2018、2019细粒度离线模型明晰输出类局部
    类激活映射CAM[62]2015区域级在线模型明晰输出类局部
    Grad-CAM[6364]2016、2017区域级离线模型明晰输出类局部
    Grad-CAM++[65]2018区域级离线模型明晰输出类局部
    Score-CAM[66]2019区域级离线模型明晰输出类局部
    激活最大化AM[81]2009细粒度离线模型明晰神经元/输出类全局
    DGN-AM[82]2016细粒度离线模型明晰的神经元/输出类全局
    注意为掩码通道注意力[18]2017区域级在线模型明晰的局部
    空间–通道注意力[72]2018区域级在线模型明晰局部
    类别注意力区域级在线模型明晰
    其他方法LIME[78]2016区域级离线模型不可知输出类局部
    SHAP[79]2017细粒度离线模型不可知输出类局部
    下载: 导出CSV

    表  4  CNN表征可视化相关的综述文献统计

    Table  4  Review literature statistics related to CNN representation visualization

    文献发表年份侧重内容
    [103]2016几种典型的特征可视化方法 (如扰动、反向传播、
    激活最大化等), 以及相互之间的关系分析
    [104]2017特征可视化的必要性, 基于反向传播的可视化方法
    [105]2017模型可视化, 不限于 CNN 可解释性领域
    [19]2018基于反向传播的可视化方法
    (AM、VBP、DTD 和 LRP 等)
    [106]2018自解释的 CNN
    [20]2018可解释性的概念, 相关文献分类
    [107]2018人工智能的可解释性
    [102]2019机器学习的可解释性方法与评估
    [108]2020机器学习的可解释性
    [109]2020深度学习的可解释性
    [110]2020人工智能的可解释性
    [111]2020人工智能的可解释性
    下载: 导出CSV
  • [1] Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: 2012. 1106–1114
    [2] Deng J, Dong W, Socher R, Li L, Li K, L F. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami Beach, Florida, USA: 2009. 248–255
    [3] Lin T, Maire M, Belongie S J, Hays J, Perona P, Ramanan D, Dollar P, Zitnick C L. Microsoft COCO: Common objects in context. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: 2014. 740–755
    [4] Li M, Zhang T, Chen Y, Smola A J. Efficient mini-batch training for stochastic optimization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: 2014. 661–670
    [5] Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint, 2012, arXiv: 1207.0580
    [6] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: 2010.807–814
    [7] 刘颖, 雷研博, 范九伦, 王富平, 公衍超, 田奇. 基于小样本学习的图像分类技术综述. 自动化学报, 2021, 47(2): 297−315.

    Liu Ying, Lei Yan-Bo, Fan Jiu-Lun, Wang Fu-Ping, Gong Yan-Chao, Tian Qi. Survey on image classification technology based on small sample learning. Acta Automatica Sinica, 2021, 47(2): 297−315.
    [8] Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, The MIT Press, 2016.
    [9] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [10] Maas A L, Hannun A Y, Ng A Y. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning. Atlanta, USA: 2013.
    [11] He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: 2015. 1026–103
    [12] 林景栋, 吴欣怡, 柴毅, 尹宏鹏. 卷积神经网络结构优化综述. 自动化学报, 2020, 46(1): 24-37.

    LIN Jing-Dong, WU Xin-Yi, CHAI Yi, YIN Hong-Peng. Structure Optimization of Convolutional Neural Networks: A Survey. ACTA AUTOMATICA SINICA, 2020, 46(1): 24-37.
    [13] Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Networks. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: 2014. 818–833
    [14] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: 2015. 1–9
    [15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint, 2014, arXiv: 1409.1556v6
    [16] He K, Zhang X, Ren S, and Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: 2016. 770–778
    [17] Huang G, Liu Z, Maaten L, Weinberger K Q. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: 2017. 2261–2269
    [18] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 7132–7141
    [19] Montavon G, Samek W, Müller K R. Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 2018, 73: 1–15. doi: 10.1016/j.dsp.2017.10.011
    [20] Gilpin L H, Bau D, Yuan B Z, Bajwa A, Specter M, Kagal L. Explaining explanations: An approach to evaluating interpretability of machine learning. arXiv preprint, 2018, arXiv: 1806.00069
    [21] Mitros J, Namee B M. A Categorisation of post-hoc explanations for predictive models. arXiv preprint, 2019, arxiv: 1904.02495
    [22] Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K, Müller K R. How to Explain Individual Classification Decisions. Journal of Machine Learning Research, 2010, 11(61): 1803–1831.
