2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏学习的微电网负载建模

平作为 何维 李俊林 杨涛

平作为, 何维, 李俊林, 杨涛. 基于稀疏学习的微电网负载建模. 自动化学报, 2020, 46(9): 1798−1808 doi: 10.16383/j.aas.c200154
引用本文: 平作为, 何维, 李俊林, 杨涛. 基于稀疏学习的微电网负载建模. 自动化学报, 2020, 46(9): 1798−1808 doi: 10.16383/j.aas.c200154
Ping Zuo-Wei, He Wei, Li Jun-Lin, Yang Tao. Sparse learning for load modeling in microgrids. Acta Automatica Sinica, 2020, 46(9): 1798−1808 doi: 10.16383/j.aas.c200154
Citation: Ping Zuo-Wei, He Wei, Li Jun-Lin, Yang Tao. Sparse learning for load modeling in microgrids. Acta Automatica Sinica, 2020, 46(9): 1798−1808 doi: 10.16383/j.aas.c200154

基于稀疏学习的微电网负载建模

doi: 10.16383/j.aas.c200154
基金项目: 国家自然科学基金委重大项目 (61991403, 61991400)资助
详细信息
    作者简介:

    平作为:华中科技大学人工智能与自动化学院博士研究生. 主要研究方向为智能电网, 系统辨识与非线性控制.E-mail: pingzuowei@hust.edu.cn

    何维:华中科技大学电气与电子工程学院博士后. 主要研究方向为电力电子装备建模, 稳定分析与控制.E-mail: hewei5590@hust.edu.cn

    李俊林:华中科技大学人工智能与自动化学院博士研究生. 主要研究方向为系统辨识, 稀疏信号恢复, 非凸优化与高维统计.E-mail: jlli@hust.edu.cn

    杨涛:东北大学流程工业综合自动化国家重点实验室教授. 主要研究方向为工业人工智能, 信息物理系统, 分布式协同控制和优化. 本文通信作者.E-mail: yangtao@mail.neu.edu.cn

Sparse Learning for Load Modeling in Microgrids

Funds: Supported by Major Program of National Natural Science Foundation of China (61991403, 61991400)
  • 摘要: 微电网由负载、储能系统和分布式电源互联集成到能源系统中, 微电网系统可以作为一个整体系统与电网并行运行或以孤岛模式运行. 负载建模是微电网运行和管理中的一个基本问题. 本文着重解决以下两个关键问题: 1)协调负载模型结构的合理性和简洁性; 2)负载模型参数的校准. 与常规负载建模方法不同, 本文提出了一类数据驱动建模方法以同时实现负载模型结构选择和参数校准. 具体地, 该方法从量测数据中稀疏学习静态负载模型和动态负载模型, 其关键方法分别来自于稀疏贝叶斯学习方法和交替方向方法, 即从一组备选非线性字典函数中稀疏学习最主要的非线性项以平衡数据拟合度并实现模型学习. 所提出的方法将机器学习与稀疏表示相结合, 旨在对负载模型从物理角度提供机理解释并向配电网系统操作员提供有关负载的动态信息. 在孤岛微电网测试系统中验证并评估了所提出的算法. 研究测例表明所提出算法从量测数据中实现负载稀疏学习的合理性和对于噪声的鲁棒性.
  • 图  1  微电网通过公共连接点连接主网

    Fig.  1  A generic MG is connected to the main grid at the point of common coupling

