2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于异步相关判别性学习的孪生网络目标跟踪算法

许龙 魏颖 商圣行 张皓云 边杰 徐楚翘

许龙, 魏颖, 商圣行, 张皓云, 边杰, 徐楚翘. 基于异步相关判别性学习的孪生网络目标跟踪算法. 自动化学报, 2023, 49(2): 366−382 doi: 10.16383/j.aas.c200237
引用本文: 许龙, 魏颖, 商圣行, 张皓云, 边杰, 徐楚翘. 基于异步相关判别性学习的孪生网络目标跟踪算法. 自动化学报, 2023, 49(2): 366−382 doi: 10.16383/j.aas.c200237
Xu Long, Wei Ying, Shang Sheng-Xing, Zhang Hao-Yun, Bian Jie, Xu Chu-Qiao. Design of asynchronous correlation discriminant single object tracker based on siamese network. Acta Automatica Sinica, 2023, 49(2): 366−382 doi: 10.16383/j.aas.c200237
Citation: Xu Long, Wei Ying, Shang Sheng-Xing, Zhang Hao-Yun, Bian Jie, Xu Chu-Qiao. Design of asynchronous correlation discriminant single object tracker based on siamese network. Acta Automatica Sinica, 2023, 49(2): 366−382 doi: 10.16383/j.aas.c200237

基于异步相关判别性学习的孪生网络目标跟踪算法

doi: 10.16383/j.aas.c200237
基金项目: 国家自然科学基金(61871106)资助
详细信息
    作者简介:

    许龙:东北大学信息科学与工程学院博士研究生. 2016 年获得内蒙古大学学士学位. 主要研究方向为机器学习与视觉目标跟踪. E-mail: wahaha4ever@163.com

    魏颖:东北大学信息科学与工程学院教授. 分别于1997年和2001年获得东北大学硕士学位和博士学位. 主要研究方向为图像处理与模式识别, 医学图像计算和分析, 计算机辅助诊断. 本文通信作者. E-mail: weiying@ise.neu.edu.cn

    商圣行:东北大学信息科学与工程学院硕士研究生. 主要研究方向为模式识别, 计算机视觉和深度学习. E-mail: ssh3108@163.com

    张皓云:东北大学信息科学与工程学院硕士研究生. 2019 年获得东北大学学士学位. 主要研究方向为目标跟踪与目标检测. E-mail: nicolascloud@163.com

    边杰:东北大学信息科学与工程学院硕士研究生. 2017 年获得东北大学学士学位. 主要研究方向为视觉目标跟踪. E-mail: qbzxbj@163.com

    徐楚翘:东北大学信息科学与工程学院硕士研究生. 主要研究方向为视觉目标跟踪. E-mail: xuchuqiao@mail.neu.edu.cn

Design of Asynchronous Correlation Discriminant Single Object Tracker Based on Siamese Network

Funds: Supported by National Natural Science Foundation of China (61871106)
More Information
    Author Bio:

    XU Long Ph.D. candidate at the College of Information Science and Engineering, Northeastern University. He received his bachelor degree from Inner Mongolia University in 2016. His research interest covers machine learning and visual object tracking

    WEI Ying Professor at the College of Information Science and Engineering, Northeastern University. She received her master and Ph.D. degrees from Northeastern University in 1997 and 2001, respectively. Her research interest covers image processing & pattern recognition, medical image computation and analysis, and computer-aided diagnosis. Corresponding author of this paper

    SHANG Sheng-Xing Master student at the College of Information Science and Engineering, Northeastern University. His research interest covers pattern recognition, computer vision, and deep learning

    ZHANG Hao-Yun Master student at the College of Information Science and Engineering, Northeastern University. He received his bachelor degree from Northeastern University in 2019. His research interest covers visual object tracking and detection

    BIAN Jie Master student at the College of Information Science and Engineering, Northeastern University. He received his bachelor degree from Northeastern University in 2017. His main research interest is visual object tracking