    [23] Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint, 2013, arXiv: 1312.6034
    [24] Li O, Liu H, Chen C, Rudin C. Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, USA: 2018. 3530–3537
    [25] Arik S Ö, Pfister T. ProtoAttend: Attention-Based Prototypical Learning. Journal of Machine Learning Research, 2020, 21(210): 1–3.
    [26] Gulshad S, Smeulders A. Explaining with counter visual attributes and examples. In: Proceedings of the 2020 International Conference on Multimedia Retrieval. Dublin, Ireland: 2020: 35–43
    [27] Hendricks L A, Akata Z, Rohrbach M, Donahue J, Schiele B, Darrell T. Generating visual explanations. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, Netherlands: 2016. 3–19
    [28] Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. In: Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: 2015. 3156–3164
    [29] Anderson P, He X, Buehler C, Teney D, Johnson M, Gould S, et al. Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 6077–6086
    [30] Zhang Q, Wu Y N, Zhu S C. Interpretable convolutional neural networks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 8827–8836
    [31] Wan A, Dunlap L, Ho D, Yin J, Lee S, Jin H, et al. NBDT: Neural-backed decision trees. arXiv preprint, 2020, arxiv: 2004.00221
    [32] Ming Y, Cao S, Zhang R, Li Z, Chen Y, Song Y, et al. Understanding hidden memories of recurrent neural networks. In: Proceedings of the 2017 IEEE Conference on Visual Analytics Science and Technology (VAST). Phoenix, Arizona, USA: 2017. 13–24
    [33] Strobelt H, Gehrmann S, Pfister H, Rush A M. LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 667–676. doi: 10.1109/TVCG.2017.2744158
    [34] Karpathy A, Johnson J, Li F. Visualizing and understanding recurrent networks. arXiv preprint, 2015, arXiv: 1506.02078
    [35] Arras L, Montavon G, Müller K R, Samek W. Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Copenhagen, Denmark: 2017. 159–168
    [36] Ding Y, Liu Y, Luan H, Sun M. Visualizing and understanding neural machine translation. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, BC, Canada: 2017. 1150–1159
    [37] 刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展. 自动化学报, 2020, 46(12): 2500−2536.

    Liu Jian-Wei, Xie Hao-Jie, Luo Xiong-Lin. Research progress on application of generative adversarial networks in various fields. Acta Automatica Sinica, 2020, 46(12): 2500−2536.
    [38] Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 2180–2188
    [39] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint, 2015, arXiv: 1511.06434
    [40] Zhu J Y, Krähenbühl P, Shechtman E, Efros A A. Generative visual manipulation on the natural image manifold. In: Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: 2016. 597–613
    [41] Shen Y, Gu J, Tang X, Zhou B. Interpreting the latent space of GANs for semantic face editing. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual Event: 2020. 9243–9252
    [42] Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Object detectors emerge in deep scene CNNs. arxiv: 1412.6856, 2014.
    [43] Petsiuk V, Das A, Saenko K. Rise: Randomized input sampling for explanation of black-box models. arXiv preprint, 2018, arxiv: 1806.07421
    [44] Fong R C, Vedaldi A. Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: 2017. 3449–3457
    [45] Agarwal C, Schonfeld D, Nguyen A. Removing input features via a generative model to explain their attributions to classifier's decisions. arXiv: 1910.04256, 2019.
    [46] Chang C H, Creager E, Goldenberg A, Duvenaud D. Explaining image classifiers by counterfactual generation. In: Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: 2019.
    [47] Fong R, Patrick M, Vedaldi A. Understanding deep networks via extremal perturbations and smooth masks. In: Proceedings of the IEEE International Conference on Computer Vision. Seoul, Korea: 2019. 2950–2958
    [48] Wagner J, Kohler J M, Gindele T, Hetzel L, Wiedemer J T, Behnke S. Interpretable and fine-grained visual explanations for convolutional neural networks. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: 2019. 9097–9107
    [49] Vedaldi A. Understanding models via visualizations and attribution [Online], available: https://interpretablevision.github.io/slide/iccv19_vedaldi_slide.pdf, 2019.
    [50] Springenberg J T, Dosovitskiy A, Brox T, Riedmiller M A. Striving for simplicity: The all convolutional net. arXiv preprint, 2014, arXiv: 1412.6806
    [51] Sundararajan M, Taly A, Yan Q. Gradients of counterfactuals. arXiv: 1611.02639, 2016.
