Sparse Learning for Load Modeling in Microgrids
-
摘要: 微电网由负载、储能系统和分布式电源互联集成到能源系统中, 微电网系统可以作为一个整体系统与电网并行运行或以孤岛模式运行. 负载建模是微电网运行和管理中的一个基本问题. 本文着重解决以下两个关键问题: 1)协调负载模型结构的合理性和简洁性; 2)负载模型参数的校准. 与常规负载建模方法不同, 本文提出了一类数据驱动建模方法以同时实现负载模型结构选择和参数校准. 具体地, 该方法从量测数据中稀疏学习静态负载模型和动态负载模型, 其关键方法分别来自于稀疏贝叶斯学习方法和交替方向方法, 即从一组备选非线性字典函数中稀疏学习最主要的非线性项以平衡数据拟合度并实现模型学习. 所提出的方法将机器学习与稀疏表示相结合, 旨在对负载模型从物理角度提供机理解释并向配电网系统操作员提供有关负载的动态信息. 在孤岛微电网测试系统中验证并评估了所提出的算法. 研究测例表明所提出算法从量测数据中实现负载稀疏学习的合理性和对于噪声的鲁棒性.Abstract: The microgrid is integrated into the energy system by interconnected loads, energy storage systems and distributed energy sources, which can be operated in parallel with the grid as a whole system or run in island mode. Load modeling is a fundamental issue in the operation and control of the microgrid. This paper focuses on solving following two key problems, one is the coordination of the reasonability and conciseness of load model structure, the other is the parameters calibration of the load model. Different from conventional load modeling methods, this article proposes data-driven modeling methods to achieve structural selection and parameter calibration of load models simultaneously. Specifically, the key methodologies of sparse learning static load models and dynamic load models from measurement data draw from sparse Bayesian learning method and alternating direction method, and select the most dominant nonlinear terms from a pool of dictionary functions, which balance the data fitness and achieve model learning. The proposed methods combine the machine learning technique with sparse representation, aiming to provide physical interpretation for load model and offer insight to the distribution system operators about dynamics of load. We validate and evaluate the proposed algorithms on the islanded microgrid test system. Case studies demonstrate the effectiveness of proposed algorithms in achieving load modeling from measurement data in terms of reasonability and robustness against measurement noises.
-
Key words:
- Static load /
- dynamic load /
- load modeling /
- microgrids /
- machine learning /
- sparse learning
-
$ H_{\infty} $控制理论主要研究抑制干扰和不确定性问题[1].在$ H_{\infty} $控制理论中, 传递函数(或系统)的$ H_{\infty} $范数是一项重要的性能指标, 用于度量扰动输入对系统输出的影响, 反映了闭环系统的抗扰能力.在$ H_{\infty} $控制理论研究中, 长期存在一个挑战性议题:是否能够直接给出关于$ H_{\infty} $范数的通用解析表达式, 进而避免针对线性矩阵不等式(Linear matrix inequality, LMI)约束条件的繁琐的$ H_{\infty} $范数近似寻优方案.
在20世纪80年代, $ H_{\infty} $控制理论的研究由频域转换到时域, 开启了基于状态空间方程描述的系统鲁棒性能研究[2].总的来说, $ H_{\infty} $性能时域分析面临的核心问题是如何选择适当的李雅普诺夫函数.具体表现为基于李雅普诺夫方程[3-4]或参数化Riccati不等式[5]均难以得到用于精确分析系统$ H_{\infty} $性能的最优李雅普诺夫函数, 因此在早期的研究中结果的保守性是难以避免的.
为精确求解$ H_{\infty} $范数, 有学者提出了有界实引理[6], 并将求解$ H_{\infty} $范数问题转化为时域状态空间的约束优化问题.基于有界实引理给出的LMI约束条件, $ H_{\infty} $范数能够被近似寻优[7-14].在LMI方法中, $ H_{\infty} $范数的寻优一般包含以下步骤:
1) 给出一个充分大的初始$ H_{\infty} $范数估计$ \mit\gamma $;
2) 解LMI问题;
3) 递减$ H_{\infty} $范数估计$ \mit\gamma $, 直到获得满足LMI条件的最小$ H_{\infty} $范数估计$ \mit\gamma $.
显然, 一旦最小$ H_{\infty} $范数估计得到, 则通过解LMI, 可以得到相应的近似最优李雅普诺夫函数.不难发现, LMI方法存在一定不足, 表现为:
1) 对于每一个给定的$ \mit\gamma $, LMI条件需要被重复求解, 直到找到最小的$ H_{\infty} $范数估计, 过程过于繁琐;
2) 这种试凑逼近方法无法揭示系统结构和参数对$ H_{\infty} $性能的影响, 在一定程度上限制了控制器精细设计的研究.
为了克服目前关于$ H_{\infty} $范数问题研究的不足, 一个可替换的方法是直接优化李雅普诺夫函数, 进而得到关于$ H_{\infty} $范数的通用解析表达式.目前, 针对系统具体性能, 难以找到李雅普诺夫函数设计的充要条件, 因此这方面的研究并不多见.事实上, 在分析系统具体性能时, 存在最优的李雅普诺夫函数, 并且这一最优李雅普诺夫函数与系统结构和参数存在内在关系[15].因此本文尝试寻找一种李雅普诺夫函数的直接优化途径, 进而实现$ H_{\infty} $性能的精确分析.
由于多数高阶系统在一定的条件下可以近似(或分解)为二阶系统来研究, 并且二阶系统的分析方法是分析高阶系统的基础[16], 因此为有效展现最优李雅普诺夫函数与系统结构和参数存在内在关系, 本文针对一类二阶系统的$ H_{\infty} $范数问题, 构造和优化李雅普诺夫函数, 进而得到$ H_{\infty} $范数的通用解析表达式.本文的研究避免了LMI方法中繁琐的近似寻优过程, 并展示了系统矩阵特征值的实部和虚部对$ H_{\infty} $性能的影响.本文结构如下:第1节分析$ H_{\infty} $范数问题; 第2节分析Riccati不等式中李雅普诺夫函数的选择对求解$ H_{\infty} $范数的影响; 第3节展现李雅普诺夫函数的直接优化方法, 并给出$ H_{\infty} $范数的通用解析表达式; 第4节给出算例, 验证李雅普诺夫函数直接优化方法的有效性.