    XU Chu-Qiao Master student at the College of Information Science and Engineering, Northeastern University. Her main research interest is visual object tracking

  • 摘要: 现有基于孪生网络的单目标跟踪算法能够实现很高的跟踪精度, 但是这些跟踪器不具备在线更新的能力, 而且其在跟踪时很依赖目标的语义信息, 这导致基于孪生网络的单目标跟踪算法在面对具有相似语义信息的干扰物时会跟踪失败. 为了解决这个问题, 提出了一种异步相关响应的计算模型, 并提出一种高效利用不同帧间目标语义信息的方法. 在此基础上, 提出了一种新的具有判别性的跟踪算法. 同时为了解决判别模型使用一阶优化算法收敛慢的问题, 使用近似二阶优化的方法更新判别模型. 为验证所提算法的有效性, 分别在Got-10k、TC128、OTB和VOT2018 数据集上做了对比实验, 实验结果表明, 该方法可以明显地改进基准算法的性能.
  • 图  1  不同滤波器下响应结果对比

    Fig.  1  Comparison of response results under different filters

    图  2  本文算法与其他先进跟踪器在Got-10k上的对比情况

    Fig.  2  Comparison between the proposed method with other advanced trackers on Got-10k

    图  3  Got-10k上跟踪结果对比实验

    Fig.  3  Comparison of tracking results on Got-10k

    图  4  本文算法在TC128 上的精度−成功率对比实验结果

    Fig.  4  The accuracy-success rate comparison experiment results of the proposed algorithm on TC128

    图  5  本文算法在OTB2015上的精度−成功率对比实验结果

    Fig.  5  The accuracy-success rate comparison experiment results of the proposed algorithm on OTB2015

    图  6  OTB50中6个序列的响应对比结果

    Fig.  6  The response comparisons of 6 different sequences on OTB50

    图  7  精度−鲁棒性跟踪失败情况对比图

    Fig.  7  Comparison of accuracy robustness and tracking faliure

    图  8  在VOT2018序列的不同情景下精度−鲁棒性对比情况

    Fig.  8  Comparison of accuracy robustness performance under different attributes on VOT2018

    图  9  跟踪器在VOT2018基准模式下的期望重叠率性能对比

    Fig.  9  Trackers'expected overlap performance comparisons on VOT2018

    图  10  在VOT2018的非监督模式下的EOA对比曲线

    Fig.  10  EOA comparison curve of unsupervisized training on VOT2018

    图  11  在VOT2018的实时性能对比下的EOA对比曲线

    Fig.  11  EOA comparison curve in realtime on VOT2018

    图  12  在VOT2018的实时性能对比下不同跟踪器的期望重叠率性能排名情况对比

    Fig.  12  Ranking of different trackers'expected overlap ratio in realtime on VOT2018

    表  1  本文方法与基准算法的消融实验

    Table  1  Ablation studies between the proposedalgorithm and baseline

    算法 AO $ {\rm SR}_{0.5} $ $ {\rm SR}_{0.75} $ FPS
    Baseline 0.445 0.539 0.208 21.95
    Baseline + AC 0.445 0.539 0.211 20.03
    Baseline + AC + S 0.447 0.542 0.211 19.63
    Baseline + AC + S + $D^{m\;=\;3}_{ {KL} }$ 0.442 0.537 0.209 18.72
    Baseline + AC + S + $D^{m \;=\; 6}_{ KL }$ 0.457 0.553 0.215 18.60
    Baseline + AC + S + $D^{m\;=\;9}_{ KL }$ 0.440 0.532 0.211 18.49
    下载: 导出CSV

    表  2  OTB2013上的背景干扰、形变等情景下的跟踪性能对比

    Table  2  Tracking performance comparisons among trackers on OTB2013 in terms of background clustersand deformation