    [52] Smilkov D, Thorat N, Kim B, Viegas F B, Wattenberg M. Smoothgrad: Removing noise by adding noise. arXiv preprint, 2017, arXiv: 1706.03825
    [53] Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, NSW, Australia: 2017. 3319–3328
    [54] Kim B, Seo J, Jeon S, Koo J, Choe J, Jeon T. Why are Saliency maps noisy? Cause of and solution to noisy saliency maps. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul, Korea: 2019. 4149–4157
    [55] Hooker S, Erhan D, Kindermans P J, Kim B. A benchmark for interpretability methods in deep neural networks. In: Proceedings of the Annual Conference on Neural Information Processing Systems. Vancouver, Canada: 2019. 9737–9748
    [56] Ancona M, Ceolini E, Öztireli C, Gross M. Towards better understanding of gradient-based attribution methods for Deep Neural Networks. In: Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada: 2018.
    [57] Rieger L, Hansen L K. Aggregating explanation methods for stable and robust explainability. arXiv: 1903.00519, 2019.
    [58] Bach S, Binder A, Montavon G, Klauschen F, Müller K, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE, 2015, 10(7): 0130140.
    [59] Gu J, Yang Y, Tresp V. Understanding individual decisions of cnns via contrastive backpropagation. In: Proceedings of the 14th Asian Conference on Computer Vision. Perth, Australia: 2018. 119–134
    [60] Iwana B K, Kuroki R, Uchida S. Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul, Korea: 2019. 4176–4185
    [61] Montavon G, Lapuschkin S, Binder A, Samek W, Müller K R. Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognition, 2017, 65: 211–222. doi: 10.1016/j.patcog.2016.11.008
    [62] Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: 2016. 2921–2929
    [63] Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: 2017. 618–626
    [64] Selvaraju R R, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. Grad-CAM: Why did you say that? arXiv preprint, 2016, arXiv: 1611.07450
    [65] Chattopadhay A, Sarkar A, Howlader P, Balasubramanian V N. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In: Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, Nevada, USA: 2018. 839–847
    [66] Wang H, Du M, Yang F, Zhang Z. Score-CAM: Improved visual explanations via score-weighted class activation mapping. arXiv preprint, 2019, arXiv: 1910.01279
    [67] Patro B, Lunayach M, Patel S, Namboodiri V. U-CAM: visual explanation using uncertainty based class activation maps. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: 2019. 7444–7453
    [68] Omeiza D, Speakman S, Cintas C, Weldermariam K. Smooth Grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models. arXiv preprint, 2019, arXiv: 1908.01224
    [69] Nguyen A, Yosinski J, Clune J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: 2015. 427–436
    [70] Mahendran A, Vedaldi A. Visualizing Deep Convolutional Neural Networks Using Natural Pre-images. International Journal of Computer Vision, 2016, 120(3): 233–255. doi: 10.1007/s11263-016-0911-8
    [71] Yosinski J, Clune J, Nguyen A M, Fuchs T J, Lipson H. Understanding neural networks through deep visualization. arXiv preprint, 2015, arXiv: 1506.06579
    [72] Woo S, Park J, Lee J Y, Kweon I S. CBAM: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision. Munich, Germany: 2018. 3–19
    [73] Li K, Wu Z, Peng K C, Ernst J, Fu Y. Tell me where to look: Guided attention inference network. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: 2018. 9215–9223
    [74] Fukui H, Hirakawa T, Yamashita T, Fujiyoshi H. Attention branch network: Learning of attention mechanism for visual explanation. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: 2019. 10705–10714
    [75] Zhang J, Lin Z L, Brandt J, Shen X, Sclaroff S. Top-down neural attention by excitation backprop. In: Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016. 543–559
    [76] Hua Y, Mou L, Zhu X X. Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification. Isprs Journal of Photogrammetry and Remote Sensing, 2019, 149: 188–199. doi: 10.1016/j.isprsjprs.2019.01.015
    [77] Li J, Lin D, Wang Y, Xu G, Ding C. Deep discriminative Representation learning with attention map for scene classification. arXiv preprint, 2019, arXiv: 1902.07967
    [78] Ribeiro M T, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. San Diego, USA: 2016. 97–101
    [79] Lundberg S M, Lee S I. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: 2017. 4768–4777
    [80] Shapley L S. A Value for N-Person Games. Contributions to The Theory of Games (AM-28). Princeton: Princeton University Press, 1953. 2: 307–317
    [81] Erhan D, Bengio Y, Courville A, Vincent P. Visualizing Higher-layer Features of a Deep Network, Technical Report 1341, Department of Computer Science and Operations Research, University of Montreal, Canada, 2009
    [82] Nguyen A, Dosovitskiy A, Yosinski J, Brox T, Clune J. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Proceedings of the Annual Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 3387–3395
    [83] Ozbulak U. PyTorch CNN Visualizations [Online], available: https://github.com/utkuozbulak/pytorch-cnn-visualizations, 2019.
