2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异构集群系统分布式自适应输出时变编队跟踪控制

田磊 董希旺 赵启伦 李清东 吕金虎 任章

田磊, 董希旺, 赵启伦, 李清东, 吕金虎, 任章. 异构集群系统分布式自适应输出时变编队跟踪控制. 自动化学报, 2021, 47(10): 2386−2401 doi: 10.16383/j.aas.c200185
引用本文: 田磊, 董希旺, 赵启伦, 李清东, 吕金虎, 任章. 异构集群系统分布式自适应输出时变编队跟踪控制. 自动化学报, 2021, 47(10): 2386−2401 doi: 10.16383/j.aas.c200185
Tian Lei, Dong Xi-Wang, Zhao Qi-Lun, Li Qing-Dong, Lv Jin-Hu, Ren Zhang. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems. Acta Automatica Sinica, 2021, 47(10): 2386−2401 doi: 10.16383/j.aas.c200185
Citation: Tian Lei, Dong Xi-Wang, Zhao Qi-Lun, Li Qing-Dong, Lv Jin-Hu, Ren Zhang. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems. Acta Automatica Sinica, 2021, 47(10): 2386−2401 doi: 10.16383/j.aas.c200185

异构集群系统分布式自适应输出时变编队跟踪控制

doi: 10.16383/j.aas.c200185
基金项目: 国家重点研发计划课题(2018AAA0102303), 国家自然科学基金(61922008, 61973013, 61873011, 61803014), 国防创新特区项目(18-163-00-TS-001-001-34), 国防基础科研计划资助(JCKY2019601C106), 北京市自然科学基金(4182035)资助
详细信息
    作者简介:

    田磊:硕士, 助理工程师. 主要研究方向为多智能体系统协同控制方法及其应用

    董希旺:博士, 教授. 主要研究方向为一致性控制, 编队控制, 合围控制及其在无人机集群系统的应用. 本文通信作者. E-mail: xwdong@buaa.edu.cn

    赵启伦:博士, 工程师. 主要研究方向为协同制导和协同控制

    李清东:博士, 高级工程师. 主要研究方向为飞行器的制导, 导航与控制, 故障诊断与容错控制

    吕金虎:博士, 教授. 主要研究方向为智能系统, 协同控制理论与技术, 复杂网络与大数据

    任章:博士, 教授. 主要研究方向为控制理论与应用及飞行器控制、制导与导航

Distributed Adaptive Time-varying Output Formation Tracking for Heterogeneous Swarm Systems

Funds: Supported by Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence” (2018AAA0102303), the National Natural Science Foundation of China (61922008, 61973013, 61873011, 61803014), the Innovation Zone Project (18-163-00-TS-001-001-34), the Defense Industrial Technology Development Program (JCKY2019601C106), the Beijing Natural Science Foundation (4182035)
More Information
    Author Bio:

    TIAN Lei Master, assistant engineer. His research interest covers cooperative control approach and application of multiagent systems

    DONG Xi-Wang Ph. D., professor. His research interest covers consensus control, formation control, and containment control of multi-agent systems with applications to UAV swarm systems. Correspondings author of this paper

    ZHAO Qi-Lun Ph. D., engineer. His research interest covers cooperative guidance and control

    LI Qing-Dong Ph. D. degree, senior engineer. His research interest covers aircraft guidance, navigation and control, fault detection, isolation and recovery

    LV Jin-Hu Ph. D., professor. His research interest covers intelligent systems, cooperative control theory and technology, complex networks, and big data

    REN Zhang Ph. D., professor. His research interest covers control theory and application and aircraft control, guidance and navigation

  • 摘要: 提出了一种能够解决高阶异构集群系统输出时变编队跟踪问题的控制方法. 集群系统中的智能体分为领导者和跟随者, 领导者和跟随者的动力学模型可以完全不同. 跟随者的输出在跟踪领导者输出的同时保持时变编队实现协同运动. 考虑了领导者存在已知或未知控制输入、领导者和跟随者均存在未知扰动、有向通信拓扑存在切换等多种因素并存的情况, 结合观测器理论、自适应控制理论和滑模控制理论设计了完全分布式的输出时变编队跟踪控制协议, 摆脱了对领导者控制输入上界值、与通信拓扑相关的拉普拉斯矩阵的特征值以及时变编队函数等全局信息的依赖. 利用Lyapunov理论证明了在有向拓扑切换条件下异构集群系统的闭环稳定性. 最后通过数值仿真对理论结果的有效性进行了验证.
  • 集群系统中个体之间通过局部的感知和简单的行为交互, 可以在宏观上涌现出更为复杂与高级的群体行为, 即集群智能. 生物界中有很多集群智能的例子: 鸟群利用上洗气流编队飞行, 可以降低飞行阻力, 实现远距离大范围迁徙; 狼群通过协同围捕, 利用时空优势, 能够以弱胜强, 捕食大型猎物; 蚁群通过协同搬运, 可以充分弥补个体力量薄弱的劣势, 以小博大, 提高觅食效率. 军事领域也有很多通过集群协同方式提升作战效能的例子: 多个微纳卫星通过协同可以构建一个虚拟卫星, 实现深空探测及高精度三维成像等复杂功能, 完成单个卫星无法完成的任务; 多架低成本无人机通过协同方式可以实施蜂群作战模, 使敌方高价值防空体系的火力通道陷入饱和, 进而大幅度提高突防能力、毁伤能力和作战效费比. 正是因为集群智能可以实现上述$1 + 1 \gg 2$的效果, 近年来备受学者关注. 编队控制作为集群智能的重要基础性研究分支, 也涌现出了较为丰富的研究成果. 早期的编队控制方法主要是集中式, 即存在中心节点, 且对通信拓扑要求高. 随着一致性理论的发展, 分布式编队控制方法以其不依赖中心节点、具备良好的可扩展性等优点, 取得了长足的发展[1]. 研究的方向从固定编队[2]扩展到时变编队[3-4], 研究的内容从普通编队控制[5-6]发展到编队跟踪控制[7-8]、编队合围控制[9-10]等, 研究的模型也逐渐丰富, 包括了线性系统[11]、非线性系统[12-13]、同构系统[14]、异构系统[15-16]等, 研究的通信拓扑也涵盖无向拓扑、有向拓扑、连续性拓扑、非连续性拓扑、拓扑固定、拓扑切换等[17-20]. 不仅如此, 研究的编队稳定性问题也从渐近稳定问题逐渐发展到有限时间稳定问题甚至固定时间稳定问题[21-22]. 随着研究的深入, 如何尽可能减少编队控制所需的全局信息成为分布式控制的研究重点, 如文献[3]、[8]、[10]、[17]、[19]中设计控制协议参数时需要计算与通信拓扑相关的拉普拉斯矩阵的特征值, 文献[16]、[17]、[19]、[21]中构造控制协议时需要用到领导者输入的上界值. 此外, 文献[2-22]中时变编队函数是需要设定的全局信息, 也并非分布式实时可调控的.

    基于上述分析可知, 编队控制方法在理论上尚有许多可以研究和改进的地方. 同时, 由于理论研究通常受实际应用驱动, 根据不同的任务场景, 实际应用中期望集群系统的智能体模型既可以是同构的(无人机蜂群作战任务场景), 也可以是异构的(空地/空海协同搜索任务场景), 而考虑到强对抗博弈和强电磁干扰带来的影响, 还期望通信拓扑是有向切换的, 并且实际应用中阵风、紊流等未知外部扰动也是不可忽略的因素. 需要指出的是, 在研究编队跟踪问题时, 跟随者跟踪的领导者通常分为合作目标和非合作目标. 所谓合作目标是指领导者与跟随者之间存在协同合作关系, 通常情况下, 领导者为己方可控目标, 其控制输入大多是已知可获取的. 所谓非合作目标是指领导者与跟随者之间不存在协同合作关系, 通常情况下, 领导者为非己方不可控目标, 其控制输入大多是未知不易获取的. 经过文献调研发现, 目前尚无研究成果能够解决高阶异构集群系统在领导者存在已知或未知控制输入、领导者和跟随者均存在未知扰动、有向通信拓扑存在切换等多种因素并存的情况下的输出时变编队跟踪控制问题.

    受上述理论研究和工程应用价值的激励, 本文研究了高阶异构集群系统的时变编队跟踪控制问题. 主要创新有以下两点: 1)集群系统中所有智能体均采用异构模型, 同时研究了领导者存在已知和未知控制输入两种情况. 需要说明的是, 考虑到异构集群系统中智能体的动力学模型可能完全不同, 当领导者的控制输入是已知时, 可以在领导者层和跟随者层构造对自身状态的观测器, 基于该观测器构造的控制协议不需要利用领导者的全部状态, 只需要利用领导者的输出信息. 而在领导者的控制输入是未知时, 无法通过领导者的输出信息得到其全部状态信息, 进而需要某个跟随者能够获取领导者的全部状态信息. 2) 在上述领导者存在已知或未知控制输入的情况下, 进一步考虑领导者和跟随者存在未知扰动以及有向通信拓扑存在切换等多种因素并存对集群系统的影响, 结合观测器理论、自适应理论和滑模控制理论, 构造了完全分布式的控制协议, 所有跟随者均不需要获取领导者输入的上界值, 也不需要利用与通信拓扑相关的拉普拉斯矩阵的特征值, 此外, 协议中还针对时变编队函数设计了分布式观测器, 使其不再是全局信息, 成为分布式实时可调控的. 由于本文研究的集群系统均采用有向通信拓扑, 因此极大降低了集群系统对通信带宽需求. 综上所述, 本文研究的内容兼具理论研究与工程应用价值. 考虑到有人−无人机协同飞行(领导者为合作目标, 见图1)和空地协同围捕打击(领导者为非合作目标, 见图2)等任务场景下, 集群系统中个体间动力学模型差异较大即异构模型, 同时强电磁干扰时的通信限制和强对抗博弈时外界环境的不确定干扰为集群系统的协同控制带来了一定的困难, 因此本文研究的方法能够为实战场景下的分布式协同控制提供有力的理论支撑和技术保障.

    图 1  有人−无人飞行器协同飞行示意图
    Fig. 1  The illustration of cooperative flight strategy for manned and unmanned aerial vehicles
    图 2  空地协同围捕目标示意图
    Fig. 2  The illustration of hunting target by air-ground collaboration

    集群系统的通信拓扑关系对应的数学基础即为图论知识中关于拉普拉斯矩阵的相关知识. 假设集群系统中含有$q$个智能体, 智能体$g$和智能体$k$之间存在着从$k$$g$的有向通信, 则${w_{gk}} = 1$, 否则${w_{gk}} = $$ 0$. 定义邻接矩阵为$W = [{w_{gk}}] \in {{\bf R}^{q \times q}}$, 定义度矩阵为$D = {\rm{diag\{ }}\sum\nolimits_{k = 1}^q {{w_{gk}}} {\rm{, }}g = 1,2,\cdots,q{\rm{\} }}$, 定义拉普拉斯矩阵为$L = D - W$. 如果在集群系统的通信拓扑中, 某个智能体$r$到其他所有智能体都存在至少一条有向连接, 则称集群系统的通信拓扑中存在一个以智能体$r$为根节点的生成树.

    假设集群系统中含有$1$个领导者和$N$个跟随者, 不失一般性, 所有智能体采用如下异构模型:

    $$\left\{ \begin{array}{l} {{{\boldsymbol{\dot x}}}_i}(t) = {A_i}{{\boldsymbol{x}}_i}(t) + {B_i}\left( {{{\boldsymbol{u}}_i}(t) + {{\boldsymbol{d}}_i}(t)} \right) \\ {{\boldsymbol{y}}_i}(t) = {C_i}{{\boldsymbol{x}}_i}(t), \\ \end{array} \right.$$ (1)

    其中, $i = 1,2,\cdots,1 + N$, ${{\boldsymbol{x}}_i}(t) \in {{\bf R}^{{n_i}}}$ 表示状态, ${{\boldsymbol{u}}_i}(t) \in $$ {{\bf R}^{{m_i}}}$表示控制输入, ${{\boldsymbol{d}}_i}(t) \in {{\bf R}^{{m_i}}}$表示未知扰动, ${{\boldsymbol{y}}_i}(t) \in {{\bf R}^{{p_i}}}$表示输出, ${A_i} \in {{\bf R}^{{n_i} \times {n_i}}}$, ${B_i} \in {{\bf R}^{{n_i} \times {m_i}}}$, ${C_i} \in {{\bf R}^{{p_i} \times {n_i}}}$, 满足$({A_i},{B_i})$是可镇定的, $({C_i},{A_i})$是可检测的.

    通过上述异构模型可知, 集群系统中所有智能体的动力学模型可以完全不同. 为实现集群系统的输出编队, 假定所有智能体的输出具有相同的维度, 即${p_i} = p \ (i = 1,2,\cdots,1 + N)$. 同时为方便后续表达, 领导者标号为1, 跟随者标号为$2,3,\cdots,1 + N.$

    假设 1[16]. 集群系统的通信拓扑包含一个以领导者为根节点的生成树, 且领导者与跟随者之间的通信方式是单向的, 方向是从领导者到跟随者, 不同跟随者之间的通信方式可以是单向的, 也可以是双向的.

    定义集群系统的通信拓扑在固定时间间隔内保持不变, 该时间间隔被称为驻留时间, 记为$\alpha $, 其最小值被称为最小驻留时间, 记为${\alpha _{\min }}$. 定义$t = {t_0} = $$ 0$为初始时刻, $t = {t_\beta } \ (\beta = 0,1,2,\cdots)$为通信拓扑发生变化的时刻, 称为切换时刻. 如果假设1成立, 则系统在$[{t_\beta },{t_{\beta + 1}})$内的拉普拉斯矩阵${L^\beta }$有如下形式:

    $${L^\beta } = \left[ {\begin{array}{*{20}{c}} 0&0 \\ {L_1^\beta }&{L_2^\beta } \end{array}} \right]$$ (2)

    为了前后表达方式的连贯性, 后续带有上标$\beta $的变量都表示其位于由区间$[{t_\beta },{t_{\beta + 1}})$定义的时间间隔内.

    假设 2. 矩阵方程组(3)存在对解矩阵$({R_g},{S_g})$, 同时矩阵方程(4)存在解矩阵${T_g}$.

    $$\left\{ \begin{array}{l} {R_g}{A_1} = {A_g}{R_g} + {B_g}{S_g} \\ {C_g}{R_g} - {C_1} = 0, \\ \end{array} \right.$$ (3)
    $${B_g}{U_g} - {R_g}{B_1} = 0$$ (4)

    其中,$g = 2,3,\cdots,1 + N$.

    注 1. 假设2要求方程(3)和(4)有解,其可解性是异构集群系统实现输出编队跟踪的必要条件, 其物理意义是领导者的已知或未知输入能够通过跟随者的控制输入${{\boldsymbol{u}}_g}(t)$进行补偿. 该假设与文献[16]中的假设3和假设4类似, 由参考文献[16]中的注释3可知, 式(3)的可解性是异构集群系统能够实现输出调节的必要条件[23-27], 式(4)的可解性类似采用鲁棒控制方法时匹配条件[28-29], 因此假设2是合理的.