    算法 背景干扰 形变 快速运动 平面内转动
    成功率 精度 成功率 精度 成功率 精度 成功 精度
    ECO-HC 0.700 0.559 0.567 0.719 0.570 0.697 0.517 0.648
    ECO 0.776 0.619 0.613 0.772 0.655 0.783 0.630 0.764
    ATOM 0.733 0.598 0.623 0.771 0.595 0.709 0.579 0.714
    DIMP 0.749 0.607 0.602 0.740 0.618 0.739 0.561 0.685
    MDNet 0.777 0.621 0.620 0.780 0.652 0.796 0.658 0.822
    SiamFC 0.605 0.494 0.487 0.608 0.509 0.618 0.483 0.583
    DaSiamRPN 0.728 0.592 0.609 0.761 0.565 0.702 0.625 0.780
    SiamRPN (Baseline) 0.605 0.745 0.591 0.724 0.589 0.724 0.627 0.770
    Baseline + AC 0.605 0.745 0.591 0.724 0.589 0.724 0.627 0.770
    Baseline + AC + ${ D}_{ { {KL} } }^{ { {m} } \;=\; 3}$ 0.599 0.741 0.603 0.749 0.645 0.797 0.651 0.808
    Baseline + AC + ${ D}_{ { {KL} } }^{ { {m} } \;=\; 6}$ 0.592 0.733 0.597 0.742 0.636 0.787 0.650 0.807
    Baseline + AC + ${ D}_{ { {KL} } }^{ { {m} } \;=\; 9}$ 0.598 0.736 0.586 0.725 0.587 0.723 0.654 0.809
    下载: 导出CSV

    表  3  OTB2013上的光照变化、低分辨率等情景下的跟踪性能对比

    Table  3  Tracking performance comparisons among trackers on OTB2013 in terms of illumination changeand low resolution

    算法 光照变化 低分辨率 运动模糊 遮挡
    成功率 精度 成功率 精度 成功率 精度 成功率 精度
    ECO-HC 0.556 0.690 0.536 0.619 0.566 0.685 0.586 0.749
    ECO 0.616 0.766 0.569 0.677 0.659 0.786 0.636 0.800
    ATOM 0.604 0.749 0.554 0.654 0.529 0.665 0.617 0.762
    DIMP 0.606 0.749 0.485 0.571 0.564 0.695 0.610 0.750
    MDNet 0.619 0.780 0.644 0.804 0.662 0.813 0.623 0.777
    SiamFC 0.479 0.593 0.499 0.600 0.485 0.617 0.512 0.635
    DaSiamRPN 0.589 0.736 0.490 0.618 0.533 0.688 0.583 0.726
    SiamRPN (Baseline) 0.585 0.723 0.519 0.653 0.532 0.684 0.586 0.726
    Baseline + AC 0.585 0.723 0.519 0.653 0.532 0.684 0.586 0.726
    Baseline + AC + ${ D}_{ {{KL} } }^{ {{m} } = 3}$ 0.600 0.749 0.554 0.697 0.610 0.785 0.593 0.740
    Baseline + AC + ${ D}_{ {{KL} } }^{ {{m} } = 6}$ 0.592 0.741 0.546 0.688 0.596 0.770 0.586 0.732
    Baseline + AC + ${ D}_{ {{KL} } }^{ {{m} } = 9}$ 0.581 0.724 0.549 0.689 0.533 0.687 0.576 0.716
    下载: 导出CSV

    表  4  OTB2013上的平面外旋转、视野外等情景下的跟踪性能对比

    Table  4  Tracking performance comparisons among trackers on OTB2013 in terms of out-of-plane rotationand out of view