    [84] Zhang Q, Wang W, Zhu S C. Examining CNN representations with respect to dataset bias. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, USA: 2017. 4464–4473
    [85] Adebayo J, Gilmer J, Muelly M C, Goodfellow I, Hardt M, Kim B. Sanity checks for saliency maps. In: Proceedings of the Annual Conference on Neural Information Processing Systems. Montréal, Canada: 2018. 9505–9515
    [86] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, et al. Intriguing properties of neural networks. In: Proceedings of the 2014 ICLR International Conference on Learning Representations. Banff, Canada: 2014.
    [87] Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. In: Proceedings of the 2015 ICLR International Conference on Learning Representations. San Diego, USA: 2015.
    [88] Gu J, Tresp V. Saliency Methods for explaining adversarial attacks. arXiv preprint, 2019, arXiv: 1908.08413
    [89] Ghorbani A, Abid A, Zou J. Interpretation of neural networks is fragile. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu, Hawaii, USA: 2019. 3681–3688
    [90] Dombrowski A K, Alber M, Anders C, Ackermann M, Müller K R, Kessel P. Explanations can be manipulated and geometry is to blame. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. Vancouver, Canada: 2019. 13589–13600
    [91] Heo J, Joo S, Moon T. Fooling neural network interpretations via adversarial model manipulation. In: Proceedings of the 33rd Conference on Neural Information Processing Systems. Vancouver, Canada: 2019. 2925–2936
    [92] Zheng H, Fernandes E, Prakash A. Analyzing the interpretability robustness of self-explaining models. arXiv preprint, 2019, arXiv: 1905
    [93] Singh M, Kumari N, Mangla P, Sinha A, Balasubramanian V N, Krishnamurthy B. On the benefits of attributional robustness. arXiv preprint, 2019, arXiv: 1911.13073
    [94] Krug A, Stober S. Introspection for convolutional automatic speech recognition. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium: 2018. 187–199
    [95] Kumar D, Daya I B, Vats K, Feng J, Taylor G W, Wong A. Beyond explainability: Leveraging interpretability for improved adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, USA: 2019. 16–19
    [96] Kim J, Kim M, Kang H, Lee K H. U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In: Proceedings of the 8th International Conference on Learning Representations. Addis Ababa, Ethiopia: 2020.
    [97] Tan Y, Zhang M, Liu Y, Ma S. Rating-boosted latent topics: Understanding users and items with ratings and reviews. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: 2016. 2640–2646
    [98] Zhang Y, Chen X. Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends in Information Retrieval, 2020, 14(1): 1–101. doi: 10.1561/1500000066
    [99] Bojarski M, Choromanska A, Choromanski K, Firner B, Jackel L, Muller U, et al. VisualBackProp: Visualizing CNNs for autonomous driving. arXiv preprint, 2016, arxiv: 1611.05418
    [100] Kim J, Canny J. Interpretable learning for self-driving cars by visualizing causal attention. In: Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy: 2017. 2961–2969
    [101] Zhang Z, Xie Y, Xing F, McGough M, Yang L. MDNet: A semantically and visually interpretable medical image diagnosis network. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: 2017. 3549–3557
    [102] Carvalho D V, Pereira E M, Cardoso J S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics, 2019, 8(8): 832. doi: 10.3390/electronics8080832
    [103] Grün F, Rupprecht C, Navab N, Tombari F. A taxonomy and library for visualizing learned features in convolutional neural networks. arXiv preprint, 2016, arXiv: 1606.07757
    [104] Samek W, Wiegand T, Müller K R. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint, 2017, arXiv: 1708.08296
    [105] Seifert C, Aamir A, Balagopalan A, Jain D, Sharma A, Grottel S, Gumhold S. Visualizations of Deep Neural Networks in Computer Vision: A Survey. Studies in Big Data, 2017, 123–144.
    [106] Zhang Q, Zhu S. Visual interpretability for deep learning: A survey. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1): 27–39.