    假设 3. 所有智能体的控制输入和未知扰动是有界的, 即满足${\left\| {{{\boldsymbol{u}}_i}} \right\|_1} \leq \chi$, ${\left\| {{{\boldsymbol{d}}_i}} \right\|_1} \leq \bar \chi$, $\chi $$\bar \chi $为未知正实数, 同时未知扰动满足${\lim\nolimits_{t \to \infty }}{{\boldsymbol{d}}_i}(t)$存在.

    注 2. 实际物理系统中智能体的控制输入和未知扰动是有界的, 但是其界限值通常不易获取, 假设3要求扰动的极限存在是由于下文中设计控制协议时借鉴了文献[30]中扰动观测器的设计方法, 此假设为文献[30]中扰动观测器能够收敛的前提条件. 需要说明的是, 针对不同于假设2的扰动形式, 下文中的注释4给出了相应改进方案, 因此假设3是合理的.

    定义 1. 如果通信拓扑如假设1所述, 且对于任意有界初始状态, 等式(5)成立, 则称异构集群系统能够实现有向拓扑切换条件下的输出时变编队跟踪.

    $$\mathop {\lim }\limits_{t \to \infty } \left( {{{\boldsymbol{y}}_g}(t) - {{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right) - {{\boldsymbol{y}}_1}(t)} \right) = {\bf{0}}$$ (5)

    其中,$g = 2,3,\cdots,1 + N$, ${{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right)$为由${\boldsymbol{h}}(t)$定义的时变向量, 可以表征跟随者之间输出编队的队形以及整个编队队形与领导者之间的相对关系.

    由定义1可知, 集群系统的输出时变编队跟踪队形刻画为以${\boldsymbol{h}}(t)$为自变量${{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right)$为因变量的复合向量函数, 与现有研究时变编队的文献[2-22]不同, ${\boldsymbol{h}}(t)$不是固化的全局信息, 而是由领导者或与领导者存在直接拓扑连接的跟随者调控的时变向量. 后续将构造分布式观测器对其进行估计, 估计值记为${{\boldsymbol{\hat h}}_g}(t)$.显然, 如果${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\hat h}}_g}(t) = {{\boldsymbol{h}}_g}(t)$, 则${\lim\nolimits_{t \to \infty }}{{\boldsymbol{z}}_g}\left( {{\boldsymbol{\hat h}}(t)} \right) = {{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right)$. 假设输出是1维的, 根据式(5)所描述的等式关系, 图3给出了二维XOY平面内集群系统输出时变编队跟踪示意图, 其中${\delta _g}\left( {{\boldsymbol{h}}(t)} \right) = \sqrt {{{\left( {z_g^X\left( {{\boldsymbol{h}}(t)} \right)} \right)}^2} + {{\left( {z_g^Y\left( {{\boldsymbol{h}}(t)} \right)} \right)}^2}} $. 在图1中, ${\delta _g}\left( {{\boldsymbol{h}}(t)} \right) $表示跟随者$g$与领导者1在二维XOY平面内相对距离, ${\boldsymbol{z}}_g^X\left( {{\boldsymbol{h}}(t)} \right)$${\boldsymbol{z}}_g^Y\left( {{\boldsymbol{h}}(t)} \right)$分别表示跟随者$g$与领导者1在OX轴和OY轴方向上的相对距离, ${\boldsymbol{h}}(t)$为调整上述相对距离的时变信息, 例如当跟随者绕领导者做旋转运动时, ${\boldsymbol{h}}(t)$可表示旋转半径和旋转角速度信息(见数值仿真部分).

    图 3  集群系统输出时变编队跟踪示意图
    Fig. 3  The illustration of time-varying output formation tracking for swarm systems

    引理 1[17]. 对于任意正定实对称矩阵${J_1},{J_2} \in $$ {{\bf R}^{n \times n}}$和任意向量${\boldsymbol{a}} \in {{\bf R}^n}$, 以下不等式关系成立:

    $${\lambda _{\max }}({J_1}J_2^{ - 1}){{\boldsymbol{a}}^T}{J_2}{\boldsymbol{a}} - {{\boldsymbol{a}}^T}{J_1}{\boldsymbol{a}} \geq 0$$ (6)

    其中,${\lambda _{\max }}(J)$表示矩阵$J$的最大特征值, 下同.

    引理 2[31]. 如果假设1成立, 式(2)中分块矩阵$L_2^\beta $ 的所有特征值均具有正实部. 同时, 存在正定对角矩阵${E^\beta } = {\rm{diag\{ }}\bar e_2^\beta ,\bar e_3^\beta ,\cdots,\bar e_{1 + N}^\beta \}$使${E^\beta }L_2^\beta + {\left( {L_2^\beta } \right)^{\rm{T}}} $$ {E^\beta } > 0$, 记$\tilde L_2^\beta = {E^\beta }L_2^\beta + {\left( {L_2^\beta } \right)^{\rm{T}}} {E^\beta }$, $\tilde \lambda _{\min }^\beta $表示$\tilde L_2^\beta $的最小特征值.

    本节将给出控制协议的设计方法, 考虑到集群系统中领导者存在已知或未知控制输入, 领导者和跟随者存在未知扰动, 有向通信拓扑存在切换等多种因素影响, 且领导者的控制输入在已知和未知两种情况下控制协议的设计并不相同, 因此对这两种情况进行分开讨论.

    当领导者的控制输入是已知可设计时, 通常对应领导者为合作目标的情况, 则对领导者设计如下控制协议:

    $$ \begin{split} {{{\boldsymbol{\dot{ \hat x}}}}_{1,1}}(t) =& {A_1}{{{\boldsymbol{\hat x}}}_{1,1}} (t) + {B_1}{{\boldsymbol{u}}_1}(t) + \\ & {H_1}\left( {{{\boldsymbol{y}}_1}(t) - {C_1}{{{\boldsymbol{\hat x}}}_{1,1}}(t)} \right) + {B_1}{{{\boldsymbol{\hat d}}}_1}(t) \end{split}\tag{7a} $$
    $${{\boldsymbol{\dot{ \hat d}}}_1}(t) = {\bar H_1}\left( {{{\boldsymbol{y}}_1}(t) - {C_1}{{{\boldsymbol{\hat x}}}_{1,1}}(t) } \right)\tag{7b}$$
    $${{\boldsymbol{u}}_1}(t) = {{\boldsymbol{\bar u}}_1}(t) - {{\boldsymbol{\hat d}}_1}(t)\tag{7c}$$

    其中, 式(7a)和(7b)为具有未知扰动时领导者对自身状态的观测器, 式(7c)为基于该观测器设计的控制器, ${{\boldsymbol{\hat x}}_{1,1}}(t)$表示领导者对自身状态${{\boldsymbol{x}}_1}(t)$的估计值, ${{\boldsymbol{\hat d}}_1}(t)$表示领导者对其未知扰动${{\boldsymbol{d}}_1}(t)$的估计值, ${{\boldsymbol{\bar u}}_1}(t)$表示根据任务需求和领导者模型设计的控制输入, 以实现对领导者输出轨迹的实时调控, ${H_1}$${\bar H_1}$由下文中的算法1确定. 对跟随者$g \in \{ 2, $$ 3,\cdots,1 + N\}$ 设计如下控制协议:

    $$ \begin{split} {{{\boldsymbol{\dot{ \hat x}}}}_{g,g}}(t) =& {A_g}{{{\boldsymbol{\hat x}}}_{g,g}} (t) + {B_g}{{\boldsymbol{u}}_g}(t) + \\ & {H_g}\left( {{{\boldsymbol{y}}_g}(t) - {C_g}{{{\boldsymbol{\hat x}}}_{g,g}}(t)} \right) + {B_g}{{{\boldsymbol{\hat d}}}_g}(t) \end{split}\tag{8a} $$
    $${{\boldsymbol{\dot{ \hat d}}}_g}(t) = {\bar H_g}\left( {{{\boldsymbol{y}}_g}(t) - {C_g}{{{\boldsymbol{\hat x}}}_{g,g}}(t) } \right)\tag{8b}$$
    $$ \begin{split} {{{\boldsymbol{\dot{ \hat x}}}}_{g,1}}(t) =& {A_1}{{{\boldsymbol{\hat x}}}_{g,1}}(t) - {\varphi _g}(t) P{{\boldsymbol{\gamma}} _{g,1}}(t) - \\ & {\eta _g}(t) {B_1}{{{\boldsymbol{\hat f}}}_g}(t) - {\upsilon _g}(t) {H_1}{{{\boldsymbol{\bar f}}}_g}(t) \end{split} \tag{8c} $$
    $${{\boldsymbol{\gamma}} _{g,1}}(t) = \sum\limits_{k = 1}^{1 + N} {w_{gk}^\beta \left( {{{{\boldsymbol{\hat x}}}_{g,1}}(t) - {{{\boldsymbol{\hat x}}}_{k,1}}(t)} \right)} \tag{8d}$$
    $${{\boldsymbol{\hat f}}_g}(t) = {\rm{sgn}} \left( {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right)\tag{8e}$$
    $${{\boldsymbol{\bar f}}_g}(t) = {\rm{sgn}} \left( {H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right)\tag{8f}$$
    $${\dot \varphi _g}(t) = {\vartheta _g}{\boldsymbol{\gamma}} _{g,1}^{\rm{T}}(t){P^2}{{\boldsymbol{\gamma}} _{g,1}}(t)\tag{8g}$$
    $${\dot \eta _g}(t) = {\rho _g}w_{g1}^\beta {\left\| {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|_1}\tag{8h}$$
    $${\dot \upsilon _g}(t) = {\phi _g}w_{g1}^\beta {\left\| {H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|_1}\tag{8i}$$
    $${{\boldsymbol{\dot {\hat h}}}_g}(t) = - \dfrac{{\left( {\mu {{{\boldsymbol{\tilde h}}}_g}(t) - w_{g1}^\beta {\boldsymbol{\dot h}}(t) - \displaystyle\sum\limits_{k = 2}^{1 + N} {w_{gk}^\beta {{{\boldsymbol{\dot {\hat h}}}}_k}(t)} } \right)}}{{\displaystyle\sum\limits_{k = 2}^{1 + N} {w_{gk}^\beta } }}\tag{8j}$$
    $${{\boldsymbol{\tilde h}}_g}(t) = w_{g1}^\beta \left( {{{{\boldsymbol{\hat h}}}_g}(t) - {\boldsymbol{h}}(t)} \right) + \sum\limits_{k = 2}^{1 + N} {w_{gk}^\beta \left( {{{{\boldsymbol{\hat h}}}_g}(t) - {{{\boldsymbol{\hat h}}}_k}(t)} \right)} \tag{8k}$$
    $$ \begin{split} {{\boldsymbol{u}}_g}(t) = & K_g^1\left( {{{{\boldsymbol{\hat x}}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t)} \right) + K_g^2{{{\boldsymbol{\hat x}}}_{g,1}}(t) - \\ & {\kappa _g}(t){U_g}{{\boldsymbol{f}}_g}(t) + {{\boldsymbol{v}}_g}(t) - {{{\boldsymbol{\hat d}}}_g}(t) \end{split}\tag{8m} $$
    $$\begin{split}{{\boldsymbol{f}}_g}(t){\kern 1pt} = &{\kern 1pt} {\mathop{\rm{sgn}}} \Big( U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}\big( {{{\boldsymbol{\hat x}}}_{g,g}}(t){\kern 1pt} -\\ &{\kern 1pt} {{\boldsymbol{\varpi}} _g}(t){\kern 1pt} - {\kern 1pt} {R_g}{{{\boldsymbol{\hat x}}}_{g,1}}(t){\kern 1pt} {\kern 1pt} \big) \Big)\end{split}\tag{8n}$$
    $${\dot \kappa _g}(t) = {\sigma _g} {\left\| {U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}\left( {{{{\boldsymbol{\hat x}}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{{\boldsymbol{\hat x}}}_{g,1}}(t) } \right)} \right\|_1}\tag{8p}$$
    $${{\boldsymbol{v}}_g}(t) = - {\bar B_{g,1}}\left( {{A_g}{{\boldsymbol{\varpi}} _g}(t) - {{{\boldsymbol{\dot \varpi}} }_g}(t)} \right)\tag{8q}$$

    其中, 式(8a)和(8b)为具有未知扰动时跟随者对自身状态的观测器, 式(8c) ~ (8i)为跟随者对领导者估计状态的分布式观测器, 式(8j)和(8k)为跟随者$g$${\boldsymbol{h}}(t)$的分布式观测器, 式(8m) ~ (8q)为跟随者的控制器部分, ${{\boldsymbol{\hat x}}_{g,g}}(t)$表示跟随者对自身状态${{\boldsymbol{x}}_g}(t)$的估计值, ${{\boldsymbol{\hat d}}_g}(t)$表示跟随者对其未知扰动${{\boldsymbol{d}}_g}(t)$的估计值, ${{\boldsymbol{\hat x}}_{g,1}}(t)$表示跟随者对领导者估计状态${{\boldsymbol{\hat x}}_{1,1}}(t)$的估计值, ${{\boldsymbol{\gamma}} _{g,1}}(t)$表示${{\boldsymbol{\hat x}}_{g,1}}(t)$相对于其邻居估计值的局部误差, ${\rm{sgn}}( \cdot )$表示标准符号函数, ${\varphi _g}(t)$${\eta _g}(t)$${\upsilon _g}(t)$${\kappa _g}(t)$表示自适应增益. ${{\boldsymbol{\hat h}}_g}(t)$表示跟随者$g$${\boldsymbol{h}}(t)$的估计值, ${{\boldsymbol{\tilde h}}_g}(t)$表示${{\boldsymbol{\hat h}}_g}(t)$相对于其邻居估计值的局部误差, ${{\boldsymbol{\varpi}} _g}(t)$为可设计的时变向量函数, 满足${C_g}{{\boldsymbol{\varpi}} _g}(t) = {{\boldsymbol{z}}_g}\left( {{{{\boldsymbol{\hat h}}}_g}(t)} \right)$, $w_{g1}^\beta $$w_{gk}^\beta $由通信拓扑结构确定, ${{\boldsymbol{v}}_g}(t)$被称作编队补偿项, ${H_g}$${\bar H_g}$$P$${\vartheta _g}$${\rho _g}$${\phi _g}$$\mu $${\sigma _g}$$K_g^1$$K_g^2$${U_g}$${Q_g}$${R_g}$${\bar B_{g,1}}$均由下文中的算法1确定.