    算法 平面外旋转 视野外 尺度变化
    成功率 精度 成功率 精度 成功率 精度
    ECO-HC 0.563 0.718 0.549 0.763 0.587 0.740
    ECO 0.628 0.787 0.733 0.827 0.651 0.793
    ATOM 0.607 0.751 0.522 0.563 0.654 0.792
    DIMP 0.596 0.737 0.549 0.593 0.636 0.767
    MDNet 0.628 0.787 0.698 0.769 0.675 0.842
    SiamFC 0.500 0.620 0.574 0.642 0.542 0.665
    DaSiamRPN 0.599 0.750 0.570 0.633 0.587 0.740
    SiamRPN (Baseline) 0.598 0.736 0.658 0.725 0.608 0.751
    Baseline + AC 0.598 0.736 0.658 0.725 0.608 0.751
    Baseline + AC + ${ D}_{ { {KL} } }^{ { {m} } \;=\; 3}$ 0.611 0.760 0.702 0.778 0.656 0.819
    Baseline + AC + ${ D}_{ {{KL} } }^{ {{m} } = 6}$ 0.604 0.752 0.659 0.733 0.631 0.791
    Baseline + AC + ${ D}_{ {{KL} } }^{ {{m} } = 9}$ 0.597 0.740 0.660 0.735 0.603 0.755
    下载: 导出CSV

    表  5  VOT2018 上的实验结果

    Table  5  Experimental results on VOT2018

    算法 Baseline 非监督 实时性能
    精度−鲁棒性 失败率 EAO FPS AO FPS EAO
    KCF 0.4441 50.0994 0.1349 60.0053 0.2667 63.9847 0.1336
    SRDCF 0.4801 64.1136 0.1189 2.4624 0.2465 2.7379 0.0583
    ECO 0.4757 17.6628 0.2804 3.7056 0.4020 4.5321 0.0775
    ATOM 0.5853 12.3591 0.4011 5.2061 0 0 0
    SiamFC 0.5002 34.0259 0.188 31.889 0.3445 35.2402 0.182
    DaSiamRPN 0.5779 17.6608 0.3826 58.854 0.4722 64.4143 0.3826
    SiamRPN (Baseline) 0.5746 23.5694 0.2941 14.3760 0.4355 14.4187 0.0559
    Baseline + AC 0.5825 27.0794 0.2710 13.7907 0.4431 13.8772 0.0539
    Baseline + AC + ${ D}_{ { {KL} } }^{ { {m} } \;=\; 3}$ 0.5789 14.8312 0.2865 13.6035 0.4537 13.4039 0.0536
    Baseline + AC + ${ D}_{ { {KL} } }^{ { {m} } \;=\; 6}$ 0.5722 22.6765 0.2992 13.5359 0.4430 12.4383 0.0531
    Baseline + AC + ${ D}_{ { {KL} } }^{ { {m} } \;=\; 9}$ 0.5699 22.9148 0.2927 13.5046 0.4539 12.1159 0.0519
    下载: 导出CSV
  • [1] 刘巧元, 王玉茹, 张金玲, 殷明浩. 基于相关滤波器的视频跟踪方法研究进展. 自动化学报, 2019, 45(2): 265-275

    Liu Qiao-Yuan, Wang Yu-Ru, Zhang Jin-Ling, Yin Ming-Hao. Research progress of visual tracking methods based on correlation filter. Acta Automatica Sinica, 2019, 45(2): 265-275
    [2] 刘畅, 赵巍, 刘鹏, 唐降龙. 目标跟踪中辅助目标的选择、跟踪与更新. 自动化学报, 2018, 44(7): 1195-1211

    Liu Chang, Zhao Wei, Liu Peng, Tang Xiang-Long. Auxiliary objects selecting, tracking and updating in target tracking. Acta Automatica Sinica, 2018, 44(7): 1195-1211
    [3] 蔺海峰, 马宇峰, 宋涛. 基于SIFT特征目标跟踪算法研究. 自动化学报, 2010, 36(8): 1204-1208 doi: 10.3724/SP.J.1004.2010.01204