    [107] Adadi A, Berrada M. Peeking Inside the Black-Box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access, 2018, 6: 52138-52160. doi: 10.1109/ACCESS.2018.2870052
    [108] Samek W, Montavon G, Lapuschkin S, Anders C J, Müller K. Toward interpretable machine learning: Transparent deep neural networks and beyond. arXiv preprint, 2020, arXiv: 2003.07631
    [109] Xie N, Ras G, Gerven M van, Doran D. Explainable deep learning: A field guide for the uninitiated. arXiv preprint, 2020, arXiv: 2004.14545
    [110] Arrieta A B, Díaz-Rodríguez N, Ser J D, Bennetot A, Tabik S, Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R, Chatila R, Herrera F. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Information Fusion, 2020, 58: 82–115. doi: 10.1016/j.inffus.2019.12.012
    [111] Das A, Rad P. Opportunities and challenges in explainable artificial intelligence (XAI): A survey. arXiv preprint, 2020, arXiv: 2006.11371
    [112] Vedaldi A, Lux M, Bertini M. MatConvNet: CNNs are also for MATLAB users. ACM Sigmultimedia Records, 2018, 10(1): 9–9. doi: 10.1145/3210241.3210250
    [113] Kim B. Understanding NN [Online], available: https://github.com/1202kbs/Understanding-NN, August 22, 2020.
    [114] Wang Z J, Turko R, Shaikh O, Park H, Das N, Hohman F, Kahng M, Chau D H. CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization. IEEE Transactions on Visualization and Computer Graphics, 2021, 27: 1396-1406. doi: 10.1109/TVCG.2020.3030418
  • 期刊类型引用(87)

    1. 周彦博,罗强,张益维,王鲸宇,封钦,王迎胜. 打卡“长征”路线的无碳小车结构及轨迹仿真设计. 机械传动. 2024(05): 75-82 . 百度学术
    2. 丁嘉纯,田杰. 无人车换道轨迹与跟踪控制研究. 重庆理工大学学报(自然科学). 2024(04): 72-78 . 百度学术
    3. 李香芹,曹青松,易星. 车联网环境下交叉路口车辆入队与轨迹规划. 公路. 2024(05): 277-284 . 百度学术
    4. 段方正,徐武彬,孙金泉,李冰,王己林,唐俊豪,刘世航,王秀杰. 无人驾驶单钢轮碾压机最优换道路径规划研究. 现代制造工程. 2024(06): 135-144 . 百度学术
    5. 唐俊豪,金隼,孙金泉,王己林,李冰,段方正. 铰接式无人压路机能耗最优换道路径规划及实验. 机械设计与研究. 2024(03): 110-115 . 百度学术
    6. 藤瑞品. 低速智能汽车行驶轨迹的数值积分算法. 长沙民政职业技术学院学报. 2024(02): 115-119+126 . 百度学术
    7. 晏园,杨祥国,王天琪,郑青根,刘冬,张辉. 基于贝塞尔平滑的改进SRP声源定位算法. 声学技术. 2024(04): 564-574 . 百度学术
    8. 柴晨,曾宪明,刘韬. 基于风险建模的变曲率匝道自动驾驶轨迹规划方法. 同济大学学报(自然科学版). 2024(08): 1250-1260 . 百度学术
