2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于关联信息对抗学习的综合能源系统运行状态分析方法

胡旭光 马大中 郑君 张化光 王睿

胡旭光, 马大中, 郑君, 张化光, 王睿. 基于关联信息对抗学习的综合能源系统运行状态分析方法. 自动化学报, 2020, 46(9): 1783−1797 doi: 10.16383/j.aas.c200171
引用本文: 胡旭光, 马大中, 郑君, 张化光, 王睿. 基于关联信息对抗学习的综合能源系统运行状态分析方法. 自动化学报, 2020, 46(9): 1783−1797 doi: 10.16383/j.aas.c200171
Hu Xu-Guang, Ma Da-Zhong, Zheng Jun, Zhang Hua-Guang, Wang Rui. An operation state analysis method for integrated energy system based on correlation information adversarial learning. Acta Automatica Sinica, 2020, 46(9): 1783−1797 doi: 10.16383/j.aas.c200171
Citation: Hu Xu-Guang, Ma Da-Zhong, Zheng Jun, Zhang Hua-Guang, Wang Rui. An operation state analysis method for integrated energy system based on correlation information adversarial learning. Acta Automatica Sinica, 2020, 46(9): 1783−1797 doi: 10.16383/j.aas.c200171

基于关联信息对抗学习的综合能源系统运行状态分析方法

doi: 10.16383/j.aas.c200171
基金项目: 国家重点研发计划(2018YFA0702200), 国家自然科学基金(61773109, 61627809, 61621004), 辽宁省“兴辽英才计划”项目(XLYC1801005, XLYC1807009)资助
详细信息
    作者简介:

    胡旭光:东北大学信息科学与工程学院博士研究生. 主要研究方向为基于数据驱动的故障诊断, 信息物理系统的建模及优化控制.E-mail: 1710252@stu.neu.edu.cn

    马大中:东北大学信息科学与工程学院副教授. 主要研究方向为故障诊断, 容错控制, 能源管理系统以及分布式发电系统、微网和能源互联网的优化与控制. 本文通信作者.E-mail: madazhong@ise.neu.edu.cn

    郑君:东北大学信息科学与工程学院硕士研究生. 主要研究方向为基于机器学习的综合能源系统故障检测与诊断.E-mail: zj623928036@163.com

    张化光:东北大学信息科学与工程学院教授. 主要研究方向为自适应动态规划, 模糊控制, 网络控制, 混沌控制. E-mail: hgzhang@ieee.org

    王睿:东北大学信息科学与工程学院博士研究生. 2016年于东北大学获得电气工程及其自动化专业学士学位. 主要研究方向为能源互联网中分布式电源的协同优化及其电磁时间尺度稳定性分析.E-mail: 1610232@stu.neu.edu.cn

An Operation State Analysis Method for Integrated Energy System Based on Correlation Information Adversarial Learning

Funds: Supported by National Key Research and Development Program of China (2018YFA0702200), National Natural Science Foundation of China (61773109, 61627809, 61621004), and Liaoning Revitalization Talents Program (XLYC1801005, XLYC1807009)
  • 摘要: 综合能源系统(Integrated energy system, IES)运行状态分析常以广泛化信息技术应用提供的数据为支撑, 然而传感器故障、网络通信中断等信息异常导致的数据缺失会直接影响数据质量. 在考虑数据缺失的情况下, 本文提出了一种基于关联信息对抗学习的综合能源系统运行状态分析方法. 首先构建深度生成对抗网络(Generative adversarial network, GAN)对数据缺失部分进行可靠性补偿. 在设计生成器结构过程中, 通过引入系统拓扑邻接矩阵对生成器输入数据进行优化排序, 进而在训练过程中采用设计的多属性融合生成器损失函数, 促使生成器进一步得到高精度补偿数据. 接着将判别器提取的不同时刻完整能源数据的特征作为基础, 采用浅层特征分布及深层特征信息差异值融合判断, 从而实现系统运行状态分析. 最后对不同数据缺失补偿及不同类型节点改变情况进行仿真, 验证了本文所提方法的可行性与有效性.
  • 图  1  GAN结构示意图