    Lin Hai-Feng, Ma Yu-Feng, Song Tao. Research on object tracking algorithm based on SIFT. Acta Automatica Sinica, 2010, 36(8): 1204-1208 doi: 10.3724/SP.J.1004.2010.01204
    [4] Held D, Thrun S, Savarese S. Learning to track at 100 FPS with deep regression networks. In: Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: 2016. 749−765
    [5] Bertinetto L, Valmadre J, Henriques J F, Vedaldi A, Torr P H S. Fully-convolutional siamese networks for object tracking. In: Proceedings of the European Conference on Computer Vision. Amsterdam, Netherlands: 2016. 850−865
    [6] Li B, Yan J J, Wu W, Zhu Z, Hu X L. High performance visual tracking with Siamese region proposal network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 8971−8980
    [7] Zhu Z, Wang Q, Li B, Wu W, Yan J J, Hu W M. Distractor-aware Siamese networks for visual object tracking. In: Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: 2018. 103−119
    [8] Li B, Wu W, Wang Q, Zhang F Y, Xing J L, Yan J J. SiamRPN++: Evolution of Siamese visual tracking with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 4277−4286
    [9] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Veg-as, USA: IEEE, 2016. 4293−4302
    [10] Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596 doi: 10.1109/TPAMI.2014.2345390
    [11] Danelljan M, Hager G, Khan F S, Felsberg M. Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 4310−4318
    [12] Ma C, Huang J B, Yang X K, Yang M H. Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 3074−3082
    [13] Wang N Y, Yeung D Y. Learning a deep compact image representation for visual tracking. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: 2013. 809−817
    [14] Danelljan M, Robinson A, Khan F S, Felsberg M. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, Netherlands: 2016. 472− 488
    [15] Danelljan M, Bhat G, Khan F S, Felsberg M. ECO: Efficient convolution operators for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolul, USA: IEEE, 2017. 6931−6939
    [16] Bolme D S, Beveridge J R, Draper B A, Lui Y M. Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: 2010. 2544−2550
    [17] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149 doi: 10.1109/TPAMI.2016.2577031
    [18] Danelljan M, Bhat G, Khan F S, Felsberg M. ATOM: Accurate tracking by overlap maximization. In: Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 4655−4664
    [19] Jiang B R, Luo R X, Mao J Y, Xiao T T, Jiang Y N. Acquisition of localization confidence for accurate object detection. In: Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: 2018. 816−832
    [20] Wang Q, Zhang L, Bertinetto L, Hu W M, Torr P H S. Fast online object tracking and segmentation: A unifying approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 1328− 1338
    [21] Huang L H, Zhao X, Huang K Q. GOT-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577 doi: 10.1109/TPAMI.2019.2957464
    [22] Liang P P, Blasch E, Ling H B. Encoding color information for visual tracking: Algorithms and benchmark. IEEE Transactions on Image Processing, 2015, 24(12): 5630-5644 doi: 10.1109/TIP.2015.2482905
    [23] Wu Y, Lim J, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848 doi: 10.1109/TPAMI.2014.2388226
    [24] Kristan M, Matas J, Leonardis A, Vojir T, Pflugfelder R, Fernandez G, et al. A novel performance evaluation methodology for single-target trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2137-2155 doi: 10.1109/TPAMI.2016.2516982
    [25] Ramasubramanian K, Singh A. Machine Learning Using R: With Time Series and Industry-Based Use Cases in R. Berkeley: Springer, 2017. 219−424
    [26] Pearlmutter B A. Fast exact multiplication by the Hessian. Neural Computation, 1994, 6(1): 147-160 doi: 10.1162/neco.1994.6.1.147
    [27] Zhang J M, Ma S G, Sclaroff S. MEEM: Robust tracking via multiple experts using entropy minimization. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: 2014. 188−203
    [28] Hare S, Golodetz S, Saffari A, Vineet V, Cheng M M, Hicks S L, et al. Struck: Structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109 doi: 10.1109/TPAMI.2015.2509974
    [29] Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Pro-vidence, USA: IEEE, 2012. 1822−1829
    [30] Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 798−805
    [31] Bhat G, Danelljan M, Van Gool L, Timofte R. Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Seo-ul, South Korea: IEEE, 2019. 6181−6190
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1648
  • HTML全文浏览量:  231
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 录用日期:  2020-09-07
  • 网络出版日期:  2023-01-04
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回