    9. 杨鹏飞,赵坤,武林伟,刘培波. 基于4阶Bézier曲线的路径平滑方法研究. 中国电子科学研究院学报. 2024(05): 448-454 . 百度学术
    10. 马文璐,安腾燕,苏池,韦开听,黄佑桃. 基于MATLAB的“长征”路线无碳小车设计与仿真. 轻工科技. 2024(05): 85-89+149 . 百度学术
    11. 牛晶,申传艳,张利鹏,李奇军,刘世锋. 基于改进ACO-DWA算法的轮式植保机器人避障路径研究. 电子测量与仪器学报. 2024(05): 188-200 . 百度学术
    12. 李玉龙,谢辉,宋康. 无人驾驶公交车基于循迹误差观测和目标测量误差观测的避障路径规划算法. 汽车安全与节能学报. 2024(04): 579-590 . 百度学术
    13. 王维强,孟世华,严运兵. 基于激光点云的矿用无人运输车路径规划研究. 矿山机械. 2024(10): 10-15 . 百度学术
    14. 王洪亮,雍健羽,皮大伟,谢伯元,王尔烈,王显会. 基于贝塞尔曲线和多目标优化方法的多车队形切换轨迹规划. 机械工程学报. 2024(16): 270-279 . 百度学术
    15. 王肖,涂建秋,李富贵,姚庆睿,刘晓琳. 基于贝塞尔曲线的飞行器末端协同制导. 战术导弹技术. 2024(05): 151-159+167 . 百度学术
    16. 王志特,罗丽平,廖义奎,吴伟林. 适合复杂环境的改进A~*路径规划算法. 广西大学学报(自然科学版). 2024(05): 1099-1111 . 百度学术
    17. 栾德杰,冯军,杨华昌,曹子昱,张辉. 基于改进RRT的驼峰自动摘钩机器人路径规划算法. 铁道运输与经济. 2023(01): 30-38+46 . 百度学术
    18. 王祎男,王迪,关瀛洲. 智能网联汽车主动避撞系统发展综述. 汽车技术. 2023(03): 1-9 . 百度学术
    19. 衣鹏,潘越,王文远,刘政钦,洪奕光. 基于博弈论的多车智能驾驶交互决策综述. 控制与决策. 2023(05): 1159-1175 . 百度学术
    20. 刘志军,苏亮,吴少雄. 基于AStar算法的避障路径局部规划方法开发. 客车技术与研究. 2023(03): 6-9 . 百度学术
    21. 沈跃,刘子涵,刘慧,杜伟. 基于多约束条件的果园喷雾机器人路径规划方法. 农业机械学报. 2023(07): 56-67 . 百度学术
    22. 沈笑云,张硕,张思远. 终端区航空器三维实时监视系统仿真. 航空学报. 2023(S1): 190-199 . 百度学术
    23. 张梦典,高登巍,董诗萌,苗昊春. 一种面向中近程导弹的在线弹道规划方法. 弹箭与制导学报. 2023(04): 111-116 . 百度学术
    24. 王玉,沈丹峰,王荣军,李耀杰,李靖宇. 自动落布车轨迹跟踪控制算法. 丝绸. 2022(04): 65-73 . 百度学术
    25. 时培成,陈旭,杨爱喜,章亮. 4WID-4WIS智能车阿克曼转向轨迹规划及位置估算. 工程设计学报. 2022(02): 123-132 . 百度学术
    26. 刘忠强. 智能汽车转向避撞运动轨迹规划. 汽车实用技术. 2022(08): 17-20 . 百度学术
    27. 杨洋,温兴,马强龙,张刚,程尚坤,齐健,陈志桢,陈黎卿. 基于贝塞尔曲线的动态识别区农机避障路径实时规划. 农业工程学报. 2022(06): 34-43 . 百度学术
    28. 韩卫民,翁枫,马志刚,梁远星,周松涛,张谢许. 贝塞尔曲线在智能AGV车路径规划和精准入叉中的应用. 无线互联科技. 2022(07): 109-110 . 百度学术
    29. 曾宏,张伟斌,郑钰鹏,张云飞. 无人船自主航行轨迹规划策略. 舰船科学技术. 2022(12): 66-70 . 百度学术
    30. 田梦婷,张瞫. 基于Frenet坐标系的智能车辆多场景轨迹规划. 汽车实用技术. 2022(16): 10-17 . 百度学术
    31. 马晓录,李如意,吴立辉. 智能车辆局部路径规划算法研究综述. 汽车实用技术. 2022(23): 232-237 . 百度学术
    32. 藤瑞品. 基于转向运动几何的自动驾驶避障路径算法. 长沙民政职业技术学院学报. 2022(04): 127-132 . 百度学术
    33. 冯耀,景首才,惠飞,赵祥模,刘建蓓. 基于深度强化学习的智能网联车辆换道轨迹规划方法. 汽车安全与节能学报. 2022(04): 705-717 . 百度学术
    34. 周达. 农机收获作业参数化路径生成方法. 农业工程. 2022(12): 13-21 . 百度学术
    35. 崔根群,胡可润,唐风敏. 融合遗传贝塞尔曲线的智能汽车路径规划. 现代电子技术. 2021(01): 144-148 . 百度学术
    36. 梁岗,吴章杰,於伟坤. 基于带三参数的类四次贝塞尔曲线的起重机转弯非圆轨道优化. 上海海事大学学报. 2021(01): 112-118 . 百度学术