    注 3. 在控制协议(8)中, 式(8g) ~ (8i)为增益${\varphi _g}(t)$${\eta _g}(t)$${\upsilon _g}(t)$的自适应律, 其含义是当局部误差${{\boldsymbol{\gamma}} _{g,1}}(t)$不为${\bf{0}}$ 时, 上述增益会一直更新, 同理, 式8(p)为增益 ${\kappa _g}(t)$ 的自适应律, 当${{\boldsymbol{\hat x}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t) - $$ {R_g}{{\boldsymbol{\hat x}}_{g,1}}(t)$不为${\bf{0}}$, ${\kappa _g}(t)$ 会一直更新. 由于滑模控制的抖振现象造成${{\boldsymbol{\gamma}} _{g,1}}(t)$${{\boldsymbol{\hat x}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{\boldsymbol{\hat x}}_{g,1}}(t)$不会完全收敛到${\bf{0}}$, 进而会使增益${\varphi _g}(t)$${\eta _g}(t)$${\upsilon _g}(t)$${\kappa _g}(t)$一直缓慢地增大, 下文将给出解决该问题的具体方法. 式(8j)表示${{\boldsymbol{\hat h}}_g}(t) $的变化规律与局部估计误差${{\boldsymbol{\tilde h}}_g}(t)$以及跟随者$g $的有限邻居对 ${\boldsymbol{h}}(t)$估计值导数之和$w_{g1}^\beta {\boldsymbol{\dot h}}(t) + \sum\nolimits_{k = 2}^{1 + N} {w_{gk}^\beta {{{\boldsymbol{\dot{ \hat h}}}}_k}(t)} $有关, 对于跟随者$g $来说, 其有限邻居对${\boldsymbol{h}}(t)$估计值是可获取的, 因此其有限邻居对${\boldsymbol{h}}(t)$估计值导数可以通过差分计算等方法获得.

    算法 1. 通过下列步骤确定控制协议(7)和(8)中的待定参数:

    步骤 1. 设计${R_g}$${S_g}$${U_g}$使等式(3)和(4)成立.

    步骤 2. 选取矩阵${H_i}$${\bar H_i} $使得矩阵${\bar A_i}$是Hurwitz的, 其中$i = 1,2,\cdots,1 + N$.

    $${\bar A_i} = \left[ {\begin{array}{*{20}{c}} {{A_i} - {H_i}{C_i}}&{{B_i}} \\ { - {{\bar H}_i}{C_i}}&0 \end{array}} \right]$$ (9)

    步骤 3. 选取$\theta > 0$, 求下列Riccati方程的正定实对称解阵$P$.

    $$P{A_1} + A_1^{\rm{T}}P - {P^2} + \theta P = - {I_{{n_1}}}$$ (10)

    其中,${I_{{n_1}}}$${n_1}$阶单位阵. 由于$({A_1},{I_{{n_1}}})$是可控的, 所以存在唯一的解使得等式(10)成立[16].

    步骤 4. 选取${\vartheta _g} > 0$, ${\rho _g} > 0$, ${\phi _g} > 0$, $\mu > 0$, ${\sigma _g} > 0$, 选取$K_g^1$使得${A_g} + {B_g}K_g^1$是Hurwitz的, 计算$K_g^2 = {S_g} - K_g^1{R_g}$.

    步骤 5. 求下列Lyapunov方程的正定实对称解阵${Q_g}$.

    $${Q_g}({A_g} + {B_g}K_g^1) + {({A_g} + {B_g}K_g^1)^{\rm{T}}}{Q_g} = - 2{I_{{n_g}}}$$ (11)

    其中,${I_{{n_g}}}$${n_g}$阶单位阵.

    步骤 6. 选取${\bar B_{g,1}}$${\bar B_{g,2}}$满足${\bar B_{g,1}}{B_g} = {I_{{m_g}}}$, ${\bar B_{g,2}}{B_g} = {0_{({n_g} - {m_g}) \times {m_g}}}$, 且$\bar B = [\bar B_1^T,\bar B_2^T] \in {{\bf R}^{{n_g} \times {n_g}}}$为非奇异矩阵.

    定理 1. 对于任意给定的有界初始状态, 如果集群系统中领导者采用控制协议(7), 跟随者采用控制协议(8), 通信拓扑的最小驻留时间满足$\ln {\varsigma _1} - $$ \theta {\alpha _{\min }} < 0$$\ln {\varsigma _2} - 2\mu {\alpha _{\min }} < 0$, 其中${\varsigma _1} = \max {\big\{} {\lambda _{\max }} $$ \left( {{{{E^{\beta + 1}}} / {{E^\beta }}}} \right), \beta = 0,1,\cdots {\big\}},$${\varsigma _2} = {\rm{max}}{\bigg\{} {\lambda _{\max }}\bigg( {\left( {{{\left(L_2^\beta \right)}^{\rm{T}}}L_2^\beta } \right)} \Big/ $$ {\left( {{{\left(L_2^{\beta - 1}\right)}^{\rm{T}}}L_2^{\beta - 1}} \right)} \bigg),\beta = 0,1,\cdots{\bigg\} }$, 同时等式(12)成立, 则异构集群系统在有向拓扑切换条件下可以实现对存在已知可设计控制输入领导者的输出时变编队跟踪.

    $${\bar B_{g,2}}\left( {{A_g}{{\boldsymbol{\varpi}} _g}(t) - {{{\boldsymbol{\dot \varpi}} }_g}(t)} \right) = {\bf{0}}$$ (12)

    证明. 首先证明观测器的收敛性. 有关自身状态观测器(7a)和(7b)以及式(8a)和(8b)的收敛性证明过程详见文献[30], 本文不再赘述. 根据文献[30]中的定理, 定义${{\boldsymbol{\tilde x}}_{1,1}}(t) = {\kern 1pt} {{\boldsymbol{\hat x}}_{1,1}}(t){\kern 1pt} - {\kern 1pt} {{\boldsymbol{x}}_1}(t){\kern 1pt}$, ${{\boldsymbol{\tilde x}}_{g,g}}(t) = $$ {{\boldsymbol{\hat x}}_{g,g}}(t) - {{\boldsymbol{x}}_g}(t)$, ${{\boldsymbol{\tilde d}}_1}(t) = {{\boldsymbol{\hat d}}_1}(t) - {{\boldsymbol{d}}_1}(t) $, ${{\boldsymbol{\tilde d}}_g}(t) = {{\boldsymbol{\hat d}}_g}(t) - $$ {{\boldsymbol{d}}_g}(t)$, 可知 ${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\tilde x}}_{1,1}}(t) = {\bf{0}}$, ${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\tilde x}}_{g,g}}(t) = {\bf{0}}$, ${\lim\nolimits_{t \to \infty }} $$ {{\boldsymbol{\tilde d}}_1}(t) = {\bf{0}}$, ${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\tilde d}}_g}(t) = {\bf{0}}$. 现证明分布式观测器(8c) ~ (8i)以及式(8j)和(8k)的收敛性.

    定义$ {{\boldsymbol{\tilde x}}_{g,1}}(t) = {{\boldsymbol{\hat x}}_{g,1}}(t) - {{\boldsymbol{\hat x}}_{1,1}}(t)$表示跟随者对领导者估计状态${{\boldsymbol{\hat x}}_{1,1}}(t)$的估计误差, 令${\xi _1}(t) = {{\boldsymbol{y}}_1}(t) - $$ {C_1}{{\boldsymbol{\hat x}}_{1,1}}(t)$, 由${\lim\nolimits_{t \to \infty }}\left( {{{{\boldsymbol{\hat x}}}_{1,1}}(t) - {{\boldsymbol{x}}_1}} \right) = {\bf{0}}$可知${\xi _1}(t)$是有界的, 假设其满足${\left\| {{\xi _1}(t)} \right\|_1} \leq \tilde \chi$, $\tilde \chi $为未知正实数. 由式(7a)和式(8c)可知

    $$ \begin{split} {{{\boldsymbol{\dot{ \tilde x}}}}_{g,1}}(t) =& {A_1}{{{\boldsymbol{\tilde x}}}_{g,1}}(t) - {\varphi _g}(t)P{{\boldsymbol{\gamma}} _{g,1}}(t) - {\eta _g}(t){B_1}{{{\boldsymbol{\hat f}}}_g}(t) - \\ & {\upsilon _g}(t){H_1}{{{\boldsymbol{\bar f}}}_g}(t) - {H_1}{\xi _1}(t) - {B_1}\left( {{{\boldsymbol{u}}_1}(t) + {{{\boldsymbol{\hat d}}}_1}(t)} \right) \end{split} $$ (13)

    ${\boldsymbol{\tilde x}}(t) = {[{\boldsymbol{\tilde x}}_{2,1}^{\rm{T}}(t),{\boldsymbol{\tilde x}}_{3,1}^{\rm{T}}(t),\cdots,{\boldsymbol{\tilde x}}_{1 + N,1}^{\rm{T}}(t)]^{\rm{T}}}$, ${\boldsymbol{\tilde \gamma}} (t) = $$ {[{\boldsymbol{\gamma}} _{2,1}^{\rm{T}}(t),{\boldsymbol{\gamma}} _{3,1}^{\rm{T}}(t),\cdots,{\boldsymbol{\gamma}} _{1 + N,1}^{\rm{T}}(t)]^{\rm{T}}}$, ${\boldsymbol{\hat f}}(t) = [{\boldsymbol{\hat f}}_2^{\rm{T}}(t), {\boldsymbol{\hat f}}_3^{\rm{T}}(t),\cdots, $$ {\boldsymbol{\hat f}}_{1 + N}^{\rm{T}}(t)]^{\rm{T}}$, ${\boldsymbol{\bar f}}(t) = {[{\boldsymbol{\bar f}}_2^{\rm{T}}(t),{\boldsymbol{\bar f}}_3^{\rm{T}}(t),\cdots,{\boldsymbol{\bar f}}_{1 + N}^{\rm{T}}(t)]^{\rm{T}}}$, $\tilde \varphi (t) = $$ {\rm{diag}} \; \{ {\varphi _2}(t),\;{\varphi _3}(t),\;\cdots,{\varphi _{1 + N}}(t)\}$, $\tilde \eta (t) = {\rm{diag}}\;{\{} {\eta _2}\;(t), $$ {\eta _3}(t),\cdots,{\eta _{1 + N}}(t){\}}$, $\tilde \upsilon (t) = {\rm{diag}}{\{} {\upsilon _2}(t),{\upsilon _3}(t),\cdots, {\upsilon _{1 + N}} $$ (t){\}}$, ${\tilde \xi _1}(t) = {1_N} \otimes {\xi _1}(t)$, ${{\boldsymbol{\tilde \psi}} _1}(t) = {{\bf{1}}_N} \otimes \left( {{{\boldsymbol{u}}_1}(t) + {{\boldsymbol{d}}_1}(t)} \right)$, 进而(13)可写为向量形式:

    $$ \begin{split} {\boldsymbol{\dot {\tilde x}}}(t) =& \left( {{I_N} \otimes {A_1}} \right){\boldsymbol{\tilde x}}(t) - \left( { \tilde \varphi (t) \otimes P} \right)\tilde {\boldsymbol{\gamma}} (t) - \\ & \left( {\tilde \eta (t) \otimes {B_1}} \right){\boldsymbol{\hat f}}(t) - \left( {\tilde \upsilon (t) \otimes {H_1}} \right){\boldsymbol{\bar f}}(t) - \\ & \left( {{I_N} \otimes {H_1}} \right){{\tilde \xi }_1}(t) - \left( {{I_N} \otimes {B_1}} \right){{{\boldsymbol{\tilde \psi}} }_1}(t) \end{split} $$ (14)

    因为${\boldsymbol{\tilde \gamma}} (t) = \left( {L_2^\beta \otimes {I_{{n_1}}}} \right){\boldsymbol{\tilde x}}(t)$, 可以推出

    $$ \begin{split} {\boldsymbol{\dot {\tilde \gamma}}} (t) =& \left( { {I_N} \otimes {A_1} - \left( {L_2^\beta \tilde \varphi (t)} \right) \otimes P} \right)\tilde {\boldsymbol{\gamma}} (t) - \\ & \left( {\left( {L_2^\beta \tilde \eta (t)} \right) \otimes {B_1}} \right){\boldsymbol{\hat f}}(t) - \left( {L_2^\beta \otimes {B_1}} \right){{{\boldsymbol{\tilde \psi }}}_1}(t) - \\ & \left( {\left( {L_2^\beta \tilde \upsilon (t)} \right) \otimes {H_1}} \right){\boldsymbol{\bar f}}(t) - \left( { L_2^\beta \otimes {H_1}} \right){{\tilde \xi }_1}(t) \end{split} $$ (15)

    构造Lyapunov函数如下:

    $$V(t) = {V_1}(t) + {V_2}(t) + {V_3}(t) + {V_4}(t)$$ (16)

    其中, $t \in [{t_\beta },{t_{\beta + 1}}) \ (\beta = 0,1,\cdots)$, ${V_1}(t) = \sum\nolimits_{g = 2}^{1 + N} \bar e_g^\beta {\boldsymbol{\gamma}} _{g,1}^{\rm{T}} $$ (t)P{{\boldsymbol{\gamma}} _{g,1}}(t)$, ${V_2}(t) = \sum\nolimits_{g = 2}^{1 + N} {\dfrac{{{{\tilde \lambda }_{\min }}}}{{{\vartheta _g}}}{{\left( {{\varphi _g}(t) - \bar \varphi } \right)}^2}}$, ${V_3}(t) = $$ \sum\nolimits_{g = 2}^{1 + N} {\dfrac{{{{\bar e}_{\min }}}}{{{\rho _g}}}{{\left( {{\eta _g}(t) - \bar \eta } \right)}^2}}$, ${V_4}(t) = \sum\nolimits_{g = 2}^{1 + N} {\dfrac{{{{\bar e}_{\min }}}}{{{\phi _g}}}{{\left( {{\upsilon _g}(t) - \bar \upsilon } \right)}^2}}$, ${\tilde \lambda _{\min }} = \min \big\{ \tilde \lambda _{\min }^\beta , \beta = 0,1,2,\cdots\big\}$, ${\bar e_{\min }} = \min {\big\{} \bar e_g^\beta , g = 2, $$ 3,\cdots, 1 + N, \beta = 0,1,2,\cdots{\big\} }$, $\bar \varphi $$\bar \eta $$\bar \upsilon $是可选取的正常数.