1. 问题的提出
1.1 问题描述
系统描述为
$ \begin{align} \dot{\boldsymbol{ x}} = A {\boldsymbol{ x}}+ {\boldsymbol{ w}} \end{align} $
(1) 其中, $ {\boldsymbol{ x}} \in \textbf{R}^{2} $, $ A $为Hurwitz矩阵, $ A $的特征值为复数, $ {\boldsymbol{ w}} $为扰动输入, $ \|{\boldsymbol{ w}}\| \leq \delta $, $ \delta $为常数, $ \|{\boldsymbol{ w}}\| = (\Sigma^{2}_{i = 1}w^{2}_{i})^{\frac{1}{2}} $.
研究的问题是如何得到系统(1)的状态上界.在数学意义上, 这一问题可转化为关于输入–输出系统的$ H_{\infty} $范数问题, 其中系统描述为
$ \begin{align} \begin{cases} \dot{\boldsymbol{ x}} = A {\boldsymbol{ x}} + {\boldsymbol{ w}} \\ {\boldsymbol{ y}} = {\boldsymbol{ x}} \end{cases} \end{align} $
(2) 在$ H_{\infty} $控制理论中, 系统的$ H_{\infty} $范数定义为$ S $右半平面上解析的有理函数阵的最大奇异值.在标量函数中就是幅频特性的极大值, 代表了系统对峰值有界信号的传递特性.
1.2 LMI方法分析
令李雅普诺夫函数为$ V = {\boldsymbol{ x}}^{\rm T}P{\boldsymbol{ x}} $, $ \gamma $为系统(2)的$ H_{\infty} $范数, 即$ \mit\gamma = \|G\|_{\infty} $, 其中$ G(s) = (sI-A)^{-1} $为系统(2)的传递函数.根据有界实引理, 可得
$ \begin{align} \left[ \begin{array}{ccc} PA+A^{\rm{T}}P & P & I \\ P & -\gamma^{2} I & 0_{2\times 2} \\ I & 0_{2\times 2} & -I \\ \end{array} \right] < 0 \end{align} $
(3) LMI方法是寻找式(3)中$ \mit\gamma $的最小值$ \mit\gamma_{\rm{min}} $.由于李雅普诺夫函数$ V = {\boldsymbol{ x}}^{\rm T}P {\boldsymbol{ x}} $可以任意构造, 因此对于每一个给定的$ \mit\gamma $, 需要重复求解LMI, 以判断式(3)的存在性, 直到$ \mit\gamma_{\rm{min}} $被找到.显然, 在LMI方法中复杂的优化过程是不可避免的.事实上, $ \mit\gamma_{\rm{min}} $与最优的$ P $矩阵是一一对应的.如果能够直接给出最优的$ P $矩阵, 则$ \mit\gamma_{\rm{min}} $的表达式就能够得到, 进而避免LMI方法中复杂的优化过程.本文的工作是尝试提供一种新的途径来直接给出$ \mit\gamma_{\rm{min}} $的表达式.
2. $ \pmb H_{\boldsymbol{ \infty}} $范数分析
根据特征值和奇异值分解原理, 可以得到下面的特性.
特性1. 对于系统(2)中特征矩阵$ A $, 存在可逆矩阵$ T $, 满足
$ \begin{align} D = -TAT^{-1} = \left[ \begin{array}{cc} \lambda & \nu \\ -\nu & \lambda \\ \end{array} \right] \end{align} $
(4) 其中, $ T = \Theta_{T1} \times \text{diag}\{t_{1}, t_{2}\} \times \Theta_{T2} $, $ \Theta_{T1} $和$ \Theta_{T2} $为正交矩阵, $ t_{2} \geq t_{1} > 0 $, $ \lambda > 0 $, $ \nu > 0 $. $ \text{diag}\{t_{1}, t_{2}\} $表示对角元素为$ t_{1} $, $ t_{2} $的对角阵.
令$ \alpha = {t_{2}}/{t_{1}} \geq 1 $, $ {\boldsymbol{ y}} = \Theta_{T2} \times {\boldsymbol{ x}} $, $ {\boldsymbol{ {\Delta}}} = \Theta_{T2}\times{\boldsymbol{ w}} $.由式(2)和特性1, 得
$ \begin{align} \begin{cases} \dot{\boldsymbol{ y}} = E {\boldsymbol{ y}} + B {\boldsymbol{ {\Delta}}} \\ {\boldsymbol{ x}} = C {\boldsymbol{ y}} \end{cases} \end{align} $
(5) 其中, $ B = I $为单位阵, $ C = \Theta_{T2}^{-1} $, $ E = - \left[ {array}{cc} \lambda & \alpha \nu \\ -\frac{1}{\alpha}\nu & \lambda \\ {array} \right], $并且系统(2)和(5)具有相同的$ H_{\infty} $范数.
根据文献[5]中引理2.1, 可以得到下面的特性.
特性2. 对于系统(5), 存在正定矩阵$ X $, 满足Riccati不等式
$ \begin{align} E^{\rm T}X+XE+(1+\varepsilon)C^{\rm T}C+ \rho^{-2} XBB^{\rm T}X \leq 0 \end{align} $
(6) 其中, $ \gamma < \rho $, $ \gamma = \|G\|_{\infty} $为系统$ H_{\infty} $范数, $ \varepsilon $为趋于零的正数.
注1. 应用Riccati不等式一般会得到具有很强保守性的结果, 但这种保守性并不是Riccati不等式本身导致的.研究表明:基于李雅普诺夫函数的准确选择, 可以将特性2中Riccati不等式转化为等式, 进而精确给出$ H_{\infty} $范数.因此, 导致这种保守性的原因是:在应用Riccati不等式时, 目前尚没有有效的方法找到最优的李雅普诺夫函数.这正是本文研究李雅普诺夫函数构造(或优化)的动机.
