Distributed Collaborative Optimization Operation Approach for Integrated Energy System Based on Asynchronous and Dynamic Event-Triggering Communication Strategy
-
摘要: 研究综合能源系统的协同能源管理问题, 并提出了一种基于异步动态事件触发通信策略的分布式梯度算法来解决该问题. 通过引入外部辅助变量并设计有效的触发机制, 该方法可以使得每个参与者仅在必要时刻以离散且异步的方式与邻居产生通信交互, 实现了连续通信的离散替代化. 同时, 该方法并不要求全局同步时钟, 具有更强的灵活性. 此外, 本文也在理论上证明了算法的全局收敛性. 最后, 仿真结果验证了所提方法的有效性.Abstract: This paper investigates the collaborative energy management problem for integrated energy system, where an asynchronous and dynamic event-triggering communication strategy based distributed gradient algorithm is proposed to solve this problem. By introducing external auxiliary variable and designing effective triggering mechanism, this method can enable each participant sharing information with neighbors in a discrete and asynchronous communication fashion if only necessary. In this way, the continuous algorithm can be implemented in a discrete communication fashion. Meanwhile, this method does not rely on global clock synchronization, resulting in enhanced flexibility. In addition, the global convergence of the proposed algorithm is also proved in theory. Finally, the simulation results show the effectiveness of the proposed method.
-
表 1 符号定义
Table 1 Symbol definition
符号 定义 符号 定义 $i$ 能源体编号 $j$ 能源体中的参与者编号 $T$ 调度周期 (即各类能源设备和能源负载) $p_{i,T}^{exch}$ ,$h_{i,T}^{exch}$ ,$g_{i,T}^{exch}$ 能源体与外界交换的电、热和
气的功率或流量$p_{ij,T}^{rg}$ ,$p_{ij,T}^{fg}$ ,$p_{ij,T}^{chp}$ 可再生发电机、燃料发电机和热电联
产装置的功率输出$h_{ij,T}^{rg}$ ,$h_{ij,T}^{fg}$ ,$h_{ij,T}^{chp}$ 可再生制热装置, 燃料制热装置
和热电联产装置的热能输出$p_{ij,T}^{es}$ ,$h_{ij,T}^{es}$ 电、热储能与外界功率交换值 $g_{ij,T}^{gas}$ 燃气供应商所提供的燃气量 $lp_{ij,T}^m$ ,$lh_{ij,T}^m$ ,$lg_{ij,T}^m$ 第 $i$ 个能源体第$j$ 个 能源负载
中的必须运行电负载部分、热
负载部分和气负载部分$lp_{ij,T}^c$ ,$lh_{ij,T}^c$ ,$lg_{ij,T}^c$ 第 $i$ 个能源体第$j$ 个能源负载中的可
控电负载部分、热负载部分和气负载
部分$\Lambda _i^{p,rg}$ ,$\Lambda _i^{p,fg}$ ,$\Lambda _i^{p,es}$ 第 $i$ 个能源体中可再生发电机
的集合, 燃料发电机的集合和
电储能装置的集合$\Lambda _i^{h,rg}$ ,$\Lambda _i^{h,fg}$ ,$\Lambda _i^{h,es}$ 第 $i$ 个能源体中可再生制热装置的集
合、燃料制热装置的集合和热储能装
置的集合$\Lambda _i^{chp}$ 第 $i$ 个能源体中热电联产
装置的集合$\Lambda _i^{gas}$ 第 $i$ 个能源体中燃气供应商的集合$\Lambda _i^l$ 第 $i$ 个能源体中能源负载的集合
热电联产装置第$k$ ($k = 1, \cdots ,4$ )
个线性约束的系数上标 $\min$ ,$\max$ 下界和上界 $\rho _{ij,k,1}$ ,$\rho _{ij,k,2}$ ,$\rho _{ij,k,3}$ $p_{ij,T}^{fg,ramp}$ ,$p_{ij,T}^{chp,ramp}$ 爬坡率 $g_{ij,T}^p$ ,$g_{ij,T}^h$ ,$g_{ij,T}^{chp}$ 燃料发电机、燃料制热装置和
热电联产装置
的燃气消耗量$\eta _{ij}^{p,1}$ ,$\eta _{ij}^{p,2}$ ,$\eta _{ij}^{p,3}$ ,热率系数 $\eta _{ij}^{h}$ ,$\eta _{ij}^{chp}$ $p_{ij,T}^{es,ch}$ ,$p_{ij,T}^{es,ds}$ 最大充、放电速率 $SOC_{ij,T}^p$ 电储能装置的剩余容量 $\alpha _{ij}^{ch}$ ,$\alpha _{ij}^{ds}$ 充、放电系数 $\beta _{ij,T - 1}^{ch},\beta _{ij,T - 1}^{ds} $ 上一调度周期的充、放电状态 $\hbar_{ij,g-p}^{\min}$ ,$\hbar_{ij,g-p}^{\max}$ 电负载与气负载之间最小和
最大的转换百分比$\hbar_{ij,h-p}^{\min}$ ,$\hbar_{ij,h-p}^{\max}$ 热负载与电负载之间最小和最大的转
换百分比$\hbar_{ij,g-h}^{\min}$ ,$\hbar_{ij,g-h}^{\max}$ 气负载与热负载之间最小和