    $V(t) $求导可得

    $$\begin{split} & {{\dot V}_1}(t) = {{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t)\left( {{E^\beta } \otimes \left( {P{A_1} + A_1^{\rm{T}}P} \right)} \right) {\boldsymbol{\tilde \gamma}} (t) - \\ & {{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t)\left( { \left( {\left( {{E^\beta }L_2^\beta + {{\left( {L_2^\beta } \right)}^{\rm{T}}} {E^\beta }} \right)\tilde \varphi (t)} \right) \otimes {P^2}} \right){\boldsymbol{\tilde \gamma}} (t) - \\ & 2{{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t) \left( {\left( {{E^\beta }L_2^\beta \tilde \eta (t)} \right) \otimes \left( {P{B_1}} \right)} \right){\boldsymbol{\hat f}}(t) - \\ & 2{{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t) \left( {\left( {{E^\beta }L_2^\beta } \right) \otimes \left( {P{B_1}} \right)} \right){{{\boldsymbol{\tilde \psi}} }_1}(t) - \\ & 2{{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t) \left( {\left( {{E^\beta }L_2^\beta \tilde \upsilon (t)} \right) \otimes \left( {P{H_1}} \right)} \right){\boldsymbol{\bar f}}(t) - \\ & 2{{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t) \left( {\left( {{E^\beta }L_2^\beta } \right) \otimes \left( {P{H_1}} \right)} \right){{\tilde \xi }_1}(t) \\[-13pt] \end{split} $$
    $${\dot V_2}(t) = 2\sum\limits_{g = 2}^{1 + N} {{{\tilde \lambda }_{\min }}\left( {{\varphi _g}(t) - \bar \varphi } \right)} {\boldsymbol{\gamma}} _{g,1}^{\rm{T}}(t){P^2}{{\boldsymbol{\gamma}} _{g,1}}(t)$$ (18)
    $${\dot V_3}(t) = 2\sum\limits_{g = 2}^{1 + N} {{{\bar e}_{\min }}\left( {{\eta _g} (t) - \bar \eta } \right)w_{g1}^\beta {{\left\| {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|}_1}} $$ (19)
    $${\dot V_4}(t) = 2\sum\limits_{g = 2}^{1 + N} {{{\bar e}_{\min }}\left( {{\upsilon _g}(t) - \bar \upsilon } \right)w_{g1}^\beta {{\left\| {H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|}_1}} $$ (20)

    由于${\left\| {{{\boldsymbol{u}}_i}} \right\|_1} \leq \chi$, ${\left\| {{{\boldsymbol{d}}_i}} \right\|_1} \leq \bar \chi$, ${\left\| {{\xi _1}(t)} \right\|_1} \leq \tilde \chi$, ${\boldsymbol{\gamma}} _{g,1}^{\rm{T}}(t) $$ P{B_1}{{\boldsymbol{\hat f}}_g}(t) = {\left\| {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|_1}$, ${\boldsymbol{\gamma}} _{g,1}^{\rm{T}}(t)P{B_1}{{\boldsymbol{\hat f}}_k}(t) \leq \big\| B_1^{\rm{T}} $$ P{{\boldsymbol{\gamma}} _{g,1}}(t) \big\|_1$, ${\boldsymbol{\gamma}} _{g,1}^{\rm{T}}(t)P{H_1}{{\boldsymbol{\bar f}}_g}(t) = {\left\| {H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|_1}$, ${\boldsymbol{\gamma}} _{g,1}^{\rm{T}}(t) $$ P{H_1} {{\boldsymbol{\bar f}}_k}(t) \leq {\left\| {H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|_1}$, 其中$g,k \in {\{ }2,3,\cdots, 1 + $$ N{\}}$, 可以得到下列不等式关系.

    $$ \begin{split} & - 2{{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t) \left( {\left( {{E^\beta }L_2^\beta \tilde \eta (t)} \right) \otimes \left( {P{B_1}} \right)} \right){\boldsymbol{\hat f}}(t) \leq \\ &\qquad\qquad -2{{\bar e}_{\min }}\sum\limits_{g = 2}^{1 + N} {{\eta _g}(t)w_{g1}^\beta {{\left\| {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|}_1}} \end{split} $$ (21)
    $$ \begin{split} & - 2{{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t) \left( {\left( {{E^\beta }L_2^\beta \tilde \upsilon (t)} \right) \otimes \left( {P{H_1}} \right)} \right){\boldsymbol{\bar f}}(t) \leq \\ & \qquad\qquad -2{{\bar e}_{\min }}\sum\limits_{g = 2}^{1 + N} {{\upsilon _g}(t)w_{g1}^\beta {{\left\| {H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|}_1}} \end{split} $$ (22)
    $$ \begin{split} &- 2{{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t) \left( {\left( {{E^\beta }L_2^\beta } \right) \otimes \left( {P{B_1}} \right)} \right){{{\boldsymbol{\tilde \psi}} }_1}(t) \leq \\ & \qquad\qquad 2(\chi + \bar \chi ){{\bar e}_{\max }}\sum\limits_{g = 2}^{1 + N} {w_{g1}^\beta {{\left\| {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|}_1}} \end{split} $$ (23)
    $$ \begin{split} &- 2{{{\boldsymbol{\tilde \gamma}} }^{\rm{T}}}(t) \left( {\left( {{E^\beta }L_2^\beta } \right) \otimes \left( {P{H_1}} \right)} \right){{\tilde \xi }_1}(t) \leq \\ & \qquad\qquad 2\tilde \chi {{\bar e}_{\max }}\sum\limits_{g = 2}^{1 + N} {w_{g1}^\beta {{\left\| {H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|}_1}} \end{split} $$ (24)

    其中,${\bar e_{\max }} = \max \{ \bar e_g^\beta , g = 2,3,\cdots,1 + N, \beta = 0,1,2,\cdots\}$.

    结合式(16) ~ (24), 同时选取足够大的$\bar \varphi $$\bar \eta $$\bar \upsilon $满足$\bar \varphi > \dfrac{{{{\bar e}_{\max }}}}{{2{{\tilde \lambda }_{\min }}}}$, $\bar \eta > \dfrac{{(\chi + \bar \chi ){{\bar e}_{\max }}}}{{{{\bar e}_{\min }}}}$, $\bar \upsilon > \dfrac{{\tilde \chi {{\bar e}_{\max }}}}{{{{\bar e}_{\min }}}}$, 并根据引理2进而可得

    $$\dot V(t) \leq {{\boldsymbol{\tilde \gamma}} ^{\rm{T}}}(t)\left( {{E^\beta } \otimes \left( {P{A_1} + A_1^{\rm{T}}P - {P^2}} \right)} \right) {\boldsymbol{\tilde \gamma}} (t) $$ (25)

    $\zeta (t) = {V_2}(t) + {V_3}(t) + {V_4}(t)$, 根据算法1中的步骤3, 可将式(25)进一步化为

    $$\begin{split} \dot V(t) \leq & - {{\boldsymbol{\tilde \gamma}} ^{\rm{T}}}(t)\left( {{E^\beta } \otimes \left( {\theta P} \right)} \right) {\boldsymbol{\tilde \gamma}} (t) \leq \\ & - \theta \left( {V(t) - \zeta (t) } \right) \leq 0 \end{split}$$ (26)

    更进一步由式(26)可得

    $$V(t) \leq {{\rm{e}}^{ - \theta (t - {t_\beta })}} V({t_\beta }) + \theta \int_{{t_\beta }}^t {{{\rm{e}}^{ - \theta (t - s)}}\zeta (s){\rm{d}}s} $$ (27)

    因为系统通信拓扑在$t = {t_\beta } $发生变化, 如果$\beta \geq 1$, 则由引理1可知

    $$V({t_\beta }) - \zeta ({t_\beta }) \leq {\lambda _{\max }}({{{E^\beta }} / {{E^{\beta - 1}}}})\left( {V(t_\beta ^ - ) - \zeta (t_\beta ^ - ) } \right) $$ (28)

    其中,$t_\beta ^ - $${t_\beta }$的左极限, 进而可得

    $$V({t_\beta }) \leq{\varsigma _1}V(t_\beta ^ - ) + (1 - {\varsigma _1})\zeta (t_\beta ^ - )$$ (29)

    结合式(27)和(29)可得

    $$\begin{split} V(t) \leq &{{\rm{e}}^{ - \theta (t - {t_\beta })}}\left( {{\varsigma _1}V(t_\beta ^ - ) + (1 - {\varsigma _1})\zeta (t_\beta ^ - )} \right) + \\ &\theta \int_{{t_\beta }}^t {{{\rm{e}}^{ - \theta (t - s)}}\zeta (s){\rm{d}}s} \end{split}$$ (30)

    同理根据式(26)可以推出

    $$V(t_\beta ^ - ) \leq {{\rm{e}}^{ - \theta (t_\beta ^ - - {t_{\beta - 1}})}} V({t_{\beta - 1}}) + \theta \int_{{t_{\beta - 1}}}^{t_\beta ^ - } {{{\rm{e}}^{ - \theta (t - s)}}\zeta (s){\rm{d}}s} $$ (31)

    进一步根据递归方法可得

    $$V(t) \leq \varsigma _1^\beta {{\rm{e}}^{ - \theta (t - {t_0})}}V({t_0}) + \hat V(t)$$ (32)

    其中

    $$ \begin{split} \hat V(t) =& \varsigma _1^\beta \theta \int_{{t_0}}^{t_1^ - } {{{\rm{e}}^{ - \theta (t - s)}}\zeta (s){\rm{d}}s} + \\ & \varsigma _1^{\beta - 1}{{\rm{e}}^{ - \theta (t - {t_1})}}(1 - {\varsigma _1})\zeta (t_1^ - ) + \\ & \varsigma _1^{\beta - 1}\theta \int_{{t_1}}^{t_2^ - } {{{\rm{e}}^{ - \theta (t - s)}}\zeta (s){\rm{d}}s} + \\ & \varsigma _1^{\beta - 2}{{\rm{e}}^{ - \theta (t - {t_2})}}(1 - {\varsigma _1})\zeta (t_2^ - ) + \cdots + \\ & {\varsigma _1}\theta \int_{{t_{\beta - 1}}}^{t_\beta ^ - } {{{\rm{e}}^{ - \theta (t - s)}}\zeta (s){\rm{d}}s} + \\ & {{\rm{e}}^{ - \theta (t - {t_\beta })}}(1 - {\varsigma _1})\zeta (t_\beta ^ - ) + \\ &\theta \int_{{t_\beta }}^t {{{\rm{e}}^{ - \theta (t - s)}}\zeta (s){\rm{d}}s} \end{split} $$

    现对$\hat V(t)$进行分析, 由于$\zeta (t) = {V_2}(t) + {V_3}(t) + $$ {V_4}(t)$是连续函数, 拓扑切换不会造成函数值突变, 因此通过分部积分法可得

    $$ \begin{split} \hat V(t) = & {{\rm{e}}^{ - \theta (t - t)}}\zeta (t) - \varsigma _1^\beta {{\rm{e}}^{ - \theta (t - {t_0})}}\zeta ({t_0}) - \\ & \varsigma _1^\beta \theta \int_{{t_0}}^{t_1^ - } {\dot \zeta (s){{\rm{e}}^{ - \theta (t - s)}}{\rm{d}}s} - \\ & \varsigma _1^{\beta - 1}\theta \int_{{t_1}}^{t_2^ - } {\dot \zeta (s){{\rm{e}}^{ - \theta (t - s)}}{\rm{d}}s} - \cdots - \\ &\varsigma _1^2\theta \int_{{t_{\sigma - 2}}}^{t_{\sigma - 1}^ - } {\dot \zeta (s){{\rm{e}}^{ - \theta (t - s)}}{\rm{d}}s} - \\ & {\varsigma _1}\theta \int_{{t_{\sigma - 1}}}^{t_\sigma ^ - } {\dot \zeta (s){{\rm{e}}^{ - \theta (t - s)}}{\rm{d}}s} -\\ &\theta \int_{{t_\sigma }}^{{t^ - }} {\dot \zeta (s){{\rm{e}}^{ - \theta (t - s)}}{\rm{d}}s} \end{split} $$ (33)

    讨论以下两种情况:

    1)假设$\zeta (t)$是有界的, 则${\varphi _g}(t)$${\eta _g}(t)$${\upsilon _g}(t)$均收敛到某个有限值, 分析${\dot \varphi _g}(t)$${\dot \eta _g}(t)$${\dot \upsilon _g}(t)$可知, ${\lim\nolimits_{t \to \infty }}{\dot \varphi _g} (t) = 0$, ${\lim\nolimits_{t \to \infty }}{\dot \eta _g} (t) = 0$, ${\lim\nolimits_{t \to \infty }}{\dot \upsilon _g} (t) = $$ 0$, 进而可以推出${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\gamma}} _{g,1}}(t) = {\bf{0}}$, 由于${\boldsymbol{\tilde \gamma}} (t) = $$ (L_2^\beta \otimes {I_{{n_1}}}){\boldsymbol{\tilde x}}(t)$, $L_2^\beta $是非奇异矩阵, 可得${\lim\nolimits_{t \to \infty }} {{\boldsymbol{\tilde x}}_{g,1}} $$ (t) = {\bf{0}}$.

    2)假设$\zeta (t)$是无界的, 则${\varphi _g}(t)$${\eta _g}(t)$${\upsilon _g}(t)$至少有一个是无界的, 即${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\gamma}} _{g,1}}(t) \ne {\bf{0}}$, ${\lim\nolimits_{t \to \infty }}\dot \zeta > $$ 0$, ${\lim\nolimits_{t \to \infty }}V(t) > \zeta (t)$. 值得注意的是, 如果${\lim\nolimits_{t \to \infty }} $$ \dot \zeta > 0$, 通过分析式(32)和(33)可知

    $$V(t) \leq \varsigma _1^\beta {{\rm{e}}^{ - \theta (t - {t_0})}}\left( {V({t_0}) - \zeta ({t_0})} \right) + \zeta (t) $$ (34)

    $t - {t_0} = t - {t_\beta } + {t_\beta } - {t_{\beta - 1}} + \cdots + {t_1} - {t_0} \geq $$ t - {t_\beta } + \beta {\alpha _{\min }}$$\ln {\varsigma _1} - \theta {\alpha _{\min }} < 0$可得${\lim\nolimits_{t \to \infty }}V(t) \leq $$ \zeta (t)$, 矛盾, 所以上述假设不成立.

    综合两种讨论结果可知, $\zeta (t)$是有界的, 即${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\tilde x}}_{g,1}}(t) = {\bf{0}}$, 因此分布式观测器(8c) ~ (8i)是收敛的.

    对于分布式观测器(8j)和(8k), 分析可知

    $${{\boldsymbol{\dot {\tilde h}}}_g}(t) = - \mu {{\boldsymbol{\tilde h}}_g}(t)$$ (35)

    ${\boldsymbol{\tilde h}} (t) = {[{\boldsymbol{\tilde h}}_2^{\rm{T}}(t),{\boldsymbol{\tilde h}}_3^{\rm{T}}(t),\cdots,{\boldsymbol{\tilde h}}_{1 + N}^{\rm{T}}(t)]^{\rm{T}}}$, 同时令${{\boldsymbol{\bar h}}_g} $$ (t) = {{\boldsymbol{\hat h}}_g}(t) - {\boldsymbol{h}}(t)$, ${\boldsymbol{\bar h}}(t) = [{\boldsymbol{\bar h}}_2^{\rm{T}}(t),{\boldsymbol{\bar h}}_3^{\rm{T}}(t),\cdots, {\boldsymbol{\bar h}}_{1 + N}^{\rm{T}}(t)]^{\rm{T}}$, 分析可得${\boldsymbol{\tilde h}}(t) = L_2^\beta {\boldsymbol{\bar h}}(t)$, 构造Lyapunov函数为

    $$\tilde V(t) = {{\boldsymbol{\tilde h}}^{\rm{T}}}(t){\boldsymbol{\tilde h}}(t) = {{\boldsymbol{\bar h}}^{\rm{T}}}(t){\left( {L_2^\beta } \right)^{\rm{T}}} L_2^\beta {\boldsymbol{\bar h}}(t)$$ (36)

    其中,$t \in [{t_\beta },{t_{\beta + 1}})\ (\beta = 0,1,\cdots)$. 对$\bar V(t)$求导可得

    $$\dot{ \tilde V}(t) = - 2\mu {{\boldsymbol{\tilde h}}^{\rm{T}}}(t){\boldsymbol{\tilde h}}(t) = - 2\mu \tilde V(t) \leq 0$$ (37)

    进一步可得

    $$\tilde V(t) = {{\rm{e}}^{ - 2\mu (t - {t_\beta })}}\tilde V({t_\beta })$$ (38)

    因为系统通信拓扑在$t = {t_\beta } $发生变化, 如果$\beta \geq 1$, 则由引理1可知

    $$\tilde V({t_\beta }) \leq {\lambda _{\max }}\left( {{{\left( {{{(L_2^\beta )}^{\rm{T}}}L_2^\beta } \right)} / {\left( {{{(L_2^{\beta - 1})}^{\rm{T}}}L_2^{\beta - 1}} \right)}}} \right)\tilde V(t_\beta ^ - )$$ (39)

    进而可得

    $$\tilde V({t_\beta }) \leq {\varsigma _2}\tilde V(t_\beta ^ - )$$ (40)

    由式(38)可以推出

    $$\tilde V(t_\beta ^ - ) = {{\rm{e}}^{ - 2\mu (t_\beta ^ - - {t_{\beta - 1}})}}\tilde V({t_{\beta - 1}})$$ (41)

    同理运用递归方法可得

    $$\tilde V(t) \leq \varsigma _2^\beta {{\rm{e}}^{ - 2\mu (t - {t_0})}}\tilde V({t_0})$$ (42)

    进而根据$\ln {\varsigma _2} - 2\mu {\alpha _{\min }} < 0$以及$t - {t_0} \geq t - {t_\beta } + $$ \beta {\alpha _{\min }}$可知${\lim\nolimits_{t \to \infty }}\tilde V(t) = 0$, 等价于${\lim\nolimits_{t \to \infty }}{\boldsymbol{\bar h}}(t) = {\bf{0}}$, 因此分布式观测器(8j)和(8k)是收敛的.