令
$ \begin{align} \Upsilon = \, &K^{-1} \Theta \begin{bmatrix} \lambda & -\frac{1}{\alpha} \nu \\ \alpha \nu & \lambda \end{bmatrix}\Theta^{\rm T}\; + \nonumber \\&\Theta \begin{bmatrix} \lambda & \alpha \nu \\ -\frac{1}{\alpha} \nu & \lambda \\ \end{bmatrix} \Theta^{\rm T}K^{-1} - K^{-1}K^{-1} \end{align} $
(7) 其中, $ \alpha \geq 1 $,
$ \begin{align} K = \iota \left[ \begin{array}{cc} 1 & 0 \\ 0 & k \\ \end{array} \right], \;\;\;\; \Theta = \left[ \begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \\ \end{array} \right] \end{align} $
(8) $ \iota >0 $, $ k \geq 1 $, $ 0 \leq \theta \leq {\pi}/{4} $.
由式(8)构造的李雅普诺夫函数分解了"放缩"和"旋转"作用.这种功能的分解使李雅普诺夫函数的参数优化具有了可行性.
定理1. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足
$ \begin{align} \gamma < \rho_{\rm{min}} = \left[\sqrt{\lambda_{\rm{min}}(\Upsilon)} \right]^{-1} \end{align} $
(9) 其中, $ \lambda_{\rm{min}}(\Upsilon) $为矩阵$ \Upsilon $的最小特征值.
证明. 令$ X = \Theta^{\rm T} K \Theta $, 其中, $ K $和$ \Theta $由式(8)给出.根据特性2和式(7), 得
$ \begin{align} \rho^{-2} I \leq \Upsilon - \varepsilon K^{-1}K^{-1} \end{align} $
(10) 则$ \rho^{-2} \leq \lambda_{\rm{min}}(\Upsilon- \varepsilon K^{-1}K^{-1}) $, 由于$ \gamma < \rho $, 并且$ \varepsilon $为趋于零的正数, 则式(9)成立.
注2. 根据定理1, 可以优化李雅普诺夫函数的参数, 以最大化$ \lambda_{\rm{min}}(\Upsilon) $, 进而精确估计系统$ H_{\infty} $范数.因此, 定理1给出了一种新的途径以得到系统的$ H_{\infty} $范数.
3. 李雅普诺夫函数优化
考查式(7)给出的矩阵$ \Upsilon $.由式(7)和式(8), 可得
$ \begin{align} \Upsilon = \frac{1}{\iota} \left[ \begin{array}{cc} 2\lambda + \beta \nu - \frac{1}{\iota} & \frac{1}{k} \sigma \nu \\ \frac{1}{k} \sigma \nu & \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \\ \end{array} \right] \end{align} $
(11) 其中,
$ \begin{align} \beta = &\ \left(\alpha-\frac{1}{\alpha}\right) \sin 2\theta \end{align} $
(12) $ \begin{align} \sigma = &\, \left[\alpha- (\alpha-\frac{1}{\alpha}) \sin^{2} \theta \right] -k \left[\frac{1}{\alpha} + (\alpha-\frac{1}{\alpha}) \sin^{2} \theta \right] = \\ &\ \frac{1}{2}(1-k)(\alpha+\frac{1}{\alpha}) +\frac{1}{2}(1+k) (\alpha-\frac{1}{\alpha}) \cos 2\theta \end{align} $
(13) 根据式(11), 以最大化$ \lambda_{\rm{min}}(\Upsilon) $为目标, 将给出一种李雅普诺夫函数的优化方法.
3.1 李雅普诺夫函数优化策略
令
$ \begin{align} \Upsilon_{1} = \Theta^{-1} \Upsilon \Theta, \; \; Y_{1} = X^{-1} \end{align} $
(14) 则由式(7)和$ X = \Theta^{\rm T}K\Theta $, 得
$ \begin{align} \Upsilon_{1} = EE^{\rm T}-(E+Y_{1})(E+Y_{1})^{\rm T} \end{align} $
(15) 令
$ \begin{align} &EE^{\rm T} = \Theta_{1}^{\rm T} \Lambda \Theta_{1}, \quad \Upsilon_{2} = \Theta_{1} \Upsilon_{1} \Theta_{1}^{\rm T} \end{align} $
(16) $ \begin{align} &E_{1} = \Theta_{1} E \Theta_{1}^{\rm T}, \qquad Y_{2} = \Theta_{1} Y_{1} \Theta_{1}^{\rm T} \end{align} $
(17) 其中, $ \Lambda = {\rm diag}\{\sigma_{1}, \sigma_{2}\} $, $ \sigma_{1} \geq \sigma_{2} $, 则
$ \begin{align} \Upsilon_{2} = \Lambda - (E_{1}+Y_{2})(E_{1}+Y_{2})^{\rm T} \end{align} $
(18) 令
$ \begin{align} E_{1} = E_{R}+E_{J}, \; \; Y_{3} = E_{R}+Y_{2} \end{align} $
(19) 其中, $ E_{R}^{\rm T} = E_{R} $, $ E_{J} = -E_{J}^{\rm T} $, 则
$ \begin{align} \Upsilon_{2} = \Lambda - (E_{J}+Y_{3})(E_{J}+Y_{3})^{\rm T} \end{align} $
(20) 令
$ \begin{align} Y_{3} = \left[ \begin{array}{cc} y_{1} & y_{3} \\ y_{3} & y_{2} \\ \end{array} \right], \; \; E_{J} = \left[ \begin{array}{cc} 0 & a \\ -a & 0 \\ \end{array} \right] \end{align} $
(21) 则根据$ \Lambda = \text{diag}\{\sigma_{1}, \sigma_{2}\} $, 有$ \sigma_{1} \geq \sigma_{2} $,
$ \begin{align} \Upsilon_{2} = & \left[ \begin{array}{cc} \sigma_{1}-(y_{3}+a)^{2}-y_{1}^{2} \\ -(y_{1}+y_{2})y_{3}-(y_{2}-y_{1})a \\ \end{array}\right.\\ &\qquad\qquad\qquad \left. \begin{array}{cc} & -(y_{1}+y_{2})y_{3}-(y_{2}-y_{1})a \\ & \sigma_{2} -(y_{3}-a)^{2}-y_{2}^{2} \\ \end{array} \right] \end{align} $
(22) 根据式(14), (16), (21), (22)和定理1, 存在$ Y_{3} $, 使$ \lambda_{\rm{min}}(\Upsilon_{2}) $ $ > $ $ 0 $, 即$ \Upsilon_{2} $正定.因此根据式(22), 为了最大化$ \Upsilon_{2} $的最小特征值, 应使下面两个条件成立.