    Fig.  1  Diagram of GAN structure

    图  2  系统状态判断方法

    Fig.  2  Operation state judgement method

    图  3  状态分析方法流程图

    Fig.  3  Flowchart of operation state analysis method

    图  4  综合能源系统结构图

    Fig.  4  Integrated energy system structure

    图  5  电节点15数据缺失补偿曲线

    Fig.  5  Data imputation curves of electricity node 15

    图  6  多节点数据缺失补偿曲线

    Fig.  6  Multi-node data imputation curves

    图  7  电节点21变化前后系统数据及特征

    Fig.  7  IES data and features change of electricity node 21

    图  8  电节点21变化前后系统浅层特征分布曲线

    Fig.  8  Data distribution change of shallow features for electricity node 21

    图  9  热节点18变化前后系统数据及特征

    Fig.  9  IES data and features change of heat node 18

    图  10  热节点18变化前后系统浅层特征分布曲线

    Fig.  10  Data distribution change of shallow features for heat node 18

    表  1  多节点数据缺失补偿结果 (×10−5)

    Table  1  Multi-node data imputation results (×10−5)

    补偿节点 MAE MSE MPE
    电节点9 1.4852 1.4948 1.4136
    电节点12 1.5093 1.5188 1.4418
    气节点7 1.5250 1.5362 2.1993
    下载: 导出CSV

    表  2  不同数量的缺失数据补偿结果 (×10−5)

    Table  2  Imputation results of different numbers of missing data (×10−5)

    缺失数量 MAE MSE MPE
    1 1.5022 1.4926 1.5008
    3 1.5190 1.5205 1.5063
    5 1.5183 1.5194 1.5253
    7 1.5852 1.5933 1.5757
    9 1.6232 1.6201 1.6193
    下载: 导出CSV

    表  3  不同方法补偿结果对比 (×10−5)

    Table  3  Comparison of different data imputation methods (×10−5)

    补偿方法 MAE MSE MPE
    CNN 2.3248 2.3003 2.2741
    DAE 2.2428 2.1892 2.1505
    DCGAN 1.9255 1.8864 1.8469
    DCGAN-L1 1.8421 1.7605 1.7844
    Pix2Pix 1.7274 1.6148 1.6303
    本文方法 1.5934 1.4835 1.4492
    下载: 导出CSV

    表  4  不同节点的状态判断结果(%)

    Table  4  State judgment results of different nodes (%)

    变化节点 (0, 1%) (1%, 2%) (2%, 3%) (3%, 4%) (4%, 5%)
    电节点17 0 60 100 100 100
    电节点21 0 70 100 100 100
    热节点18 0 70 100 100 100
    热节点30 0 70 100 100 100
    下载: 导出CSV
  • [1] 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 42(2): 176−194

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 42(2): 176−194
    [2] Heinen S, Burke D, O'Malley M. Electricity, gas, heat integration via residential hybrid heating technologies — an investment model assessment. Energy, 2016, 109: 906−919 doi: 10.1016/j.energy.2016.04.126
    [3] Sun H B, Guo Q L, Zhang B M, Wu W C, Wang B, Shen X W, Wang J H. Integrated energy management system: concept, design, and demonstration in China. IEEE Electrification Magazine, 2018, 6(2): 42−40 doi: 10.1109/MELE.2018.2816842
    [4] Hibbard P J, Schatzki T. The interdependence of electricity and natural gas: Current factors and future prospects. Electricity Journal, 2012, 25(4): 6−17 doi: 10.1016/j.tej.2012.04.012
    [5] Fairley P. The troubled link between gas and electricity grids. IEEE Spectrum, 2016, 53(6): 11−12 doi: 10.1109/MSPEC.2016.7473135
    [6] 王平, 王尧. 台湾大停电的“锅”谁来背. 两岸关系, 2017, (9): 30−30 doi: 10.3969/j.issn.1006-5679.2017.09.008

    Wang Ping, Wang Yao. Taiwan power failure “pot” who will carry. Cross-Strait Relations, 2017, (9): 30−30 doi: 10.3969/j.issn.1006-5679.2017.09.008
    [7] Augutis J, Krikštolaitis R, Martišauskas L, Pečiulytė S, Žutautaitė I. Integrated energy security assessment. Energy, 2017, 109: 890−901
    [8] Wang D, Liu L, Jia H J, Wang W L, Zhi Y Q, Meng Z J, Zhou B Y. Review of key problems related to integrated energy distribution systems. CSEE Journal of Power and Energy Systems, 2018, 4(2): 130−145 doi: 10.17775/CSEEJPES.2018.00570
    [9] 陈胜, 卫志农, 孙国强, 王丹, 臧海祥. 电−气互联综合能源系统安全分析与优化控制研究综述. 电力自动化设备, 2019, 39(8): 3−11