    接下来证明在控制器(8m) ~ (8q)的作用下异构集群系统能够实现输出时变编队跟踪. 将控制器(8m) ~ (8q)代入式(1)中可得

    $$ \begin{split} {{{\boldsymbol{\dot x}}}_g}(t) =& \left( {{A_g} + {B_g}K_g^1} \right){{\boldsymbol{x}}_g}(t) + {B_g}K_g^2{{{\boldsymbol{\hat x}}}_{1,1}}(t) - \\ & {B_g} {\kappa _g}(t){U_g}{{\boldsymbol{f}}_g}(t) + {B_g}K_g^1{{{\boldsymbol{\tilde x}}}_{g,g}}(t) + \\ &{B_g}K_g^2{{{\boldsymbol{\tilde x}}}_{g,1}}(t) + \\ & {B_g}{{{\boldsymbol{\tilde d}}}_g}(t) - {B_g} {{\bar B}_{g,1}}\left( {{A_g}{{\boldsymbol{\varpi}} _g}(t) - {{{\boldsymbol{\dot \varpi}} }_g}(t)} \right) - \\ &{B_g}K_g^1{{\boldsymbol{\varpi}} _g}(t)\\[-10pt] \end{split} $$ (43)

    ${{\boldsymbol{b}}_g}(t) = {{\boldsymbol{x}}_g}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{\boldsymbol{x}}_1}(t)$, 由可得

    $$ \begin{split} {{{\boldsymbol{\dot b}}}_g}(t) = &\left( {{A_g} + {B_g}K_g^1} \right){{\boldsymbol{b}}_g}(t) + \\ &\left( {{A_g} + {B_g}K_g^1} \right){R_g}{{\boldsymbol{x}}_1}(t) - \\ & {R_g}\left( {{A_1}{{\boldsymbol{x}}_1}(t) + {B_1}{{\boldsymbol{u}}_1}(t) + {B_1}{{\boldsymbol{d}}_1}(t)} \right) + \\ & {B_g}K_g^2{{{\boldsymbol{\hat x}}}_{1,1}}(t) - {B_g} {\kappa _g}(t){U_g}{{\boldsymbol{f}}_g}(t) + \\ & {B_g}K_g^1{{{\boldsymbol{\tilde x}}}_{g,g}}(t) + {B_g}K_g^2{{{\boldsymbol{\tilde x}}}_{g,1}}(t) + {B_g}{{{\boldsymbol{\tilde d}}}_g}(t) - \\ & {B_g} {{\bar B}_{g,1}}\left( {{A_g}{{\boldsymbol{\varpi}} _g}(t) - {{{\boldsymbol{\dot \varpi}} }_g}(t)} \right) + \\ &{A_g}{{\boldsymbol{\varpi}} _g}(t) - {{{\boldsymbol{\dot \varpi}} }_g}(t)\\[-10pt] \end{split} $$ (44)

    由算法1中的步骤6和等式(12)可知

    $$ - {B_g} {\bar B_{g,1}}\left( {{A_g}{{\boldsymbol{\varpi}} _g}(t) - {{{\boldsymbol{\dot \varpi}} }_g}(t)} \right) + {A_g}{{\boldsymbol{\varpi}} _g}(t) - {{\boldsymbol{\dot \varpi}} _g}(t) = 0$$ (45)

    进而式(44)可化简为

    $$ \begin{split} {{{\boldsymbol{\dot b}}}_g}(t) =& \left( {{A_g} + {B_g}K_g^1} \right){{\boldsymbol{b}}_g}(t) + \\ &\left( {{A_g} + {B_g}K_g^1} \right){R_g}{{\boldsymbol{x}}_1}(t) - \\ & {R_g}\left( {{A_1}{{\boldsymbol{x}}_1}(t) + {B_1}{{\boldsymbol{u}}_1}(t) + {B_1}{{\boldsymbol{d}}_1}(t)} \right) + \\ & {B_g}K_g^2{{{\boldsymbol{\hat x}}}_{1,1}}(t) - \\ & {B_g} {\kappa _g}(t){U_g}{{\boldsymbol{f}}_g}(t) + {B_g}K_g^1{{{\boldsymbol{\tilde x}}}_{g,g}}(t) + \\ & {B_g}K_g^2{{{\boldsymbol{\tilde x}}}_{g,1}}(t) + {B_g}{{{\boldsymbol{\tilde d}}}_g}(t) \end{split} $$ (46)

    根据假设2中的式(3)、(4)以及算法1的步骤4中$K_g^2 = {S_g} - K_g^1{R_g}$可将式(46)进一步化简为

    $$ \begin{split} {{{\boldsymbol{\dot b}}}_g}(t) =& \left( {{A_g} + {B_g}K_g^1} \right){{\boldsymbol{b}}_g}(t) - {B_g} {U_g}( {{\boldsymbol{u}}_1}(t) + \\ &{{\boldsymbol{d}}_1}(t) ) - {B_g} {\kappa _g}(t){U_g}{{\boldsymbol{f}}_g}(t) + {B_g}K_g^1{{{\boldsymbol{\tilde x}}}_{g,g}}(t) + \\ &{B_g}K_g^2{{{\boldsymbol{\tilde x}}}_{g,1}}(t) + \\ & {B_g}{{{\boldsymbol{\tilde d}}}_g}(t) + {B_g}K_g^2{{{\boldsymbol{\tilde x}}}_{1,1}}(t)\\[-10pt] \end{split} $$ (47)

    考虑如下Lyapunov函数:

    $${\bar V_g}(t) = {\boldsymbol{b}}_g^{\rm{T}}(t) {Q_g}{{\boldsymbol{b}}_g}(t) + \dfrac{1}{{{\sigma _g}}}{\left( {{\kappa _g}(t) - \bar \kappa } \right)^2}$$ (48)

    其中,$g = 2,3,\cdots,1 + N$, $\bar \kappa $为可选取的正常数. 对${\bar V_g}(t)$求导并根据算法1的步骤5可得

    $${\dot{ \bar V}_g}(t) = - 2{\boldsymbol{b}}_g^{\rm{T}}(t) {{\boldsymbol{b}}_g}(t) + {\Lambda _g}(t) $$ (49)

    其中

    $$ \begin{split} {\Lambda _g}(t) =& - 2{\boldsymbol{b}}_g^{\rm{T}}(t){Q_g} {B_g} {U_g} ( {{\boldsymbol{u}}_1}(t) + {{\boldsymbol{d}}_1}(t) +\\ &{\kappa _g}(t){{\boldsymbol{f}}_g}(t) ) + \\ & 2\left( {{\kappa _g}(t) - \bar \kappa } \right) \big\| U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}( {{{\boldsymbol{\hat x}}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t) - \\ &{R_g}{{{\boldsymbol{\hat x}}}_{g,1}}(t) ) \big\|_1 + 2{\boldsymbol{b}}_g^{\rm{T}}(t){{\boldsymbol{\omega}} _g}(t) \end{split} $$
    $$ \begin{split} {{\boldsymbol{\omega}} _g}(t) =& {Q_g}{B_g}K_g^1{{{\boldsymbol{\tilde x}}}_{g,g}}(t) + {Q_g}{B_g}K_g^2{{{\boldsymbol{\tilde x}}}_{g,1}}(t) + \\ & {Q_g}{B_g}{{{\boldsymbol{\tilde d}}}_g}(t) + {Q_g}{B_g}K_g^2{{{\boldsymbol{\tilde x}}}_{1,1}}(t) \end{split} $$

    ${{\boldsymbol{\varepsilon}} _g}(t) = {\rm{sgn}} \big( U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}( {{\boldsymbol{x}}_g}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{\boldsymbol{x}}_1} $$ (t) ) \big)$, ${{\boldsymbol{\hat b}}_g}(t) = {{\boldsymbol{\hat x}}_g}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{\boldsymbol{\hat x}}_{g,1}}(t)$, ${{\boldsymbol{\tilde b}}_g}(t) = {{\boldsymbol{\hat b}}_g}(t) - $$ {{\boldsymbol{b}}_g}(t)$, 进而可得 ${{\boldsymbol{\tilde b}}_g}(t) = {{\boldsymbol{\tilde x}}_{g,g}}(t) - {R_g}( {{{\boldsymbol{\tilde x}}}_{g,1}}(t) + {{{\boldsymbol{\tilde x}}}_{1,1}} $$ (t))$. 因为 ${\lim\nolimits_{t \to \infty }} {{\boldsymbol{\tilde x}}_{g,g}}(t) = {\bf{0}}$, ${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\tilde x}}_{g,1}}(t) = {\bf{0}}$, ${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\tilde x}}_{1,1}}(t) = {\bf{0}}$, ${\lim\nolimits_{t \to \infty }} {{\boldsymbol{\tilde d}}_g}(t) = {\bf{0}}$, 分析可知${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\tilde b}}_g}(t) = {\bf{0}}$, 等价于${\lim\nolimits_{t \to \infty }} {{\boldsymbol{\hat b}}_g}(t) = {{\boldsymbol{b}}_g}(t)$, 同时可以得到 ${\lim\nolimits_{t \to \infty }} {{\boldsymbol{\omega}} _g}(t) = {\bf{0}}$, ${\lim\nolimits_{t \to \infty }}{{\boldsymbol{f}}_g}(t) = {{\boldsymbol{\varepsilon}} _g}(t)$. 当选取足够大的$\bar \kappa $满足$\bar \kappa > \chi + \bar \chi $时可以推出

    $$\begin{split}\mathop {\lim }\limits_{t \to \infty } {\Lambda _g}(t) \leq& \mathop {\lim }\limits_{t \to \infty } \big( - 2(\bar \kappa - \chi - \bar \chi ) {{\left\| {U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}{{\boldsymbol{b}}_g}(t) } \right\|}_1} + \\ &2{\boldsymbol{b}}_g^{\rm{T}}(t){{\boldsymbol{\omega}} _g}(t) \big)\\[-10pt]\end{split}$$ (50)

    根据杨氏不等式可知

    $$2{\boldsymbol{b}}_g^{\rm{T}}(t){{\boldsymbol{\omega}} _g}(t) \leq {\boldsymbol{b}}_g^{\rm{T}}(t){{\boldsymbol{b}}_g}(t) + {\boldsymbol{\omega}} _g^{\rm{T}}(t){{\boldsymbol{\omega}} _g}(t)$$ (51)

    进而可得

    $$\begin{split} \mathop {\lim }\limits_{t \to \infty } {\Lambda _g}(t) \leq& \mathop {\lim }\limits_{t \to \infty } ( - 2 \left( {\bar \kappa - \chi - \bar \chi } \right) {{\left\| {U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}{{\boldsymbol{b}}_g}(t) } \right\|}_1} + \\ &{\boldsymbol{b}}_g^{\rm{T}}(t){{\boldsymbol{b}}_g}(t) )\\[-10pt]\end{split}$$ (52)

    现采用反证法进行证明${\bar V_g}(t)$的有界性. 如果${\bar V_g}(t)$是无界的, 分析可知${\lim\nolimits_{t \to \infty }}{\dot{ \bar V}_g} (t) > 0$. 矛盾的是, 由式(49)、(52)可知

    $$\begin{split} \mathop {\lim }\limits_{t \to \infty } {\dot{ \bar V}_g} (t) =& \mathop {\lim }\limits_{t \to \infty } \big( - {\boldsymbol{b}}_g^{\rm{T}}(t) {{\boldsymbol{b}}_g}(t) - 2 \left( {\bar \kappa - \chi - \bar \chi } \right) \big\|\\ &{U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}{{\boldsymbol{b}}_g}(t) } \big\|_1 \big) \leq 0\\[-10pt]\end{split}$$ (53)

    因此${\bar V_g}(t)$是有界的, 分析式(48)可知, 如果${\bar V_g}(t)$是有界的, 则${\lim\nolimits_{t \to \infty }} {\dot {\bar V}_g} (t) = 0$, 进而根据式(53)可知, ${\lim\nolimits_{t \to \infty }} {{\boldsymbol{b}}_g}(t) = {\bf{0}}$, 进一步可以推出${\lim\nolimits_{t \to \infty }} {C_g} $$ \left( {{{\boldsymbol{x}}_g}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{\boldsymbol{x}}_1}(t)} \right) = {\bf{0}}$. 又因为 ${C_g}{{\boldsymbol{\varpi}} _g}(t) = $$ {{\boldsymbol{z}}_g}\left( {{{{\boldsymbol{\hat h}}}_g}(t)} \right)$, ${\lim\nolimits_{t \to \infty }}{{\boldsymbol{\hat h}}_g}(t) = {\boldsymbol{h}}(t)$, ${C_g}{R_g} = {C_1}$, 进而可得${\lim\nolimits_{t \to \infty }} \left( {{{\boldsymbol{y}}_g}(t) - {{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right) - {{\boldsymbol{y}}_1}(t)} \right) = {\bf{0}}$. 根据定义1可知, 异构集群系统能够在有向拓扑切换条件下实现对领导者的输出时变编队跟踪.