1) $ (y_{1}+y_{2})y_{3}+ (y_{2}-y_{1})a = 0 $ (例如$ y_{2} = 0 $, $ y_{3} = a $; 或$ y_{1} = y_{2} = 0 $).
2) $ \Upsilon_{2} $的特征值相等(例如$ y_{1}^{2} = \sigma_{1}-\sigma_{2}-4a^{2} $; 或$ y_{3} $ $ = $ $ (\sigma_{1}-\sigma_{2})/{4a} $).
注意, $ \sqrt{\sigma_{2}} $为$ E $的最小奇异值, 因此$ \gamma \geq {1}/{\sqrt{\sigma_{2}}} $.令
$ \begin{align} \lambda_{1} = \frac{1}{\iota}\left( 2\lambda + \beta \nu - \frac{1}{\iota} \right), \; \; \lambda_{2} = \frac{1}{\iota}\left[ \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \right] \end{align} $
(23) 基于以上分析, 并根据式(9), (11), (14), (16)和(23), 为了最大化$ \Upsilon $的最小特征值, 李雅普诺夫函数的优化策略设计为$ \sigma = 0 $和$ \lambda_{1} = \lambda_{2} $.
3.2 李雅普诺夫函数参数优化
基于所给李雅普诺夫函数优化策略, 进一步优化李雅普诺夫函数参数.
定理2. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足
$ \begin{align} \gamma < \rho(k, \iota) = \left[\min(\lambda_{1}, \lambda_{2}) \right]^{-\frac{1}{2}} \end{align} $
(24) 其中, $ \lambda_{1} $和$ \lambda_{2} $由式(23)给出, 式(23)中$ \beta $由下式给出.
$ \begin{align} \beta = \frac{2}{k+1}\sqrt{\left(k \alpha-\frac{1}{\alpha}\right)\left(\alpha- \frac{k}{\alpha}\right)} \end{align} $
(25) 证明. 考查式(11)给出的矩阵$ \Upsilon $.令$ \sigma = 0 $, 则
$ \begin{align} \cos 2\theta = \frac{(k-1)(\alpha+\frac{1}{\alpha})}{(k+1)(\alpha-\frac{1}{\alpha})} \end{align} $
(26) 因此根据式(11), (12), (23)和$ 0 \leq \theta \leq {\pi}/{4} $, 矩阵$ \Upsilon $的特征值为$ \lambda_{1} $和$ \lambda_{2} $, 其中$ \beta $由式(25)给出.根据定理1, 可得式(24).
注3. 基于李雅普诺夫函数参数矩阵$ \Theta $的优化策略, 定理2进一步给出系统$ H_{\infty} $范数的估计., 同时奠定了进一步优化李雅普诺夫函数参数$ k $和$ \iota $的基础.
定理3. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足
$ \begin{align} \gamma < \rho(k) = \begin{cases} \frac{1}{\lambda}, & \text{若}\; \alpha = 1\\ \left[ f(k)\right]^{-\frac{1}{2}}, & \text{若}\; \alpha >1 \end{cases} \end{align} $
(27) 其中,
$ \begin{align} f(k) = \frac{4k}{(k+1)^{2}} \left[ \lambda^{2} + \nu^{2} - \frac{k \nu^{2}}{(k-1)^{2}} \left(\alpha-\frac{1}{\alpha}\right)^{2} \right] \end{align} $
(28) 证明. 考查式(23)给出的矩阵$ \Upsilon $的特征值为$ \lambda_{1} $和$ \lambda_{2} $.令$ \lambda_{1} = \lambda_{2} $, 即
$ \begin{align} 2\lambda + \beta \nu - \frac{1}{\iota} = \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \end{align} $
(29) 其中, $ \beta $由式(25)给出, $ \alpha \geq 1 $.
当$ \alpha > 1 $时, 由式(25)和式(29)可知$ k \neq 1 $, 并且得
$ \begin{align} \frac{1}{\iota} = \frac{2k \lambda}{k+1}+\frac{2k \nu}{k^{2}-1} \sqrt{\left(k \alpha- \frac{1}{\alpha}\right)\left(\alpha-\frac{k}{\alpha}\right)} \end{align} $
(30) 当$ \alpha = 1 $时, 由式(25)可知$ (k-1)^{2} \leq 0 $, 即$ k = 1 $.则根据式(23), (25), (29), $ \lambda_{1} = \lambda_{2} = \frac{1}{\iota} (2 \lambda-\frac{1}{\iota}) $.当$ \iota = \lambda $时, 得$ \max (\lambda_{1}) = \lambda^{2} $.
基于以上分析, 并根据定理2和式(23), (25), (29)以及(30), 可得结论.
注4. 通过给出李雅普诺夫函数参数$ \iota $的优化策略, 定理3进一步给出系统$ H_{\infty} $范数的估计.根据定理3, 可以直接优化李雅普诺夫函数参数$ k $, 进而得到系统$ H_{\infty} $范数的精确估计.
注5. 注意, 当$ \alpha > 1 $时, $ k \neq 1 $.因此定理3通过分别讨论$ \alpha > 1 $和$ \alpha = 1 $两种情况, 解决了$ f(k) $的奇异问题.