    37. 石立新. 基于改进蚁群算法的机器人路径规划研究. 航空计算技术. 2021(02): 28-31 . 百度学术
    38. 郭兴海,计明军,温都苏,张鑫,田爽. “最后一公里”配送的分布式多无人机的任务分配和路径规划. 系统工程理论与实践. 2021(04): 946-961 . 百度学术
    39. 韩新洁,李欣然,范云生,孙晓界. 一种混合优化的全局路径规划算法. 舰船科学技术. 2021(07): 149-154 . 百度学术
    40. 杨彬,宋学伟,高振海. 考虑车辆运动约束的最优避障轨迹规划算法. 汽车工程. 2021(04): 562-570 . 百度学术
    41. 赵树恩,王金祥,李玉玲. 基于多目标优化的智能车辆换道轨迹规划. 交通运输工程学报. 2021(02): 232-242 . 百度学术
    42. 郑亮,孙龙龙,陈双. 一种改进工业自动导引车路径规划算法. 科学技术与工程. 2021(16): 6758-6763 . 百度学术
    43. 申琳,况泉羽,姜兆娟,粘凤菊,方越. 安全冗余的自动泊车寻库和巡航方案. 中国汽车. 2021(07): 22-30 . 百度学术
    44. 张阳伟,乔越,李成凤. 基于四叉树栅格环境的变步长双向A*算法. 控制工程. 2021(10): 1960-1966 . 百度学术
    45. 李海,江涛,苏晓杰,付文豪. 面向未知环境的快速安全自主轨迹生成. 控制工程. 2021(11): 2153-2157 . 百度学术
    46. 刘祥,叶晓明,王泉斌,李伟光,高瀚林. 无人水面艇局部路径规划算法研究综述. 中国舰船研究. 2021(S1): 1-10 . 百度学术
    47. 彭晓燕,谢浩,黄晶. 无人驾驶汽车局部路径规划算法研究. 汽车工程. 2020(01): 1-10 . 百度学术
    48. 尤波,王明睿,李智,丁亮. 基于模型预测控制的轮式移动机器人轨迹规划. 系统仿真学报. 2020(04): 591-600 . 百度学术
    49. 郭兴海,计明军,张卫丹. 融合多目标与速度控制的AGV全局路径规划. 控制与决策. 2020(06): 1369-1376 . 百度学术
    50. 盛鹏程,罗新闻,李景蒲,吴学易,卞学良. 智能电动车弯曲道路场景中的避障路径规划. 交通运输工程学报. 2020(02): 195-204 . 百度学术
    51. 郭兴海,计明军,刘双福. 融合多目标与能耗控制的无人仓库内AGV路径规划. 计算机集成制造系统. 2020(05): 1268-1276 . 百度学术
    52. 石征锦,宿一凡,卜春光,范晓亮. 基于改进A*的移动机器人路径规划算法. 单片机与嵌入式系统应用. 2020(06): 13-15 . 百度学术
    53. 曾德全,余卓平,熊璐,付志强,张培志. 结构化道路下基于层次分析法的智能车避障轨迹规划. 华南理工大学学报(自然科学版). 2020(07): 65-75 . 百度学术
    54. 王树凤,孙文盛,刘宗锋. 车辆稳定换道时的侧向加速度分析. 机械设计与制造. 2020(07): 17-20+24 . 百度学术
    55. 周兵,万希,吴晓建,陈晓龙,曾凡沂. 紧急避撞工况下的路径规划与跟踪. 湖南大学学报(自然科学版). 2020(10): 10-18 . 百度学术
    56. 梁岗,吴章杰,於伟坤. 基于四次贝塞尔曲线的起重机转弯非圆曲线轨道优化设计. 机械工程学报. 2020(19): 253-264 . 百度学术
    57. 张新锋,陈建伟,左思. 基于贝塞尔曲线的智能商用车换道避障轨迹规划. 科学技术与工程. 2020(29): 12150-12157 . 百度学术
    58. 宋锐,方勇纯,刘辉. 基于LiDAR/INS的野外移动机器人组合导航方法. 智能系统学报. 2020(04): 804-810 . 百度学术
    59. 吴振跃,章程熙,陆昱,乔亚兴,黄维华,周琪. 面向变电站运维的智能机器人路径规划算法研究. 电力与能源. 2020(06): 688-692 . 百度学术
    60. 林安辉,曾建平. 多艘拖轮协助大型船舶靠泊的编队控制方法. 厦门大学学报(自然科学版). 2019(01): 97-103 . 百度学术
    61. 徐杨,陆丽萍,褚端峰,黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报. 2019(04): 799-807 . 本站查看
    62. 高嵩,张金炜,戎辉,王文扬,郭蓬,何佳. 基于贝塞尔曲线的无人车局部避障应用. 现代电子技术. 2019(09): 163-166 . 百度学术
    63. 吕恩利,林伟加,刘妍华,王飞仁,赵俊宏,吴鹏. 基于B样条曲线的智能叉车托盘拾取路径规划研究. 农业机械学报. 2019(05): 394-402 . 百度学术