最大的转换百分比$B_{i,T}\left( \cdot \right)$ 能源体 $i$ 的总收益$C_{i,T}( \cdot )$ 能源体 $i$ 的总成本$U_{ij,T}$ 能源负载的使用函数 $C( {p_{ij,T}^{rg}} )$ 可再生发电机的成本函数 $C( {h_{ij,T}^{rg}} )$ 可再生制热装置的成本函数 $C( {p_{ij,T}^{fg}} )$ 燃料发电机的成本函数 $C( {h_{ij,T}^{fg}} )$ 燃料制热装置的成本函数 $C( {p_{ij,T}^{chp},h_{ij,T}^{chp}} )$ 热电联产装置的成本函数 $C( {p_{ij,T}^{es}} )$ 电储能的成本函数 $C( {h_{ij,T}^{es}} )$ 热储的能成本函数 $C( {g_{ij,T}^{gas}})$ 燃气供应商的成本函数 $\varphi_{ij}^{p}$ ,$\gamma_{ij}^{p}$ ,$\varphi_{ij}^{h}$ ,$\gamma_{ij}^{h}$ 正的使用系数 $b_{ij}^{rg}$ ,$d_{ij}^{rg}$ ,$a_{ij}^{fg}$ ,$b_{ij}^{fg}$ ,$c_{ij}^{fg}$ ,正的成本系数 $\varphi_{ij}^{g}$ ,$\gamma_{ij}^{g}$ ,$\iota_{ij}^{rg}$ 负的惩罚系数 $d_{ij}^{fg}$ ,$e_{ij}^{fg}$ ,$a_{ij}^{p}$ ,$b_{ij}^{p}$ ,$a_{ij}^{h}$ ,$b_{ij}^{h}$ ,$c_{ij}^{chp}$ ,$d_{ij}^{chp}$ ,$a_{ij}^{es}$ ,$price_T^p$ ,$price_T^h,$ 电、热和气市场成交价格 $a_{ij}^{gas}$ ,$b_{ij}^{gas}$ ,$c_{ij}^{gas}$ ,$d_{ij}^{gas}$ $price_T^g$ $1_{d}$ 全部元素为 1 的d 维列向量 $\flat_{1,ij}$ ,$\flat_{2,ij}$ ,$\flat_{3,ij}$ ,触发系数 $0_{d}$ 全部元素为 0 的d 维列向量 $\flat_{4,ij}$ ,$\flat_{5,ij}$ ,$\flat_{6,ij}$ ${\rm{diag}}(\cdot)$ 对角矩阵 $\varrho_{i}$ 第 $i$ 个能源体中参与者总数$col(\cdot)$ 向量的列堆栈 上标 $*$ 平衡点 $\Upsilon=\times\Upsilon_{ij}$ $\Upsilon_{ij}$ 的笛卡尔积$\otimes$ 克罗内克积 -
[1] Yi Z K, Xu Y L, Gu W, Wu W C. A multi-time-scale economic scheduling strategy for virtual power plant based on deferrable loads aggregation and disaggregation. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1332−1346 doi: 10.1109/TSTE.2019.2924936 [2] 唐昊, 刘畅, 杨明, 汤必强, 许丹, 吕凯. 考虑电网调峰需求的工业园区主动配电系统调度学习优化. 自动化学报, 2019, DOI: 10.16383/j. aas. c190079Tang Hao, Liu Chang, Yang Ming, Tang Bi-Qiang, Xu Dan, Lv Kai. Learning-based optimization of active distribution system dispatch in industrial park considering the peak operation demand of power grid. Acta Automatica Sinica, 2019, DOI: 10.16383/j. aas. c190079 [3] 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 43(2): 176−194Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 43(2): 176−194 [4] 孙秋野, 胡旌伟, 张化光. 能源互联网中自能源的建模与应用. 中国科学: 信息科学, 2018, 48(10): 1409−1429 doi: 10.1360/N112018-00077Sun Qiu-Ye, Hu Jing-Wei, Zhang Hua-Guang. Modeling and application of we-energy in energy internet. Scientia Sinica Informationis, 2018, 48(10): 1409−1429 doi: 10.1360/N112018-00077 [5] 贾宏杰, 王丹, 徐宪东, 余晓丹. 区域综合能源系统若干问题研究. 电力系统自动化, 2015, 39(7): 198−207Jia Hong-Jie, Wang Dan, Xu Xian-Dong, Yu, Xiao-Dan. Research on some key problems related to integrated energy systems. Automation of Electric Power Systems, 2015, 39(7): 198−207 [6] 艾芊, 郝然. 多能互补、集成优化能源系统关键技术及挑战. 电力系统自动化, 2018, 42(4): 1−10Ai Qian, Hao Ran. Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system. Automation of Electric Power Systems, 2018, 42(4): 1−10 [7] 王睿, 孙秋野, 马大中, 王冰玉. 微网中分布式电源锁相环建模及其稳定性分析. 