    Chen Sheng, Wei Zhi-Nong, Sun Guo-Qing, Wang Dan, Zang Hai-Yang. Review on security analysis and optimal control of electricity-gas integrated energy system. Electric Power Automation Equipment, 2019, 39(8): 3−11
    [10] 董今妮, 孙宏斌, 郭庆来, 盛同天, 乔铮. 面向能源互联网的电−气耦合网络状态估计技术. 电网技术, 2018, 42(2): 400−408

    Dong Jin-Ni, Sun Hong-Bin, Guo Qing-Lai, Sheng Tong-Tian, Qiao Zheng. State estimation of combined electric-gas networks for energy internet. Power System Technology, 2018, 42(2): 400−408
    [11] 陈艳波, 郑顺林, 杨宁, 杨晓楠, 刘铠诚. 基于加权最小绝对值的电−气综合能源系统抗差状态估计. 电力系统自动化, 2019, 43(13): 61−74 doi: 10.7500/AEPS20180428003

    Chen Yan-Bo, Zheng Shun-Lin, Yang Ning, Yang Xiao-Nan, Liu Kai-Cheng. Robust state estimation of electric-gas integrated energy system based on weighted least absolute value. Automation of Electric Power Systems, 2019, 43(13): 61−74 doi: 10.7500/AEPS20180428003
    [12] Du Y X, Zhang W, Zhang T T. ADMM-based distributed state estimation for integrated energy system. CSEE Journal of Power and Energy Systems, 2019, 5(2): 275−283
    [13] Liu Y B, Su Y C, Xiang Y, Liu J Y, Wang L F, Xu W T. Operational reliability assessment for gas-electric integrated distribution feeders. IEEE Transactions on Smart Grid, 2019, 10(1): 1091−1100 doi: 10.1109/TSG.2018.2844309
    [14] Zhou K L, Fu C, Yang S L. Big data driven smart energy management: from big data to big insights. Renewable and Sustainable Energy Reviews, 2016, 56: 215−225 doi: 10.1016/j.rser.2015.11.050
    [15] 孙秋野, 杨凌霄, 张化光. 智慧能源—人工智能技术在电力系统中的应用与展望. 控制与决策, 2018, 33(5): 938−949

    Sun Qiu-Ye, Yang Ling-Xiao, Zhang Hua-Guang. Smart energy-applications and prospects of artificial intelligence technology in power system. Control and Decision, 2018, 33(5): 938−949
    [16] He X, Qiu R C, Chu L, Ai Q, Ling Z N, Zhang J. Invisible units detection and estimation based on random matrix theory. IEEE Transactions on Power Systems, 2020, 35(3): 1846−1855 doi: 10.1109/TPWRS.2019.2935739
    [17] Huang T E, Guo Q L, Sun H B, Tan C W, Hu T Y. A deep spatial-temporal data-driven approach considering microclimates for power system security assessment. Applied Energy, 2019, 237: 36−48 doi: 10.1016/j.apenergy.2019.01.013
    [18] Li M S, Deng W M, Xiahou K S, Ji T Y, Wu Q H. A data-driven method for fault detection and isolation of the integrated energy-based district heating system. IEEE Access, 2020, 8: 23787−23801 doi: 10.1109/ACCESS.2020.2970273
    [19] Liu J H, Qu F M, Hong X W, Zhang H G. A small-sample wind turbine fault detection method with synthetic fault data using generative adversarial nets. IEEE Transactions on Industrial Informatics, 2019, 15(7): 3877−3888 doi: 10.1109/TII.2018.2885365
    [20] Shi X, Qiu R, Mi T B, He X, Zhu Y L. Adversarial feature learning of online monitoring data for operational risk assessment in distribution networks. IEEE Transactions on Power Systems, 2020, 35(2): 975−985 doi: 10.1109/TPWRS.2019.2941162
    [21] Ghahramani Z. Supervised learning from incomplete data via an EM approach. Advances in Neural Information Processing Systems, 1984, 6: 120−127
    [22] Xie K, Wang X, Liu X L, Wen J G, Cao J N. Interference-aware cooperative communication in multi-radio multi-channel wireless networks. IEEE Transactions on Computers, 2016, 65(5): 1528−1542 doi: 10.1109/TC.2015.2448089
    [23] Chen H B, Grant-Muller S, Mussone L, Montgomery F. A study of hybrid neural network approaches and the effects of missing data on traffic forecasting. Neural Computing and Applications, 2001, 10(3): 277−286
    [24] Jaques N, Taylor S, Sano A, Picard R. Multimodal autoencoder: a deep learning approach to filling in missing sensor data and enabling better mood prediction. In: Proceedings of the 2017 International Conference on Affective Computing and Intelligent Interaction, San Antonio, TX, USA: IEEE, 2017. 202−208
    [25] Zhuang Y F, Ke R M, Wang Y H. Innovative method for traffic data imputation based on convolutional neural network. IET Intelligent Transport Systems, 2019, 13(4): 605−613 doi: 10.1049/iet-its.2018.5114
    [26] 王守相, 陈海文, 潘志新, 王建明. 采用改进生成式对抗网络的电力系统量测缺失数据重建方法. 中国电机工程学报, 2019, 39(1): 56−64