令
$ \begin{align} \kappa = k + \frac{1}{k} > 2 \end{align} $
(31) 则由式(28), 得
$ \begin{align} f(\kappa) = \frac{4(\lambda^{2} + \nu^{2})}{\kappa+2} - \frac{4\nu^{2}}{\kappa^{2}-4} \times \left(\alpha-\frac{1}{\alpha}\right)^{2} \end{align} $
(32) 定理4. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足
$ \begin{align} \gamma < \rho_{\text{opt}} = \begin{cases} \frac{1}{\lambda}, & \text{若}\; \alpha = 1\\ \frac{1}{2\lambda}\sqrt{\alpha^{2}+\frac{1}{\alpha^{2}}+2}, &\text{若}\; \kappa_{0} \geq \alpha^{2}+\frac{1}{\alpha^{2}}\\ \left[ f(\kappa_{0})\right]^{-\frac{1}{2}}, &\text{若}\; \kappa_{0} < \alpha^{2}+\frac{1}{\alpha^{2}} \end{cases} \end{align} $
(33) 其中
$ \begin{align} &f(\kappa_{0}) = \frac{4(\lambda^{2} + \nu^{2})}{\kappa_{0}+2} - \frac{4\nu^{2}}{\kappa_{0}^{2}-4} \times \left(\alpha-\frac{1}{\alpha}\right)^{2} \end{align} $
(34) $ \begin{align} &\kappa_{0} = 2 + \frac{\nu^{2} (\alpha-\frac{1}{\alpha})^{2}}{\lambda^{2} + \nu^{2}} \times \left[ 1+\sqrt{1+ \frac{4(\lambda^{2} + \nu^{2})}{\nu^{2} (\alpha-\frac{1}{\alpha})^{2}}} \right] \end{align} $
(35) 证明. 由式(32), 得
$ \begin{align} f'(\kappa) = \frac{{\rm d} f(\kappa)}{{\rm d} \kappa} = -\frac{4(\lambda^{2} + \nu^{2})}{(\kappa+2)^{2}} +\frac{8(\alpha-\frac{1}{\alpha})^{2} \nu^{2} \kappa}{(\kappa+2)^{2}(\kappa-2)^{2}} \end{align} $
(36) 令$ f'(\kappa) = 0 $, 即
$ \begin{align} \kappa^{2} - \left[ 4+ \frac{2(\alpha-\frac{1}{\alpha})^{2} \nu^{2}}{\lambda^{2} + \nu^{2}} \right] \kappa +4 = 0 \end{align} $
(37) 根据$ \kappa >2 $和式(35), 得$ \kappa = \kappa_{0} $.
根据式(35) $ \sim $ (37), 得
$ \begin{align} \lim \limits_{\varsigma \rightarrow 0} \frac{f'(\kappa_{0} + \varsigma)-f'(\kappa_{0})}{\varsigma} <0 \end{align} $
(38) 因此, 在$ 2 < \kappa < \infty $的条件下, $ \max f(\kappa) = f(\kappa_{0}) $, 如图 1 (a)和1 (b)所示.
注意, 定理2中李雅普诺夫函数参数矩阵$ \Theta $的优化策略为$ \sigma = 0 $, 则由式(13), 可得$ k \leq \alpha^{2} $.由于$ k >1 $, 因此根据式(31), 得
$ \begin{align} \Omega = \left\{ \kappa \in \textbf{R} | 2 < \kappa \leq \alpha^{2}+\frac{1}{\alpha^{2}} \right\} \end{align} $
(39) $ \begin{align} \max \limits_{k \in \Omega} f(\kappa) = \begin{cases} \frac{4\lambda^{2}}{\alpha^{2}+\frac{1}{\alpha^{2}}+2}, &\text{若}\; \kappa_{0} \geq \alpha^{2}+\frac{1}{\alpha^{2}}\\ f(\kappa_{0}), & \text{若}\; \kappa_{0} < \alpha^{2}+\frac{1}{\alpha^{2}} \end{cases} \end{align} $
(40) 因此由定理3可得结论.
注6. 通过对李雅普诺夫函数参数的直接优化, 定理4给出了系统$ H_{\infty} $范数上界的优化结果.应用定理4, 可以给出系统$ H_{\infty} $范数的精确估计.
注7. 不同于LMI方法, 本文提出的李雅普诺夫函数直接优化方法分析了李雅普诺夫函数的构造对系统性能分析的影响, 充分利用系统结构和参数以优化李雅普诺夫函数的设计.与LMI方法相比, 李雅普诺夫函数直接优化方法能够直接给出系统$ H_{\infty} $范数的精确结果, 进而避免了复杂的数值优化过程.因此本文的工作提供了一种新的途径以更为方便地分析系统动态性能.
4. 算例
考查系统
$ \begin{align} \dot{\boldsymbol{ x}} = -\left[ \begin{array}{cc} 1.25 & 1.25 \\ -1.25 & 2.75 \\ \end{array} \right]{\boldsymbol{ x}}+ {\boldsymbol{ w}} \end{align} $
(41) 其中, $ {\boldsymbol{ w}} $为扰动输入, $ \|{\boldsymbol{ w}}\| \leq 1 $, $ {\boldsymbol{ x}} $为状态输出.根据式(5), 得
$ \begin{align} \begin{cases} \dot{\boldsymbol{ y}} = - \left[ \begin{array}{cc} 2 & 2 \\ -0.5 & 2 \\ \end{array} \right] {\boldsymbol{ y}} + {\boldsymbol{ {\Delta}}} \\ {\boldsymbol{ x}} = \frac{\sqrt{2}}{2} \left[ \begin{array}{cc} 1 & -1 \\ 1 & 1 \\ \end{array} \right] {\boldsymbol{ y}} \end{cases} \end{align} $
(42) 因此, $ \lambda = 2 $, $ \nu = 1 $, $ \alpha = 2 $.
由式(34), 得$ \kappa_{0} = 3.8651< \alpha^{2}+\frac{1}{\alpha^{2}} = 4.25 $.则根据定理4, 得$ \gamma < \rho_{\text{opt}} = 0.622 $.因此$ \gamma \approx 0.622 $.应用MATLAB中$ H_{\infty} $范数求解函数hinfnorm (sys, 0.0000001)可得相同的结果.因此提出的李雅普诺夫函数直接优化方法能精确给出系统$ H_{\infty} $范数.
表 1进一步给出在不同参数条件下系统(5)的$ H_{\infty} $范数.表 1表明, 针对式(5)给出的具有不同参数的系统, 提出的李雅普诺夫函数直接优化方法都能精确给出系统$ H_{\infty} $范数.