    64. 柏海舰,申剑峰,卫立阳. 无人车“三阶段”换道轨迹规划过程分析. 合肥工业大学学报(自然科学版). 2019(05): 577-584+676 . 百度学术
    65. 张弛,丁轶. 基于B样条曲线的无人机航路修正方法研究. 信息化研究. 2019(02): 13-17 . 百度学术
    66. 张金炜,王文扬,郭蓬,高嵩. 基于蚁群四次贝塞尔曲线的无人车路径规划. 现代电子技术. 2019(13): 113-116 . 百度学术
    67. 盛鹏程,曾小松,罗新闻,马金刚,戎辉,卞学良. 基于贝叶斯概率估计的智能电动车动态目标避障算法. 中国公路学报. 2019(06): 96-104 . 百度学术
    68. 张新锋,李传友,夏八科. 基于稳态转向特性的智能车辆换道轨迹规划. 汽车技术. 2019(07): 13-18 . 百度学术
    69. 余伶俐,邵玄雅,龙子威,魏亚东,周开军. 智能车辆深度强化学习的模型迁移轨迹规划方法. 控制理论与应用. 2019(09): 1409-1422 . 百度学术
    70. 赵书尚,余欢,李阁强. 汽车实验用转向机器人轨迹规划. 中国工程机械学报. 2018(02): 153-157+163 . 百度学术
    71. 刘学问,陶钧,徐海巍. 基于三阶贝塞尔曲线的AGV轨迹规划研究. 工业控制计算机. 2018(01): 113-114 . 百度学术
    72. 张永华,杜煜,潘峰,魏岳. 基于三次B样条曲线拟合的智能车轨迹跟踪算法. 计算机应用. 2018(06): 1562-1567 . 百度学术
    73. 张金旺,齐尧,李华. 一种基于牛顿迭代的智能车轨迹生成算法. 军事交通学院学报. 2018(04): 85-91 . 百度学术
    74. 周远,胡核算,刘杨,林尚威. 分布式多机器人运动控制的离散事件系统方法. 控制理论与应用. 2018(01): 110-120 . 百度学术
    75. 于乃功,苑云鹤,李倜,蒋晓军,罗子维. 一种基于海马认知机理的仿生机器人认知地图构建方法. 自动化学报. 2018(01): 52-73 . 本站查看
    76. 乔少杰,韩楠,丁治明,金澈清,孙未未,舒红平. 多模式移动对象不确定性轨迹预测模型. 自动化学报. 2018(04): 608-618 . 本站查看
    77. 李娜,樊蓉. 网络安全态势感知系统中攻击轨迹精准显示技术. 网络安全技术与应用. 2018(04): 31-32+37 . 百度学术
    78. 王晓芳,柴劲,周健. 基于分段贝塞尔曲线的多导弹协同航迹规划. 系统工程与电子技术. 2018(10): 2317-2324 . 百度学术
    79. 张良,秦祖军,张志钢,张霖. 光刻机多项式扫描运动轨迹规划算法. 仪器仪表用户. 2017(06): 24-27 . 百度学术
    80. 李奕姗,余卓平,熊璐,李运生. 基于三次螺旋线的无人车路径计算与仿真. 佳木斯大学学报(自然科学版). 2017(03): 351-355 . 百度学术
    81. 逄海萍,于英超. 两轮自平衡车的最优滑模输出跟踪控制. 计算机仿真. 2017(01): 326-331 . 百度学术
    82. 刘海芹. 基于贝塞尔轨迹的视觉导引AGV路径跟踪研究. 中国测试. 2017(08): 113-118 . 百度学术
    83. 肖琴,张永韡,汪镭. 增量极坐标编码的贝赛尔曲线智能优化算法. 智能系统学报. 2017(06): 841-847 . 百度学术
    84. 邓娜,董迪娅,李翊硕. 一种基于A*算法的路径平滑设计及仿真. 电子技术与软件工程. 2016(02): 167-168 . 百度学术
    85. 于佳琳,言勇华,王嘉宁. 基于改进Bezier拟合算法的工业机器人轨迹规划. 机电一体化. 2016(02): 12-17+25 . 百度学术
    86. 陈灵,王森,胡豁生,麦当劳–麦尔·克劳斯,费敏锐. 保证智能轮椅平滑通过狭窄通道的路径曲率优化算法. 自动化学报. 2016(12): 1874-1885 . 本站查看
    87. 余伶俐,龙子威,周开军. 基于贝塞尔曲线的机器人非时间轨迹跟踪方法. 仪器仪表学报. 2016(07): 1564-1572 . 百度学术

    其他类型引用(227)

  • 加载中
图(36) / 表(4)
计量
  • 文章访问数:  4597
  • HTML全文浏览量:  2052
  • PDF下载量:  1251
  • 被引次数: 314
出版历程
  • 收稿日期:  2020-07-15
  • 录用日期:  2021-03-19
  • 网络出版日期:  2021-06-11
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回