中国电机工程学报, 2018, 42(4): 1-10Wang Rui, Sun Qiu-Ye, Ma Da-Zhong, Wang Bing-Yu. Modeling and stability analysis of distributed generation phase locked loop in microgrid. Proceedings of the CSEE, 2018, 38(24): 7338−7348 [8] Lin C E, Viviani G L. Hierarchical economic dispatch for piecewise quadratic cost functions. IEEE Transactions on Power Apparatus and Systems, 1984, (6): 1170−1175 [9] Hemamalini S, Simon S P. Maclaurin series-based Lagrangian method for economic dispatch with valve-point effect. IET Generation, Transmission and Distribution, 2009, 3(9): 859−871 [10] Marty F, Serra S, Sochard S, Reneaume J M. Economic optimization of a combined heat and power plant: heat vs electricity. Energy Procedia, 2017, 116: 138−151 doi: 10.1016/j.egypro.2017.05.062 [11] 殷爽睿, 艾芊, 曾顺奇, 吴琼, 郝然, 江迪. 能源互联网多能分布式优化研究挑战与展望. 电网技术, 2018, 42(5): 1−10Yin Shuang-Rui, Ai Qian, Zeng Shun-Qi, Wu Qiong, Hao Ran, Jiang Di. Challenges and prospects of multi-energy distributed optimization for energy internet. Power System Technology, 2018, 42(5): 1−10 [12] Huang B N, Li Y S, Zhang H G, Sun Q Y. Distributed optimal co-multi-microgrids energy management for energy internet. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4): 357−364 doi: 10.1109/JAS.2016.7510073 [13] Zhang Z, Chow M Y. Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid. IEEE Transactions on Power Systems, 2012, 27(4): 1761−1768 doi: 10.1109/TPWRS.2012.2188912 [14] Yang S P, Tan S C, Xu J X. Consensus based approach for economic dispatch problem in a smart grid. IEEE Transactions on Power Systems, 2013, 28(4): 4416−4426 doi: 10.1109/TPWRS.2013.2271640 [15] Li F Y, Qin J H, Kang Y. Multi-agent system based distributed pattern search algorithm for non-convex economic load dispatch in smart grid. IEEE Transactions on Power Systems, 2019, 34(3): 2093−2102 doi: 10.1109/TPWRS.2018.2889989 [16] Huang B N, Liu L N, Zhang H W, Li Y S, Sun, Q Y. Distributed optimal economic dispatch for microgrids considering communication delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(8): 1634−1642 doi: 10.1109/TSMC.2019.2900722 [17] Chen G, Zhao Z Y. Delay effects on consensus-based distributed economic dispatch algorithm in microgrid. IEEE Transactions on Power Systems, 2019, 33(1): 602−612 [18] Li Q, Gao D W, Zhang H G, Wu Z P, Wang F Y. Consensus-based distributed economic dispatch control method in power systems. IEEE Transactions on Smart Grid, 2019, 10(1): 941−954 doi: 10.1109/TSG.2017.2756041 [19] Jia Y B, Dong Z Y, Sun C Y, Meng K. Cooperation-based distributed economic MPC for economic load dispatch and load frequency control of interconnected power systems. IEEE Transactions on Power Systems, 2019, 34(5): 3964−3966 doi: 10.1109/TPWRS.2019.2917632 [20] Zhao C C, He J P, Cheng P, Chen J M. Analysis of consensus-based distributed economic dispatch under stealthy attacks. IEEE Transactions on Industrial Electronics, 2016, 64(6): 5107−5117 [21] Duan J, Chow M Y. A novel data integrity attack on consensus-based distributed energy management algorithm using local information. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1544−1553 doi: 10.1109/TII.2018.2851248 [22] 司方远, 汪晋宽, 韩英华, 赵强. 信息物理融合的智慧能源系统多级对等协同优化. 自动化学报, 2019, 45(1): 84−97Si Fang-Yuan, Wang Jin-Kuan, Han Ying-Hua, Zhao Qiang. Multilevel peer-to-peer co-optimization for cyber-physical intelligent energy systems. Acta Automatica Sinica, 2019, 45(1): 84−97 [23] 白云霄, 钱峰, 刘俊磊, 鲍威, 时侠圣. 一种与初始态无关的分布式电力调度算法. 中国电机工程学报, 2019, 39(S1): 30−35Bai Yun-Xiao, Qian Feng, Liu Jun-Lei, Bao Wei, Shi Xia-Sheng. An initialization-free distributed algorithm for power dispatch problem. Proceedings of the CSEE, 2019, 39(S1): 30−35 [24] Li C J, Yu X H, Yu W W, Huang T W, Liu Z W. Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Transactions on Industrial Informatics, 2015, 12(4): 1775−1785 [25] Zhao T, Li Z, Ding Z. Consensus-based distributed optimal energy management with less communication in a microgrid. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3356−3367 doi: 10.1109/TII.2018.2871562 [26] Zhang H G, Li Y S, Gao D W, Zhou J G. Distributed optimal energy management for energy internet. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3081−3097 doi: 10.1109/TII.2017.2714199 [27] Sun Q Y, Fan R Y, Li Y S, Huang B N, Ma D Z. A distributed double-consensus algorithm for residential we-energy. IEEE Transactions on Industrial Informatics, 2019, 15(8): 4830−4842 [28] Le X Y, Chen S J, Li F, Yan Z, Xi J T. Distribute neurodynamic optimization for energy internet management. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(8): 1624−1633 doi: 10.1109/TSMC.2019.2898551 [29] Yi Z K, Xu Y L, Hu J F, Chow M Y, Sun H B. Distributed neurodynamic-based approach for economic dispatch in an integrated energy system. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2245−2257 doi: 10.1109/TII.2019.2905156 [30] Yang L, Xu Y L, Sun H B, Zhao X. Two-stage convexification based optimal electricity-gas flow. IEEE Transactions on Smart Grid, 2020, 11(2): 1465−1475 doi: 10.1109/TSG.2019.2938553 [31] 滕菲, 单麒赫, 李铁山. 智能船舶综合能源系统及其分布式优化调度方法. 自动化学报, 2020, DOI: 10.16383/j. aas. c20176Teng Fei, Shan Qi-He, Li Tie-Shan. Intelligent ship integrated energy system and its distributed optimal scheduling algorithm. Acta Automatica Sinica, 2020, DOI: 10.16383/j. aas. c20176 [32] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520−1533 doi: 10.1109/TAC.2004.834113 [33] Boyd S, Vandenberghe L. Convex Optimization. New York: Cambridge University Press, 2004. [34] Yi P, Hong Y G, Liu F. Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems. Automatica, 2016, 74: 259−269 doi: 10.1016/j.automatica.2016.08.007 [35] Ruszczynski A P, Ruszczynski A. Nonlinear Optimization, Princeton University Press, 2006. [36] Khalil H K. Nonlinear Systems, 3rd ed. Prentice Hall, 2001.