表 1 $H_{\infty}$范数分析($\alpha = 2$)Table 1 $H_{\infty}$ norm analysis ($\alpha = 2$)$\lambda$ $\nu$ MATLAB 定理4 稳态误差$\|A^{-1}\|$ 状态上界 2 6 0.626 0.626 0.307 0.626 2 4 0.626 0.626 0.419 0.626 2 2 0.626 0.626 0.588 0.626 2 1.2 0.626 0.626 0.626 0.626 2 1 0.622 0.622 0.622 0.622 2 0 0.501 0.501 0.501 0.501 在$ \alpha $和系统特征值实部$ \lambda $确定(即$ \alpha = 2 $, $ \lambda = 2 $)的条件下, 表 1给出的结果表明, 随着系统特征值虚部$ \nu $变化, $ H_{\infty} $范数的变化具有一定规律性, 表现为:
1) 当$ \nu = \nu^{*} = 1.2 $ (即$ \kappa_{0} = \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数为$ \max \|A^{-1}\| $;
2) 当$ \nu < \nu^{*} $ (即$ \kappa_{0} < \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数与稳态指标$ \|A^{-1}\| $一致;
3) 当$ \nu > \nu^{*} $ (即$ \kappa_{0} > \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数为固定值(即$ H_{\infty} $范数的值与$ \nu $无关), 并且根据定理4, $ H_{\infty} $范数的表达式非常简洁.
由式(1), (3), (41), 得
$ \begin{align} \begin{bmatrix} -P \begin{bmatrix} 1.25 & 1.25 \\ -1.25 & 2.75 \\ \end{bmatrix} -\small{ \begin{bmatrix} 1.25 & -1.25 \\ 1.25 & 2.75 \\ \end{bmatrix}}P & P & I \\ P & -\gamma^{2} I & 0_{2\times 2} \\ I & 0_{2\times 2} & -I \end{bmatrix} < 0 \end{align} $
(43) 采用LMI方法求解$ H_{\infty} $范数的步骤为:
1) 选择足够大的$ \gamma $, 如$ \gamma = 10 $;
2) 应用MATLAB中LMI工具求解式(43), 可得$ P $存在;
3) 减小$ \gamma $取值, 如$ \gamma = 1 $, 应用LMI工具求解式(43), 可得$ P $存在;
4) 当$ \gamma = 0.622 $时, 应用LMI工具求解式(43), 可得$ P $存在;
5) 当$ \gamma = 0.621 $时, 应用LMI工具求解(43), 可得$ P $不存在.
基于以上步骤, LMI方法可给出$ H_{\infty} = 0.622 $.这一结果与定理4得到的结果一致, 如表 1所示.
事实上, LMI方法需要对$ \gamma $进行遍历寻找.当选$ \gamma $的间隔较大时, 保守的结果不可避免.与之相比, 本文的方法具有明显的优越性.
5. 结论
本文针对$ H_{\infty} $控制理论研究中难以精确求解系统$ H_{\infty} $范数的问题, 提出了一种李雅普诺夫函数的直接优化方法.通过优化Riccati不等式中的李雅普诺夫函数, 给出了$ H_{\infty} $范数的通用解析表达式, 进而提供了一个有效的途径以直接和精确求解系统$ H_{\infty} $范数.研究结果具有以下特点:
1) 与LMI方法相比, 本文所提方法避免了复杂的数值优化过程, 使求解系统$ H_{\infty} $范数简化.
2) 与早期关于李雅普诺夫方程和Riccati不等式的研究相比, 本文所提方法避免了由于李雅普诺夫函数选择的随意性导致的保守结果.
3) 本文所提方法能够展现系统矩阵特征值的实部和虚部对$ H_{\infty} $性能的影响, 为进一步精确(定量)控制系统$ H_{\infty} $性能提供借鉴.
在进一步的工作中, 将研究含有时滞及非线性项的系统.
-
表 1 不同负载元件指数值
$ n_p $ 和$ n_q $ [34]Table 1 Values of the exponents
$ n_p $ and$ n_q $ for different load components[34]负载元件/指数值 $ {n_p} $ $ {n_q} $ 空调 $ 0.50 $ $ 2.50 $ 电阻加热器 $ 2.00 $ $ 0.00 $ 灯 $ 1.00 $ $ 3.00 $ 泵机 $ 0.08 $ $ 1.60 $ 大型工业电机 $ 0.05 $ $ 0.50 $ 小型工业电机 $ 0.10 $ $ 0.60 $ 表 2 输电线路参数
Table 2 Parameters of transmission lines
输电线路 线路1 线路2 线路3 $ \Omega^{-1} $ 10 10.67 9.82 表 3 微电网系统参数
Table 3 Parameters of the islanded microgrid
参数 $ \mu G_1 $ $ \mu G_2 $ $ \mu G_3 $ $ \mu G_4 $ DG $ \tau_{P}(s) $ 0.16 0.16 0.16 0.16 $ K_{P}(s) $ $ 4\times 10^{-5} $ $ 2\times 10^{-5} $ $ 3\times 10^{-5} $ $ 4\times 10^{-5} $ $ \tau_{Q}(s) $ 0.16 0.16 0.16 0.16 $ K_{Q}(s) $ $ 4.2\times 10^{-4} $ $ 4.2\times 10^{-4} $ $ 4.2\times 10^{-4} $ $ 4.2\times 10^{-4} $ Load $ P_{Z} $ 0.01 0.02 0.03 0.04 $ P_{I} $ 1 2 3 4 $ P_{P} $ $ 1\times 10^{4} $ $ 1.1\times 10^{4} $ $ 1.2\times 10^{4} $ $ 1.3\times 10^{4} $ $ Q_{Z} $ 0.01 0.02 0.03 0.04 $ Q_{I} $ 1 2 3 4 $ Q_{P} $ $ 1\times 10^{4} $ $ 1.1\times 10^{4} $ $ 1.2\times 10^{4} $ $ 1.3\times 10^{4} $ 表 4 负载Z, I, P稀疏辨识结果
Table 4 Sparse identification results for Z, I, P load
字典函数 Z I P 1 0 0 $1\times 10^{-4} $ $ V_1 $ 0 1.001 0 $ V_1^2 $ 0.098 0 0 $ V_1^3 $ 0 0 0 $ V_1^4 $ 0 0 0 1 0 0 $1.1\times 10^{-4} $ $ V_2 $ 0 1.998 0 $ V_2^2 $ 0.019 0 0 $ V_2^3 $ 0 0 0 $ V_2^4 $ 0 0 0 1 0 0 $1.2\times 10^{-4} $ $ V_3 $ 0 2.999 0 $ V_3^2 $ 0.031 0 0 $ V_3^3 $ 0 0 0 $ V_3^4 $ 0 0 0 1 0 0 $1.4\times 10^{-4} $ $ V_4 $ 0 3.999 0 $ V_4^2 $ 0.039 0 0 $ V_4^3 $ 0 0 0 $ V_4^4 $ 0 0 0 表 5 ZIP负载稀疏辨识结果
Table 5 Sparse identification results for ZIP load
字典函数 $ 1 $ $ V $ $ V^2 $ $ V^3 $ $ V^{3.5} $ $ V^4 $ $ V^6 $ 负载1 $1\times 10^{4}$ 1.001 0.011 0 0 0 0 负载2 $1.1\times 10^{4}$ 2.005 0.019 0 0 0 0 负载3 $1.2\times 10^{4}$ 2.993 0.029 0 0 0 0 负载4 $1.3\times 10^{4}$ 4.009 0.041 0 0 0 0 表 6 指数负载稀疏辨识结果
Table 6 Sparse identification results for exponential load
字典函数 $ 1 $ $ V^{0.05} $ $ V^{0.08} $ $ V^{0.1} $ $ V^{0.5} $ $ V $ $ V^{2.5} $ 空调 0 0 0 0 1 0 0 泵机 0 0 1 0 0 0 0 大型工业电机 0 1 0 0 0 0 0 小型工业电机 0 0 0 1 0 0 0 表 7 动态负载稀疏辨识结果
Table 7 Sparse identification results for dynamic load
字典函数 有功功率 无功功率 $ y(t) $ 1.0001 1.0001 $ q^{-1}y(t) $ −1.6003 −0.8997 $ q^{-2}y(t) $ 0.7998 0.5003 $ q^{-3}y(t) $ 0 0 $ q^{-4}y(t) $ 0 0 $ 1 $ 0.9002 0.8905 $ V(t) $ 0.4003 0.0984 $ V^2(t) $ 0.1727 0.4447 $ V^3(t) $ 0 0 $ V^4(t) $ 0 0 -