    当领导者的控制输入是未知不可设计时, 通常对应领导者是非合作目标的情况, 则只对跟随者$g \in \{ 2,3,\cdots,1 + N\}$设计如下控制协议:

    $$ \begin{split} {{{\boldsymbol{\dot{ \hat x}}}}_{g,g}}(t) =& {A_g}{{{\boldsymbol{\hat x}}}_{g,g}} (t) + {B_g}{{\boldsymbol{u}}_g}(t) + \\ & {H_g}\left( {{{\boldsymbol{y}}_g}(t) - {C_g}{{{\boldsymbol{\hat x}}}_{g,g}}(t)} \right) + {B_g}{{{\boldsymbol{\hat d}}}_g}(t) \end{split} \tag{54a}$$
    $${{\boldsymbol{\dot{ \hat d}}}_g}(t) = {\bar H_g}\left( {{{\boldsymbol{y}}_g}(t) - {C_g}{{{\boldsymbol{\hat x}}}_{g,g}}(t) } \right)\tag{54b}$$
    $${{\boldsymbol{\dot{ \hat x}}}_{g,1}}(t) = {A_1}{{\boldsymbol{\hat x}}_{g,1}}(t) - {\varphi _g}(t) P{{\boldsymbol{\gamma}} _{g,1}}(t) - {\eta _g}(t) {B_1}{{\boldsymbol{\hat f}}_g}(t) \tag{54c}$$
    $$\begin{split}{{\boldsymbol{\gamma}}_{g,1}}(t) =& w_{g1}^\beta \left( {{{{\boldsymbol{\hat x}}}_{g,1}}(t) - {{\boldsymbol{x}}_1}(t)} \right)+ \\ &\sum\limits_{k = 2}^{1 + N} {w_{gk}^\beta \left( {{{{\boldsymbol{\hat x}}}_{g,1}}(t) - {{{\boldsymbol{\hat x}}}_{k,1}}(t)} \right)} \end{split}\tag{54d}$$
    $${\hat f_g}(t) = {\rm{sgn}} \left( {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right)\tag{54e}$$
    $${\dot \varphi _g}(t) = {\vartheta _g}{\boldsymbol{\gamma}} _{g,1}^{\rm{T}}(t){P^2}{{\boldsymbol{\gamma}} _{g,1}}(t)\tag{54f}$$
    $${\dot \eta _g}(t) = {\rho _g}w_{g1}^\beta {\left\| {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|_1}\tag{54g}$$
    $${{\boldsymbol{\hat h}}_g}(t) = - \dfrac{{\left( {\mu {{{\boldsymbol{\tilde h}}}_g}(t) - w_{g1}^\beta {\boldsymbol{\dot h}}(t) - \displaystyle\sum\limits_{k = 2}^{1 + N} {w_{gk}^\beta {{{\boldsymbol{\dot {\hat h}}}}_k}(t)} } \right)}}{{\displaystyle\sum\limits_{k = 2}^{1 + N} {w_{gk}^\beta } }}\tag{54h}$$
    $$\begin{split} {{\boldsymbol{\tilde h}}_g}(t) =& w_{g1}^\beta \left( {{{{\boldsymbol{\hat h}}}_g}(t) - {\boldsymbol{h}}(t)} \right) + \\ &\sum\limits_{k = 2}^{1 + N} {w_{gk}^\beta \left( {{{{\boldsymbol{\hat h}}}_g}(t) - {{{\boldsymbol{\hat h}}}_k}(t)} \right)} \end{split}\tag{54i}$$
    $$ \begin{split} {{\boldsymbol{u}}_g}(t) =& K_g^1\left( {{{{\boldsymbol{\hat x}}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t)} \right) + K_g^2{{{\boldsymbol{\hat x}}}_{g,1}}(t) - \\ & {\kappa _g}(t){U_g}{{\boldsymbol{f}}_g}(t) + {{\boldsymbol{v}}_g}(t) - {{{\boldsymbol{\hat d}}}_g}(t) \end{split} \tag{54j}$$
    $${{\boldsymbol{f}}_g}(t) = {\rm{sgn}} \left( {U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}\left( {{{{\boldsymbol{\hat x}}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{{\boldsymbol{\hat x}}}_{g,1}}(t) } \right)} \right)\tag{54k}$$
    $${\dot \kappa _g}(t) = {\sigma _g} {\left\| {U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}\left( {{{{\boldsymbol{\hat x}}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{{\boldsymbol{\hat x}}}_{g,1}}(t) } \right)} \right\|_1}\tag{54m}$$
    $${{\boldsymbol{v}}_g}(t) = - {\bar B_{g,1}}\left( {{A_g}{{\boldsymbol{\varpi}} _g}(t) - {{{\boldsymbol{\dot \varpi}} }_g}(t)} \right)\tag{54h}$$

    其中, 各符号变量表示的含义保持不变. 与控制协议(8)对比分析可知, 式(54d)中利用的是领导者的全部状态信息, 而式(8d)中利用的是领导者根据输出信息对其自身状态信息的估计值, 造成上述协议不同的原因是当领导者的控制输入是未知不可设计时, 无法通过领导者的输出信息估计领导者的全部状态信息, 因此需要某个跟随者能够获取领导者的全部状态信息. 相应的, 式(54c)相比于式(8c), 去掉对领导者自身状态观测器估计误差的滑模补偿项$ - {\upsilon _g}(t) {H_1}{{\boldsymbol{\bar f}}_g}(t)$. 需要说明的是, 此时${\boldsymbol{h}}(t)$为由某个能够获取领导者全部状态信息的跟随者调控的时变向量, 控制协议(54)中的其他待定参数仍由算法1确定. 值得注意的是, 当领导者的控制输入是未知不可设计时, 根据式(1)可知, 此时领导者的未知输入和未知扰动对跟随者来说可整体看作领导者的未知输入, 因此可以得到下列定理.

    定理 2. 对于任意给定的有界初始状态, 如果集群系统中的跟随者采用控制协议(54), 通信拓扑的最小驻留时间满足$\ln {\varsigma _1} - \theta {\alpha _{\min }} < 0$$\ln {\varsigma _2} - 2\mu {\alpha _{\min }} < $$ 0$, 同时等式(12)成立, 则异构集群系统能够在有向拓扑切换条件下实现对存在未知输入领导者的输出时变编队跟踪.

    由于控制协议(8)和(54)的主要不同体现在跟随者对领导者状态信息的观测方法上, 因此定理2的证明过程类似定理1, 此处略. 由符号函数${\rm{sgn}} ( \cdot )$可知, 控制协议(8)和(54)采用滑模控制方法来消除领导者的控制输入、领导者的未知扰动以及跟随者自身的未知扰动对集群系统的影响, 因此抖振现象必然存在. 现对控制协议(8)和(54)进行改进, 参考文献[16]提供的方法, 分别用下列连续向量函数${{\boldsymbol{\hat c}}_g}(t)$${{\boldsymbol{\bar c}}_g}(t)$${{\boldsymbol{c}}_g}(t)$代替控制协议(8)和(54)中的${{\boldsymbol{\hat f}}_g}(t)$${{\boldsymbol{\bar f}}_g}(t)$${{\boldsymbol{f}}_g}(t)$, 进而使控制输入产生较为平滑的连续性变化, 能够很好地抑制滑模的抖振现象.

    $${{\boldsymbol{\hat c}}_g}(t) = \frac{{B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)}}{{{{\left\| {B_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|}_1} + {{\hat \partial }_g}}}$$ (55)
    $${{\boldsymbol{\bar c}}_g}(t) = \frac{{H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)}}{{{{\left\| {H_1^{\rm{T}}P{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|}_1} + {{\bar \partial }_g}}}$$ (56)
    $${{\boldsymbol{c}}_g}(t) = \dfrac{{U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}\left( {{{{\boldsymbol{\hat x}}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{{\boldsymbol{\hat x}}}_{g,1}}} \right)}}{{{{\left\| {U_g^{\rm{T}}B_g^{\rm{T}}Q_g^{\rm{T}}\left( {{{{\boldsymbol{\hat x}}}_{g,g}}(t) - {{\boldsymbol{\varpi}} _g}(t) - {R_g}{{{\boldsymbol{\hat x}}}_{g,1}}} \right)} \right\|}_1} + {\partial _g}}}$$ (57)

    其中,${\hat \partial _g}$${\bar \partial _g}$${\partial _g}$为较小的正实数.

    推论 1. 如果在控制协议(8)中采用${{\boldsymbol{\hat c}}_g}(t)$${{\boldsymbol{\bar c}}_g}(t)$${{\boldsymbol{c}}_g}(t)$代替控制${{\boldsymbol{\hat f}}_g}(t)$${{\boldsymbol{\bar f}}_g}(t)$${{\boldsymbol{f}}_g}(t)$, 则异构集群系统对存在已知输入领导者的输出时变编队跟踪误差(定义为$ {\left\| {{{\boldsymbol{y}}_g}(t) - {{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right) - {{\boldsymbol{y}}_1}(t)} \right\|_1}$)是一致最终有界的.

    推论 2. 如果在控制协议(54)中采用${{\boldsymbol{\hat c}}_g}(t)$${{\boldsymbol{\bar c}}_g}(t)$${{\boldsymbol{c}}_g}(t)$代替控制${{\boldsymbol{\hat f}}_g}(t)$${{\boldsymbol{\bar f}}_g}(t)$${{\boldsymbol{f}}_g}(t)$, 则异构集群系统对存在未知输入领导者的输出时变编队跟踪误差(定义为$ {\left\| {{{\boldsymbol{y}}_g}(t) - {{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right) - {{\boldsymbol{y}}_1}(t)} \right\|_1}$)是一致最终有界的.

    考虑到篇幅原因, 本文略去推论1和推论2的证明过程, 感兴趣的读者可结合本文定理1以及文献[16]中定理2进行推导证明. 由推论1和推论2可知${\lim\nolimits_{t \to \infty }} {\left\| {{{\boldsymbol{y}}_g}(t) - {{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right) - {{\boldsymbol{y}}_1}(t)} \right\|_1} \leq {\Theta _g}$, ${\Theta _g}$${\hat \partial _g}$${\bar \partial _g}$${\partial _g}$的选取有关. 通过选取恰当的${\hat \partial _g}$${\bar \partial _g}$${\partial _g}$可使$ {\left\| {{{\boldsymbol{y}}_g}(t) - {{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right) - {{\boldsymbol{y}}_1}(t)} \right\|_1}$收敛到0附近较小的有界区间内, 以满足实际应用需求.

    由于控制协议(8)和(54)中均采用滑模控制方法, 分析自适应律(8g) ~ (8i)、(8p)、(54f)、(54g)、(54m)可知, 自适应增益${\varphi _g}(t)$${\eta _g}(t)$${\upsilon _g}(t)$${\kappa _g}(t)$会一直缓慢地变大, 因此可对自适应律(8g) ~ (8i)、(8p)、(54f)、(54g)、(54m)增加如下约束:

    $$\left\{ \begin{array}{l} {{\dot \varphi }_g}(t) = {{\dot \eta }_g}(t) = {{\dot \upsilon }_g}(t) = 0,\quad {\left\| {{{\boldsymbol{\gamma}} _{g,1}}(t)} \right\|_1} \leq {{\bar \tau }_1} \\ {{\dot \kappa }_g}(t) = 0, \quad {\left\| {{{{\boldsymbol{\hat b}}}_g}(t)} \right\|_1} \leq {{\bar \tau }_2} \\ \end{array} \right.$$ (58)

    其中,${\bar \tau _1}$${\bar \tau _2}$为根据实际应用需求选取的两个较小的正实数, 可与式(55) ~ (57)中的${\hat \partial _g}$${\bar \partial _g}$${\partial _g}$协同选取, 以避免异构集群系统的自适应增益过高或输出时变编队跟踪误差过大. 实际上文献[16]中提供了另一种自适应律的设计方法, 也可以有效避免自适应增益过高或输出时变编队跟踪误差过大, 感兴趣的读者可结合本文与文献[16]进一步研究.

    注 4. 由式(1)可知, 本文研究的集群系统模型考虑比较简单的匹配扰动, 同时要求未知扰动满足假设3, 因此设计的自身状态观测器(7a)、(7b)、(8a)、(8b)以及(54a)、(54b)借鉴文献[30]的研究成果, 其结构相对简单. 如果模型考虑不匹配扰动或者观测器匹配条件不满足等更加复杂的条件时, 对于未知扰动的假设条件也会发生相应的变化, 可根据扰动形式的不同参考文献[32-33]设计更加复杂的全维或降维观测器. 需要指出的是, 当集群系统模型中扰动形式更加复杂时, 除了对观测器(7a)、(7b)、(8a)、(8b)以及(54a)、(54b)进行改进外, 分布式观测器(8c) ~ (8i)、(54c) ~ (54g)以及控制器(8m) ~ (8q)、(54j) ~ (54n)也要进行一定的改进, 例如模型考虑不匹配扰动, 即式(1)写为

    $$\left\{ \begin{array}{l} {{{\boldsymbol{\dot x}}}_i}(t) = {A_i}{{\boldsymbol{x}}_i}(t) + {B_i}{{\boldsymbol{u}}_i}(t) + {D_i}{{\boldsymbol{d}}_i}(t) \\ {{\boldsymbol{y}}_i}(t) = {C_i}{{\boldsymbol{x}}_i}(t) \\ \end{array} \right.$$

    则分布式观测器(8c) ~ (8i)、(54c) ~ (54g)以及控制器(8m) ~ (8q)、(54j) ~ (54n)中需要增加针对不匹配扰动${D_i}{{\boldsymbol{d}}_i}(t)$的滑模补偿项, 此处不作详细论述, 后续将进一步开展相关研究.

    注 5. 本文提供的控制方法具有较强的普适性. 首先本文研究的系统模型为异构模型, 如果系统模型为同构模型, 所有智能体具有相同的动力学模型, 满足${A_i} = A \in {{\bf R}^{n \times n}}$${B_i} = B \in {{\bf R}^{n \times m}}$${C_i} = C \in $$ {{\bf R}^{p \times n}}$、可以验证假设2能够成立, 此时${R_g} = {I_n}$${U_g} = {I_m}$${S_g} = {0_{m \times n}}$, 因此文献[2-4], [6], [8], [11-14], [17], [20-21]研究的同构系统模型可以看作异构系统模型的特例. 其次, 本文研究的集群系统通信拓扑考虑有向拓扑切换的情况, 而文献[10-12]中考虑的无向拓扑固定、文献[17]中考虑的无向拓扑切换以及文献[4-9], [13], [15-16], [18-19], [21-22]中采用有向拓扑固定等情况均可以看作有向拓扑切换的特例. 再次, 本文研究的集群系统考虑考虑领导者存在已知或未知控制输入, 领导者和跟随者均存在未知扰动的情况, 而文献[16], [19]中研究的领导者不存在输入或领导者和跟随者不存在扰动等情况都可以看作本文研究问题的特例. 最后, 本文对时变编队函数设计了分布式观测器, 进而使时变编队函数不再是全局信息, 文献[2-22]中的时变编队函数均可看作是本文中时变编队复合函数${{\boldsymbol{z}}_g}\left( {{\boldsymbol{h}}(t)} \right)$的特例.