    Wang Shou-Xiang, Chen Hai-Wen, Pan Zhi-Xin, Wang Jian-Ming. A reconstruction method for missing data in power system measurement using an improved generative adversarial network. Proceedings of the CSEE, 2019, 39(1): 56−64
    [27] Ren C, Xu Y. A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data. IEEE Transactions on Power Systems, 2019, 34(6): 5044−5052 doi: 10.1109/TPWRS.2019.2922671
    [28] Li Y C, Wang Y Y, Hu S Y. Online generative adversary network based measurement recovery in false data injection attacks: A cyber-physical approach. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2031−2043 doi: 10.1109/TII.2019.2921106
    [29] Qu F M, Liu J H, Ma Y J, Zang D, Fu M R. A novel wind turbine data imputation method with multiple optimizations based on GANs. Mechanical Systems and Signal Processing, 2020, 139: Article 106610 doi: 10.1016/j.ymssp.2019.106610
    [30] Goodfellow I J, Pougetabadie J, Mirza M. Generative adversarial networks. Advances in Neural Information Processing Systems, 2014, 3: 2672−2680
    [31] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃. 生成式对抗网络GAN的研究进展与展望. 自动化学报, 2017, 43(3): 321−332

    Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks: The state of the art and beyond. Acta Automatica Sinica, 2017, 43(3): 321−332
    [32] 刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展. 自动化学报, 2020, DOI: 10.16383/j.aas.c180831

    Liu Jian-Wei, Xie Hao-Jie, Luo Xiong-Lin. Research progress on application of generative adversarial networks in various fields. Acta Automatica Sinica, 2020, DOI: 10.16383/j.aas.c180831
    [33] 孙秋野, 胡旌伟, 杨凌霄, 张化光. 基于GAN技术的自能源混合建模与参数辨识方法. 自动化学报, 2018, 44(5): 901−914

    Sun Qiu-Ye, Hu Jing-Wei, Yang Ling-Xiao, Zhang Hua-Guang. We-energy hybrid modeling and parameter identification with GAN technology. Acta Automatica Sinica, 2018, 44(5): 901−914
    [34] Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv: 1411.1784, 2014.
    [35] Isola P, Zhu J Y, Zhou T H, Efros A A. Image-to-image translation with conditional adversarial networks. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017. 1125−1134
    [36] 黄雨佳, 孙秋野, 王睿, 黄博南. 面向综合能源系统的静态电压稳定性分析. 中国电机工程学报, 2019, 39(s): 44−53

    Huang Yu-Jia, Sun Qiu-Ye, Wang Rui, Huang Bo-Nan. Static voltage stability analysis for integrated energy system. Proceedings of the CSEE, 2019, 39(s): 44−53
    [37] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of the 2015 International Conference on Medical Image Computing and Computer-assisted Intervention. Springer, Cham, 2015. 234−241
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1390
  • HTML全文浏览量:  1193
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 录用日期:  2020-06-28
  • 网络出版日期:  2020-09-28
  • 刊出日期:  2020-09-28

目录

    /

    返回文章
    返回