[1] 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 43(2): 176−194Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy Internet and Its Key Control Issues. Acta Automatica Sinica, 2017, 43(2): 176−194 [2] R. H. Lasseter. Smart distribution: Coupled microgrids. Proceedings of the IEEE, 2011, 99(6): 1074−1082 doi: 10.1109/JPROC.2011.2114630 [3] Pepermans G, Driesen J, Haeseldonckx D, Belmans R, Dhaeseleer W. Distributed generation: Definition, benefits and issues. Energy Policy, 2005, 33(6): 787−798 doi: 10.1016/j.enpol.2003.10.004 [4] Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M. A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Transactions on Smart Grid, 2015, 6(6): 3006−3019 doi: 10.1109/TSG.2015.2412779 [5] Sun Q Y, Zhang Y B, He H B, Ma D Z, Zhang H W. A novel energy function-based stability evaluation and nonlinear control approach for energy internet. IEEE Transactions on Smart Grid, 2017, 8(3): 1195−1210 doi: 10.1109/TSG.2015.2497691 [6] Zhang Y, Xie L, Ding Q F. Interactive control of coupled microgrids for guaranteed system-wide small signal stability. IEEE Transactions on Smart Grid, 2016, 7(2): 1088−1096 doi: 10.1109/TSG.2015.2495233 [7] Guedes R B L, Silva F H J R, Alberto L F C, Bretas N G. Large disturbance voltage stability assessment using extended Lyapunov function and considering voltage dependent active loads. In: Proceedings of the 2005 IEEE Power Engineering Society General Meeting. San Francisco, CA, USA: IEEE, 2005. 1760−1767 [8] Zhang K Q, Zhu H, Guo S M. Dependency analysis and improved parameter estimation for dynamic composite load modeling. IEEE Transactions on Power Systems, 2017, 32(4): 3287−3297 doi: 10.1109/TPWRS.2016.2623629 [9] Ballanti A, Ochoa L F. Voltage-led load management in whole distribution networks. IEEE Transactions on Power Systems, 2018, 33(2): 1544−1554 doi: 10.1109/TPWRS.2017.2716945 [10] Xu W, Vaahedi E, Mansour Y, Tamby J. Voltage stability load parameter determination from field tests on BC hydro's system. IEEE Transactions on Power Systems, 1997, 12(3): 1290−1297 doi: 10.1109/59.630473 [11] Knyazkin V, Cañizares C, Soder L. On the parameter estimation and modeling of aggregate power system loads. IEEE Transactions on Power Systems, 2004, 19(2): 1023−1031 doi: 10.1109/TPWRS.2003.821634 [12] Jazayeri P, Rosehart W, Westwick D T. Multistage algorithm for identification of nonlinear aggregate power system loads. IEEE Transactions on Power Systems, 2007, 22(3): 1072−1079 doi: 10.1109/TPWRS.2007.901281 [13] Ding F, Liu X P, Liu G J. Identification methods for Hammerstein nonlinear systems. Digital Signal Processing, 2011, 21(2): 215−238 doi: 10.1016/j.dsp.2010.06.006 [14] Karlsson D, Hill D J. Modelling and identification of nonlinear dynamic loads in power systems. IEEE Transactions on Power Systems, 1994, 9(1): 157−166 doi: 10.1109/59.317546 [15] Choi B K, Chiang H D, Li Y H, Li H, Chen Y T, Huang D H, Lauby M G. Measurement-based dynamic load models: Derivation, comparison, and validation. IEEE Transactions on Power Systems, 2006, 21(3): 1276−1283 doi: 10.1109/TPWRS.2006.876700 [16] Ju P, Handschin E, Karlsson D. Nonlinear dynamic loadmodelling: Model and parameter estimation. IEEE Transactions on Power Systems, 1996, 11(4): 1689−1697 doi: 10.1109/59.544629 [17] Rouhani A, Abur A. Real-time dynamic parameter estimation for an exponential dynamic load model. IEEE Transactions on Smart Grid, 2016, 7(3): 1530−1536 doi: 10.1109/TSG.2015.2449904 [18] Regulski P, Vilchis-Rodriguez D S, Djurovic S, Terzija V. Estimation of composite load model parameters using an improved particle swarm optimization method. IEEE Transactions on Power Delivery, 2015, 30(2): 553−560 doi: 10.1109/TPWRD.2014.2301219 [19] Miranian A, Rouzbehi K. Nonlinear power system load identification using local model networks. IEEE Transactions on Power Systems, 2013, 28(3): 2872−2881 doi: 10.1109/TPWRS.2012.2234142 [20] Bostanci M, Koplowitz J, Taylor C W. Identification of power system load dynamics using artificial neural networks. IEEE Transactions on Power Systems, 1997, 12(4): 1468−1473 doi: 10.1109/59.627843 [21] Chang G W, Chen C I, Liu Y J. A neural-network-based method of