    由于定理1和定理2的主要区别在于领导者的控制输入是已知可设计的还是未知不可设计的, 对应控制协议(8)和控制协议(54)的观测器设计方法存在些许差异, 在仿真层面上主要体现在领导者的运动轨迹是否可控, 对于跟随者是否能够实现对领导者的输出时变编队跟踪没有明显影响, 考虑到篇幅原因, 在验证定理1和定理2时, 对集群系统模型以及控制协议(8)和(54)的相同参数部分采用同样的选取方法, 并对控制协议(8)和(54)中自适应律(8g) ~ (8i)、(8p)、(54f) ~ (54g)、(54m)增加式(58)中的约束. 假定集群系统含有7个智能体, 其中包括1个领导者(对合作目标和非合作目标两种情况分开讨论)和6个跟随者, 领导者标号为1, 跟随者标号为2 ~ 7, 所有智能体采用如式(1)所示的异构模型, 设定如下:

    $$\begin{split} &{A_1} = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ 0&0&1 \\ { - 0.01}&{ - 0.03}&{ - 0.03} \end{array}} \right],\;{B_1} = \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \end{array}} \right]\;\\ &{C_1} = {\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \end{array}} \right]^{\rm{T}}} \end{split}$$
    $$\begin{split} &{A_2} = {A_3} = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ 0&0&1 \\ 0&0&0 \end{array}} \right],\;{B_2} = {B_3} = \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \end{array}} \right]\;\\ &{C_2} = {C_3} = {\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \end{array}} \right]^{\rm{T}}} \end{split}$$
    $$\begin{split} &{A_4} = {A_5} = \left[ {\begin{array}{*{20}{c}} 0&1 \\ 0&0 \end{array}} \right],\;{B_4} = {B_5} = \left[ {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right]\;\\ &{C_{\rm{4}}} = {C_{\rm{5}}} = {\left[ \begin{array}{l} 1 \\ 0 \\ \end{array} \right]^{\rm{T}}} \end{split}$$
    $$ {A_6} = {A_7} = 0,\;{B_6} = {B_7} = 1,\;{C_6} = {C_7} = 1 $$

    仿真中仅考虑XOY平面运动, 集群系统在OX轴和OY轴方向上的控制可视为两个独立方向的解耦控制, 所有智能体在OX轴和OY轴方向上的初始状态在$( - 8,8)$中随机选取, 未知扰动在$(0,1)$中随机选取, 当领导者是合作目标时, 领导者采用控制协议(7), 其中$\bar u_1^X = 0.1$, $\bar u_1^Y = - 0.1\cos (t)$, 跟随者采用控制协议(8), 当领导者是非合作目标时,领导者的未知控制输入假定为$u_1^X = 0.5$, $u_1^Y = $$ - 2\cos (t)$, 跟随者采用控制协议(54), 根据算法1以及式(58), 控制协议(7)、(8)和(54)中的其他参数确定如下:

    $$ {R_2} = {R_3} = {I_3},\;{S_2} = {S_3} = \left[ {\begin{array}{*{20}{c}} { - 0.01}&{ - 0.03}&{ - 0.03} \end{array}} \right] $$
    $$ {R_4} = {R_5} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&1&0 \end{array}} \right],\;{S_4} = {S_5} = \left[ {\begin{array}{*{20}{c}} 0&0&1 \end{array}} \right] $$
    $$ {R_6} = {R_7} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \end{array}} \right],\;{S_6} = {S_7} = \left[ {\begin{array}{*{20}{c}} 0&1&0 \end{array}} \right] $$
    $$ \begin{split} &{U_2} = {U_3} = 1,\;{U_4} = {U_5} = {U_6} = {U_7} = 0\\ &{H_1} = {H_2} = {H_3} = {\left[ {\begin{array}{*{20}{c}} 8&{24}&{32} \end{array}} \right]^{\rm{T}}}\;\\ &{\bar H_1} = {\bar H_2} = {\bar H_3} = 16\\ &{H_4} = {H_5} = {\left[ {\begin{array}{*{20}{c}} 6&{12} \end{array}} \right]^{\rm{T}}},\;{\bar H_4} = {\bar H_5} = 8\;\\ &{H_6} = {H_7} = 4, {\bar H_6} = {\bar H_7} = 4\;\\ &{\vartheta _g} = {\rho _g} = {\phi _g} = {\sigma _g} = 10 \end{split} $$
    $$ \begin{array}{l} {\rho _g} = {\phi _g} = {\sigma _g} = 10,\;g = 2,3,\cdots,7,\;\mu = 3\\ \\ \theta = 1,\;P = \left[ {\begin{array}{*{20}{c}} {1.4277}&{0.6168}&{0.0843} \\ {0.6168}&{1.7842}&{0.6446} \\ {0.0843}&{0.6446}&{1.9148} \end{array}} \right] \end{array} $$
    $$ \begin{split} &K_2^1 = K_3^1 = \left[ {\begin{array}{*{20}{c}} { - 8}&{ - 12}&{ - 6} \end{array}} \right]\;\\ &K_4^1 = K_5^1 = \left[ {\begin{array}{*{20}{c}} { - 4}&{ - 4} \end{array}} \right]\\ &K_6^1 = K_7^1 = - 2,\;K_2^2 = K_3^2 = \left[ {\begin{array}{*{20}{c}} {7.99}&{11.99}&{5.99} \end{array}} \right]\\ &K_4^2 = K_5^2 = \left[ {\begin{array}{*{20}{c}} 4&4&1 \end{array}} \right],\;K_6^2 = K_7^2 = \left[ {\begin{array}{*{20}{c}} 2&1&0 \end{array}} \right]\\ &{Q_2} = {Q_3} = \left[ {\begin{array}{*{20}{c}} {3.8125}&{2.4688}&{0.1250} \\ {2.4688}&{4.1875}&{0.2891} \\ {0.1250}&{0.2891}&{0.2148} \end{array}} \right]\\ &{Q_4} = {Q_5} = \left[ {\begin{array}{*{20}{c}} {2.25}&{0.25} \\ {0.25}&{0.3125} \end{array}} \right],\;{Q_6} = {Q_7} = 0.5 \end{split} $$
    $$ \begin{split} &{\bar B_{2,1}} = {\bar B_{3,1}} = [\begin{array}{*{20}{c}} 0&0&1 \end{array}]\;\\ &{\bar B_{2,2}} = {\bar B_{3,2}} = \left[ {\begin{array}{*{20}{c}} 0&1&0 \\ 1&0&0 \end{array}} \right]\\ &{\bar B_{4,1}} = {\bar B_{5,1}} = [\begin{array}{*{20}{c}} 0&1 \end{array}]\;{\bar B_{4,2}} = {\bar B_{5,2}} = [\begin{array}{*{20}{c}} 1&0 \end{array}]\;\\ &{\bar B_{6,1}} = {\bar B_{7,1}} = 1, {\bar \tau _1} = {\bar \tau _2} = 0.5 \end{split} $$

    表征输出时变编队跟踪队形的复合函数及相关参数设计如下:

    $$ \left\{ \begin{array}{l} {{\boldsymbol{h}}^X}(t) = {[{{\tilde r}^X}(t), {\ell ^X}(t)]^{\rm{T}}} \\ {{\boldsymbol{h}}^Y}(t) = {[{{\tilde r}^Y}(t), {\ell ^Y}(t)]^{\rm{T}}} \\ {\ell ^X}(t) = {\ell ^Y}(t) = t, t \leq 22 \\ {\ell ^X}(t) = {\ell ^Y}(t) = 2t, t > 22 \\ {{\tilde r}^X}(t) = {{\tilde r}^Y}(t) = 8, t \leq 22 \\ {{\tilde r}^X}(t) = {{\tilde r}^Y}(t) = 15, t > 22 \\ z_g^X({{\boldsymbol{h}}^X}(t)) = {{\tilde r}^X}(t)\cos ( {\ell ^X}(t) + \dfrac{{g - 2}}{3}{\rm{\pi }}),g = 2,3,\cdots,7 \\ z_g^Y({{\boldsymbol{h}}^Y}(t)) = {{\tilde r}^Y}(t)\sin ( {\ell ^Y}(t) + \dfrac{{g - 2}}{3}{\rm{\pi }}),g = 2,3,\cdots,7 \end{array} \right. $$

    通过分析上述复合函数可知, 仿真中期望跟随者在以领导者为圆心、$\sqrt {{{\left( {{{\tilde r}^X}(t)} \right)}^2} + {{\left( {{{\tilde r}^Y}(t)} \right)}^2}} $ 为半径的圆弧上绕领导者运动, 同时跟随者之间保持固定的相对距离, 领导者或与领导者直接通信的跟随者能够对圆弧半径以及跟随者绕领导者的转动角速度的实时调控, 当$t \in [0,22)$时, 圆弧半径为8, 转动角速度为1 rad/s, 当$t \in [22, + \infty )$时, 圆弧半径增大为15, 转动角速度增加为2 rad/s. 图4给出了集群系统的通信拓扑关系, 设定通信拓扑在驻留时间$\alpha = 4{\rm{s}}$保持不变, 到达切换时刻后在${G_1}$ ~ ${G_4}$之间切换. 接下来对领导者是合作目标和非合作目标两种情况的图例进行分别说明.

    图 4  集群系统的通信拓扑关系
    Fig. 4  The communication topologies of swarm systems

    1)领导者是合作目标

    图5给出了控制协议(7)和(8)中的观测器的估计误差(以所有智能体对自身状态${{\boldsymbol{\tilde x}}_{i,i}}(t)$和领导者调控的时变向量${{\boldsymbol{\bar h}}_g}(t)$的估计误差为例), 定义所有智能体对自身状态估计误差的二范数${\left\| {{{{\boldsymbol{\tilde x}}}_{i,i}}(t)} \right\|_2} := $$ {\left\| {{\boldsymbol{\tilde x}}_{i,i}^X(t)} \right\|_2} + {\left\| {{\boldsymbol{\tilde x}}_{i,i}^Y(t)} \right\|_2}$, 其中$i = 1,2,\cdots,7$, 定义领导者调控的时变向量估计误差的二范数${\left\| {{{{\boldsymbol{\bar h}}}_g}(t)} \right\|_2} := {\left\| {{\boldsymbol{\bar h}}_g^X(t)} \right\|_2} + {\left\| {{\boldsymbol{\bar h}}_g^Y(t)} \right\|_2}$, 其中$g = 2,3,\cdots, $$ 7$. 从图5中可以看出, 控制协议(7)和(8)中的观测器是收敛的. 需要说明的是, 图5${\left\| {{{{\boldsymbol{\bar h}}}_g}(t)} \right\|_2} $$t = 22\;{\rm{s}}$时出现非连续的变化, 原因是由于在$t = $$ 22\;{\rm{s}}$时编队半径瞬间增大且编队转动角速度瞬间增加. 图6给出了跟随者控制协议(8)中自适应增益(以$\eta _g^X(t)$$\kappa _g^Y(t)$为例)的变化曲线, 其中$g = $$ 2,3,\cdots,7$, 由于对上述自适应增益增加了(58)中的约束, 同时在$t = 22\;{\rm{s}}$时编队半径瞬间增大且编队转动角速度瞬间增加, 因此图6中的自适应增益曲线存在部分不可微点. 图7给出了跟随者采用控制协议(8)时在OX轴和OY轴方向上控制输入$u_g^X(t)$$u_g^Y(t)$的变化曲线, 需要说明的是, 控制输入在$t = 22\;{\rm{s}}$时发生非连续变化, 也是由于该时刻编队半径瞬间增大且编队转动角速度瞬间增加造成的. 图8给出了集群系统在35s内的输出轨迹, 并给出了部分时刻领导者和跟随者的输出分布. 图9给出了集群系统XOY平面内的输出时变编队跟踪误差, 定义如下:

    图 5  控制协议(7)和(8)中观测器的估计误差
    Fig. 5  The estimation errors of observers in control protocol (7) and control protocol (8)
    图 6  跟随者控制协议(8)中的自适应增益变化曲线
    Fig. 6  The varying curve of adaptive gains in followers′ control protocol (8)
    图 7  跟随者控制协议(8)中的控制输入变化曲线
    Fig. 7  The varying curve of control input in followers′ control protocol (8)
    图 8  当领导者是合作目标时集群系统的输出轨迹以及部分时刻的输出信息
    Fig. 8  The trajectory of output and the output information at partial moments associated with swarm systems when leader is cooperative target
    图 9  当领导者是合作目标时集群系统输出时变编队跟踪误差
    Fig. 9  The error of time-varying output formation tracking related to swarm systems when leader is cooperative target
    $$\begin{split} {\Upsilon _g} =& {\left\| {y_g^X(t) - z_g^X\left( {{\boldsymbol{h}}(t)} \right) - y_1^X(t)} \right\|_2} + \\ & {\left\| {y_g^Y(t) - z_g^Y\left( {{\boldsymbol{h}}(t)} \right) - y_1^Y(t)} \right\|_2} \\ \end{split} $$

    其中,$g = 2,3,\cdots,7$. 从图9中可以看出输出时变编队跟踪误差在编队函数连续变化时快速收敛到0, 在非连续变化瞬间会短暂增大(对应$t = 22\;{\rm{s}}$时编队半径瞬间增大且编队转动角速度增加), 随即快速收敛到0.

    2)领导者是非合作目标

    考虑到领导者是合作目标和非合作目标两种情况下, 仿真中集群系统参数选取的差异主要体现在领导者控制输入的不同, 为更直观地进行仿真对比, 当领导者是非合作目标时, 仿真结果仅展示集群系统的输出分布和编队跟踪误差. 图10给出了集群系统在35s内的输出轨迹, 并给出了部分时刻领导者和跟随者的输出分布. 与图8中领导者相对规律的轨迹相比, 图10模拟了非合作领导者进行恶意机动的场景. 图11给出了集群系统XOY平面内的输出时变编队跟踪误差${\Upsilon _g}$. 与图9类似, 从图11中可以看出输出时变编队跟踪误差在编队函数连续变化时快速收敛到0, 在非连续变化瞬间会短暂增大(对应$t = 22\;{\rm{s}}$时编队半径瞬间增大且编队转动角速度增加), 随即快速收敛到0. 因此定理1和定理2通过数值仿真得到了验证.

    图 10  当领导者是非合作目标时集群系统的输出轨迹以及部分时刻的输出信息
    Fig. 10  The trajectory of output and the output information at partial moments associated with swarm systems when leader is noncooperative target
    图 11  当领导者是非合作目标时集群系统输出时变编队跟踪误差
    Fig. 11  The error of time-varying output formation tracking related to swarm systems when leader is noncooperative target

    本文研究了高阶异构集群系统输出时变编队跟踪控制问题. 基于观测器理论、自适应控制理论、滑模控制理论等构造了分布式的控制协议, 该控制协议分为观测器和控制器两个部分, 观测器包括对自身状态的观测器和跟随者对领导者状态的分布式观测器, 还包括针对时变编队函数的分布式观测器, 基于上述观测器构造了控制器, 摆脱了对领导者的控制输入上界值、与通信拓扑相关的拉普拉斯矩阵特征值以及时变编队函数等全局信息的依赖, 使本文的控制方法成为完全分布式的控制方法, 因此本文提供的控制方法具有较高的理论研究和实际应用意义. 未来会进一步将相关理论成果在无人机和无人车等实际物理系统上进行试验验证.