modeling electric arc furnace load for power engineering study. IEEE Transactions on Power Systems, 2010, 25(1): 138−146 doi: 10.1109/TPWRS.2009.2036711 [22] Lu C H. Wavelet fuzzy neural networks for identification and predictive control of dynamic systems. IEEE Transactions on Industrial Electronics, 2011, 58(7): 3046−3058 doi: 10.1109/TIE.2010.2076415 [23] Kontis E O, Papadopoulos T A, Chrysochos A I, Papagiannis G K. Measurement-based dynamic load modeling using the vector fitting technique. IEEE Transactions on Power Systems, 2018, 33(1): 338−351 doi: 10.1109/TPWRS.2017.2697004 [24] Arif A, Wang Z Y, Wang J H, Mather B, Bashualdo H, Zhao D B. Load modeling—A review. IEEE Transactions on Smart Grid, 2018, 9(6): 5986−5999 doi: 10.1109/TSG.2017.2700436 [25] Majumder R, Chaudhuri B, Ghosh A, Ledwich G, Zare F. Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Transactions on Power Systems, 2010, 25(2): 796−808 doi: 10.1109/TPWRS.2009.2032049 [26] 孙秋野, 滕菲, 张化光, 马大中. 能源互联网动态协调优化控制体系构建. 中国电机工程学报, 2015, 35(14): 3667−3677Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang, Ma Da-Zhong. Construction of dynamic coordinated optimization control system for energy internet. Proceedings of the CSEE, 2015, 35(14): 3667−3677 [27] 孙秋野, 王睿, 马大中, 刘振伟. 能源互联网中自能源的孤岛控制研究. 中国电机工程学报, 2017, 37(11): 3087−3098Sun Qiu-Ye, Wang Rui, Ma Da-Zhong, Liu Zhen-Wei. An islanding control strategy research of we-energy in energy internet. Proceedings of the CSEE, 2017, 37(11): 3087−3098 [28] Zhang Y, Xie L. A transient stability assessment framework in power electronic-interfaced distribution systems. IEEE Transactions on Power Systems, 2016, 31(6): 5106−5114 doi: 10.1109/TPWRS.2016.2531745 [29] Kolluri R R, Mareels I, Alpcan T, Brazil M, Hoog J, Thomas D A. Power sharing in angle droop controlled microgrids. IEEE Transactions on Power Systems, 2017, 32(6): 4743−4751 doi: 10.1109/TPWRS.2017.2672569 [30] Kundur P, Power System Stability and Control. New York: McGraw-Hill, 1994. [31] Bokhari A, Alkan A, Doğan R, Diaz-Aguilo M, De Leon F, Czarkowski D, Zabar Z, Birenbaum L. Experimental determination of the ZIP coefficients for modern residential, commercial, and industrial loads. IEEE Transactions on Power Delivery, 2013, 29(3): 1372−1381 [32] Collin A J, Tsagarakis G, Kiprakis A E, McLaughlin S. Development of low-voltage load models for the residential load sector. IEEE Transactions on Power Systems, 2014, 29(5): 2180−2188 doi: 10.1109/TPWRS.2014.2301949 [33] Milanovic J V, Yamashita K, Villanueva S M, Djokic S Z, Korunovic L M. International industry practice on power system load modeling. IEEE Transactions on Power Systems, 2013, 28(3): 3038−3046 doi: 10.1109/TPWRS.2012.2231969 [34] Hatipoglu K, Fidan I, Radman G. Investigating effect of voltage changes on static ZIP load model in a microgrid environment. In: Proceedings of the Conference on North American Power Symposium. Champaign, USA: IEEE, 2012. 1−5 [35] Bao Y, Wang L Y, Wang C S, Wang Y. Hammerstein models and real-time system identification of load dynamics for voltage management. IEEE Access, 2018, 6: 34598−34607 doi: 10.1109/ACCESS.2018.2849002 [36] Pan W, Yuan Y, Goncalves J, Stan G B. A sparse Bayesian approach to the identification of nonlinear state-space systems. IEEE Transactions on Automatic Control, 2016, 61(1): 182−187 doi: 10.1109/TAC.2015.2426291 [37] Qu Q, Sun J, Wright J. Finding a sparse vector in a subspace: linear sparsity using alternating directions. IEEE Transactions on Information Theory, 2016, 62(10): 5855−5880 doi: 10.1109/TIT.2016.2601599 [38] Palmer J A, Kreutz-Delgado K, Wipf D P, Rao B D. Variational EM algorithms for non-Gaussian latent variable models. Advances in Neural Information Processing Systems, 2006, 18: 1059−1066 [39] Zhang Z, Xu Y, Yang J, Li X L, Zhang D. A survey of sparse representation: Algorithms and applications. IEEE Access, 2015, 3(1): 490−530 [40] Guo F H, Wen C Y, Mao J F, Song Y D. Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4355−4364 doi: 10.1109/TIE.2014.2379211 期刊类型引用(3)
1. 吕芳芳,楼旭阳,叶倩. 具有死区非线性输入的柔性臂自适应边界控制. 扬州大学学报(自然科学版). 2024(05): 16-24 . 百度学术
2. 谢志勇,朱娟芬,胡小平. 考虑间隙特性的双机械臂模糊自适应鲁棒控制. 现代制造工程. 2022(02): 52-58 . 百度学术
3. 马永浩,张爽,何修宇,刘志杰. 基于连续反演算法的时滞补偿控制综述. 工程科学学报. 2022(06): 1053-1061 . 百度学术
其他类型引用(5)
-