  • 收稿日期 2020-04-04 录用日期 2020-08-27 Manuscript received April 4, 2020; accepted August 27, 2020 国家重点研发计划课题(2018AAA0102303), 国家自然科学基金 (61922008, 61973013, 61873011, 61803014), 国防创新特区项目(18-163-00-TS-001-001-34), 国防基础科研计划资助(JCKY2019601C106), 北京市自然科学基金(4182035)资助 Supported by Science and Technology Innovation 2030-Key Project of “New Generation Artificial Intelligence” (2018AAA0102303), National Natural Science Foundation of China (61922008, 61973013, 61873011, 61803014), the Innovation Zone Project (18-163-00-TS-001-001-34), the Defense Industrial Technology Development Program (JCKY2019601C106), the Beijing Natural Science Foundation (4182035) 本文责任编委 邓方 Recommended by Associate Editor DENG Fang 1. 北京航空航天大学自动化科学与电气工程学院飞行器控制一体化技术国防科技重点实验室 北京 100191 2. 北京航空航天大学, 大数据科学与脑机智能高精尖创新中心 北京 100191 3. 北京
  • 电子工程总体研究所 北京 100854 1.School of Automation Science and Electrical Engineering, Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191 2. Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191 3. Beijing Institute of Electronic System Engineering, Beijing 100854
  • 图  1  有人−无人飞行器协同飞行示意图

    Fig.  1  The illustration of cooperative flight strategy for manned and unmanned aerial vehicles

    图  2  空地协同围捕目标示意图

    Fig.  2  The illustration of hunting target by air-ground collaboration

    图  3  集群系统输出时变编队跟踪示意图

    Fig.  3  The illustration of time-varying output formation tracking for swarm systems

    图  4  集群系统的通信拓扑关系

    Fig.  4  The communication topologies of swarm systems

    图  5  控制协议(7)和(8)中观测器的估计误差

    Fig.  5  The estimation errors of observers in control protocol (7) and control protocol (8)

    图  6  跟随者控制协议(8)中的自适应增益变化曲线

    Fig.  6  The varying curve of adaptive gains in followers′ control protocol (8)

    图  7  跟随者控制协议(8)中的控制输入变化曲线

    Fig.  7  The varying curve of control input in followers′ control protocol (8)

    图  8  当领导者是合作目标时集群系统的输出轨迹以及部分时刻的输出信息

    Fig.  8  The trajectory of output and the output information at partial moments associated with swarm systems when leader is cooperative target

    图  9  当领导者是合作目标时集群系统输出时变编队跟踪误差

    Fig.  9  The error of time-varying output formation tracking related to swarm systems when leader is cooperative target

    图  10  当领导者是非合作目标时集群系统的输出轨迹以及部分时刻的输出信息

    Fig.  10  The trajectory of output and the output information at partial moments associated with swarm systems when leader is noncooperative target

    图  11  当领导者是非合作目标时集群系统输出时变编队跟踪误差

    Fig.  11  The error of time-varying output formation tracking related to swarm systems when leader is noncooperative target

  • [1] Ren W. Consensus strategies for cooperative control of vehicle formations. IET Control Theory & Applications, 2007, 1(2): 505-512
    [2] Yang X W, Fan X P. Distributed formation control for multiagent systems in the presence of external disturbances. IEEE Access, 2019, 7: 80194-80207 doi: 10.1109/ACCESS.2019.2923852
    [3] Dong X W, Hu G Q. Time-varying formation control for general linear multi-agent systems with switching directed topologies. Automatica, 2016, 73: 47-55 doi: 10.1016/j.automatica.2016.06.024
    [4] Gong Y F, Wen G G, Peng Z X, Huang T W, Chen Y W. Observer-based time-varying formation control of fractional order multi-agent systems with general linear dynamics. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2019. https://ieeexplore.ieee.org/doi:10.1109/TCSII.2019.2899063" target="_blank">10.1109/TCSII.2019.2899063">https://ieeexplore.ieee.org/doi:10.1109/TCSII.2019.2899063
    [5] Li S B, Zhang J, Li X L, Wang F, Luo X Y, Guan X P. Formation control of heterogeneous discrete-time nonlinear multi-agent systems with uncertainties. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4730-4740 doi: 10.1109/TIE.2017.2674590
    [6] Wang R, Dong X W, Li Q D, Ren Z. Distributed time-varying output formation control for general linear multiagent systems with directed topology. IEEE Transactions on Control of Network Systems, 2019, 6(2): 609-620 doi: 10.1109/TCNS.2018.2863047
    [7] Zuo S, Song Y D, Frank L L, Davoudi A. Adaptive output formation-tracking of heterogeneous multi-agent systems using time-varying L2-gain design. IEEE Control Systems Letters, 2018, 2(2): 236-241 doi: 10.1109/LCSYS.2018.2814071
    [8] Su H S, Zhang J X, Chen X. A stochastic sampling mechanism for time-varying formation of multiagent systems with multiple leaders and communication delays. IEEE Transactions on Neural Networks and Learning Systems, 2019, https://ieeexplore.ieee.org/doi:10.1109/TNNLS.2019.2891259" target="_blank">10.1109/TNNLS.2019.2891259">https://ieeexplore.ieee.org/doi:10.1109/TNNLS.2019.2891259
    [9] Wang Y J, Song Y D, Ren W. Distributed adaptive finite-time approach for formation-Containment control of networked nonlinear systems under directed topology. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7): 3164-3175
    [10] Li D Y, Zhang W, He W, Li C J, Ge S S. Two-layer distributed formation-containment control of multiple Euler-Lagrange systems by output feedback. IEEE Transactions on Cybernetics, 2019, 49(2): 675-687 doi: 10.1109/TCYB.2017.2786318
    [11] Hua Y Z, Dong X W, Li Q D, Ren Z. Distributed time-varying formation robust tracking for general linear multiagent systems with parameter uncertainties and external disturbances. IEEE Transactions on Cybernetics, 2017, 47(8): 1959-1969 doi: 10.1109/TCYB.2017.2701889
    [12] Yu J L, Dong X W, Li Q D, Ren Z. Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6015-6025 doi: 10.1109/TNNLS.2018.2817880
    [13] Yu J L, Dong X W, Han L, Li Q D, Ren Z. Practical time-varying formation tracking for high-order nonlinear strict-feedback multi-agent systems with input saturation. ISA Transactions, 2019, https://doi.org/10.1016/j.isatra.2019.08.019
    [14] Wang Y, He L, Huang C Q. Adaptive time-varying formation tracking control of unmanned aerial vehicles with quantized input. ISA Transactions, 2019, 85: 76-83 doi: 10.1016/j.isatra.2018.09.013
    [15] Zuo S, Song Y D, Frank L L, Davoudi A. Time-varying output formation containment of general linear homogeneous and heterogeneous multi-agent systems. IEEE Transactions on control of Networks Systems, 2019, 6(2): 537-548 doi: 10.1109/TCNS.2018.2847039
    [16] Hua Y Z, Dong X W, Hu G Q, Li Q D, Ren Z. Distributed time-varying output formation tracking for heterogeneous linear multi-agent systems with a nonautonomous leader of un-known input. IEEE Transactions on Automatic Control, 2019, 64(10): 4292-4299 doi: 10.1109/TAC.2019.2893978
    [17] 田磊, 王蒙一, 赵启伦, 王晓东, 宋勋, 任章. 拓扑切换的集群系统分布式分组时变编队跟踪控制. 中国科学: 信息科学, 2020, 50(3): 408-423 doi: 10.1360/SSI-2019-0171

    Tian Lei, Wang Meng-Yi, Zhao Qi-Lun, Wang Xiao-Dong, Song Xun, Ren Zhang. Distributed time-varying group formation tracking for cluster systems with switching interaction topologies (in Chinese). Scientia Sinica Informations, 2020, 50(3): 408-423 doi: 10.1360/SSI-2019-0171
    [18] Jiang W, Wen G G, Peng Z X, Huang T W, Rahmani A. Fully distributed formation-containment control of heterogeneous linear multiagent Systems. IEEE Transactions on Automatic Control, 2019, 64(9): 3889-3896 doi: 10.1109/TAC.2018.2887409
    [19] Hua Y Z, Dong X W, Wang J B, Li Q D, Ren Z. Time-varying output formation tracking for heterogeneous linear multi-agent systems with multiple leaders and switching topologies. Journal of the Franklin Institute, 2019, 356: 539-560 doi: 10.1016/j.jfranklin.2018.11.006
    [20] Liu X M, Ge S S, Goh C H, Li Y N. Event-triggered coordination for formation tracking control in constrained space with limited communication. IEEE Transactions on Cybernetics, 2019, 49(3): 1000-1011 doi: 10.1109/TCYB.2018.2794139
    [21] Hua Y Z, Dong X W, Han L, Li Q D, Ren Z. Finite-time time-varying formation tracking for high-order multiagent systems with mismatched disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018. http://ieeexplore.ieee.org/doi:10.1109/TSMC.2018.2867548" target="_blank">10.1109/TSMC.2018.2867548">http://ieeexplore.ieee.org/doi:10.1109/TSMC.2018.2867548
    [22] Duan J, Zhang H G, Cai Y L, Zhang K. Finite-time time-varying output formation-tracking of heterogeneous linear multi-agent systems. Journal of the Franklin Institute, 2019. https://www.sciencedirect.com/doi:10.1016/j.jfranklin.2019.10.012" target="_blank">10.1016/j.jfranklin.2019.10.012">https://www.sciencedirect.com/doi:10.1016/j.jfranklin.2019.10.012
    [23] Su Y F, Huang J. Cooperative output regulation of linear multiagent systems. IEEE Transactions on Automatic Control, 2012, 57(4): 1062-1066 doi: 10.1109/TAC.2011.2169618
    [24] Li Z K, Chen M Z Q, Ding Z T. Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs. Automatica, 2016, 68: 179-183 doi: 10.1016/j.automatica.2016.01.076
    [25] Lu M B, Liu L. Distributed feedforward approach to cooperative output regulation subject to communication delays and switching networks. IEEE Transactions on Automatic Control, 2012, 62(4): 1999-2005
    [26] Cai H, Lewis F L, Hu G Q, Huang J. The adaptive distributed observer approach to the cooperative output regulation of linear multiagent systems. Automatica, 2017, 75: 299-305 doi: 10.1016/j.automatica.2016.09.038
    [27] Huang J. Nonlinear Output Regulation: Theory and Applications. Philadelphia, PA: SIAM, 2004.
    [28] Wheeler G, Su C Y, Stepanenko Y. A sliding mode controller with improved adaptation laws for the upper bounds on the norm of uncertainties. Automatica, 1998, 34(12): 1657-1661 doi: 10.1016/S0005-1098(98)80024-1
    [29] Wu H S. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays. IEEE Transactions on Automatic Control, 2004, 49(4): 611-616 doi: 10.1109/TAC.2004.825634
    [30] 李振营, 沈毅, 胡恒章. 具有未知输入干扰的观测器设计. 航空学报, 2000, 21(5): 471-473 doi: 10.3321/j.issn:1000-6893.2000.05.023

    Li Zhen-Ying, Shen Yi, Hu Heng-Zhang. Design of observers for system with unknown inputs (in Chinese). Acta Aeronautica et Astronautica Sinica, 2000, 21(5): 471-473 doi: 10.3321/j.issn:1000-6893.2000.05.023
    [31] Qu Z. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. London, U. K.: Springer-Verlag, 2009
    [32] 韩冬, 朱芳来. 一类未知输入系统的降维观测器设计. 上海交通大学学报, 2012, 46(11): 1779-1785

    Han Dong, Zhu Fang-Lai. Reduced-order observer design for systems with unknown inputs (in Chinese). Journal of Shanghai Jiaotong University, 2012, 46(11): 1779-1785
    [33] 张建成, 朱芳来. 匹配条件不满足时线性系统未知输入观测器设计. 控制理论与应用, 2017, 34(4): 441-448

    Zhang Jian-Chen, Zhu Fang-Lai. Linear system unknown input observer design when the observer matching condition is not satisfied (in Chinese). Control Theory & Applications, 2017, 34(4): 441-448
  • 期刊类型引用(16)

    1. 郭兴,李擎,姚其家,鲁小雅. 异构无人系统协同控制研究进展. 工程科学学报. 2025(01): 66-78 . 百度学术
    2. 王兴平,朱建栋,迟殿委,黄甜甜,冯俊娥. 线性多智能体系统期望编队的可实现性问题. 中国科学:信息科学. 2025(01): 172-186 . 百度学术
    3. 蔡玉良,吕春慧,何强,于波,陈东岳,王友童,王强,刘宇轩,赵婧婧. 基于强化学习的完全分布式事件驱动二分一致性算法. 计算机科学. 2025(02): 279-290 . 百度学术
    4. 岳冬冬,史建涛,王钢,曹进德. 有向图上不确定性参数系统的有限时间辨识与自适应一致性控制. 自动化学报. 2025(02): 391-403 . 本站查看
    5. 张继文,徐博,王储岩,王朝阳. 基于神经动力学模型预测的多AUV编队自适应控制方案. 中国舰船研究. 2025(01): 326-339 . 百度学术
    6. 朱亚龙,文富忠,黄勇,胡卓非. 基于图形势能场的群体构型填充控制方法. 电子信息对抗技术. 2024(01): 56-61 . 百度学术
    7. 王琳,张庆杰,陈宏伟. 基于领航者跟随者的群系统保性能编队控制. 北京航空航天大学学报. 2024(03): 1037-1046 . 百度学术
    8. 陈宏伟,张庆杰,葛渊峥,周文宏. 非合作群系统编队问题的纳什均衡优化控制方法. 计算机工程与应用. 2024(07): 84-91 . 百度学术
    9. 杨加秀,李新凯,张宏立,王昊. 切换拓扑下异构集群的强化学习时变编队控制. 航空学报. 2024(10): 248-264 . 百度学术
    10. 魏志强,翁哲鸣,化永朝,董希旺,任章. 切换拓扑下异构无人集群编队-合围跟踪控制. 航空学报. 2023(02): 258-273 . 百度学术
    11. 张嘉玲,姜永超,李博宸,王成罡,宋磊,黄丹. 面向反水雷的海空协同时间最优雷区覆盖规划方法. 指挥与控制学报. 2023(04): 469-477 . 百度学术
    12. 王琳,张庆杰,陈宏伟. 切换拓扑下群系统保性能编队形成问题优化控制方法. 控制与决策. 2023(12): 3436-3444 . 百度学术
    13. 康宇航,毛凯,程俊,罗德林,刘伟,王士星. 联合连通有向切换拓扑条件下无人机集群鲁棒编队控制. 中国科学:技术科学. 2023(12): 2115-2126 . 百度学术
    14. 石永霞,胡庆雷,邵小东. 角速度受限下航天器姿态机动事件触发控制. 中国科学:信息科学. 2022(03): 506-520 . 百度学术
    15. 徐博,王朝阳. 基于无人艇跨域异构编队协同导航研究进展与未来趋势. 中国舰船研究. 2022(04): 1-11+56 . 百度学术
    16. 鞠锴,冒泽慧,姜斌,马亚杰. 基于势博弈的异构多智能体系统任务分配和重分配. 自动化学报. 2022(10): 2416-2428 . 本站查看

    其他类型引用(14)

  • 加载中
  • 图(11)
    计量
    • 文章访问数:  2986
    • HTML全文浏览量:  386
    • PDF下载量:  802
    • 被引次数: 30
    出版历程
    • 收稿日期:  2020-04-04
    • 录用日期:  2020-08-27
    • 网络出版日期:  2021-09-30
    • 刊出日期:  2021-10-20

    目录

    /

    返回文章
    返回