    图  2  广义Hammerstein模型表示负载功率关系

    Fig.  2  A general Hammerstein model represenstation for load power

    图  3  孤岛微电网测试系统

    Fig.  3  Islanded microgrid test system

    图  4  电压输出和恒定阻抗(Z)负载有功功率辨识结果

    Fig.  4  Voltage output and identified real power of constant impedance load

    图  5  电压输出和恒定电流(I)负载有功功率辨识结果

    Fig.  5  Voltage output and identified real power of constant current load

    图  6  电压输出和恒定功率(P)负载有功功率辨识结果

    Fig.  6  Voltage output and identified real power of constant power load

    图  7  孤岛微电网对于ZIP负载的电压输出

    Fig.  7  Voltage output of the islanded microgrid for ZIP load

    图  8  ZIP负载有功功率和无功功率辨识结果

    Fig.  8  Identified real and reactive power output of ZIP load

    图  9  指数负载有功功率和无功功率辨识结果

    Fig.  9  Identified real and reactive power output of exponential load

    图  10  电压输出和动态负载有功功率辨识结果

    Fig.  10  Voltage output and identified real power of dynamic load

    图  11  有功功率真实值与拟合残差

    Fig.  11  Fitting error of real power

    表  1  不同负载元件指数值$ n_p $$ n_q $[34]

    Table  1  Values of the exponents $ n_p $ and $ n_q $ for different load components[34]

    负载元件/指数值 $ {n_p} $ $ {n_q} $
    空调 $ 0.50 $ $ 2.50 $
    电阻加热器 $ 2.00 $ $ 0.00 $
    $ 1.00 $ $ 3.00 $
    泵机 $ 0.08 $ $ 1.60 $
    大型工业电机 $ 0.05 $ $ 0.50 $
    小型工业电机 $ 0.10 $ $ 0.60 $
    下载: 导出CSV

    表  2  输电线路参数

    Table  2  Parameters of transmission lines

    输电线路 线路1 线路2 线路3
    $ \Omega^{-1} $ 10 10.67 9.82
    下载: 导出CSV

    表  3  微电网系统参数

    Table  3  Parameters of the islanded microgrid

    参数 $ \mu G_1 $ $ \mu G_2 $ $ \mu G_3 $ $ \mu G_4 $
    DG $ \tau_{P}(s) $ 0.16 0.16 0.16 0.16
    $ K_{P}(s) $ $ 4\times 10^{-5} $ $ 2\times 10^{-5} $ $ 3\times 10^{-5} $ $ 4\times 10^{-5} $
    $ \tau_{Q}(s) $ 0.16 0.16 0.16 0.16
    $ K_{Q}(s) $ $ 4.2\times 10^{-4} $ $ 4.2\times 10^{-4} $ $ 4.2\times 10^{-4} $ $ 4.2\times 10^{-4} $
    Load $ P_{Z} $ 0.01 0.02 0.03 0.04
    $ P_{I} $ 1 2 3 4
    $ P_{P} $ $ 1\times 10^{4} $ $ 1.1\times 10^{4} $ $ 1.2\times 10^{4} $ $ 1.3\times 10^{4} $
    $ Q_{Z} $ 0.01 0.02 0.03 0.04
    $ Q_{I} $ 1 2 3 4
    $ Q_{P} $ $ 1\times 10^{4} $ $ 1.1\times 10^{4} $ $ 1.2\times 10^{4} $ $ 1.3\times 10^{4} $
    下载: 导出CSV

    表  4  负载Z, I, P稀疏辨识结果

    Table  4  Sparse identification results for Z, I, P load

    字典函数 Z I P
    1 0 0 $1\times 10^{-4} $
    $ V_1 $ 0 1.001 0
    $ V_1^2 $ 0.098 0 0
    $ V_1^3 $ 0 0 0
    $ V_1^4 $ 0 0 0
    1 0 0 $1.1\times 10^{-4} $
    $ V_2 $ 0 1.998 0
    $ V_2^2 $ 0.019 0 0
    $ V_2^3 $ 0 0 0
    $ V_2^4 $ 0 0 0
    1 0 0 $1.2\times 10^{-4} $
    $ V_3 $ 0 2.999 0
    $ V_3^2 $ 0.031 0 0
    $ V_3^3 $ 0 0 0
    $ V_3^4 $ 0 0 0
    1 0 0 $1.4\times 10^{-4} $
    $ V_4 $ 0 3.999 0
    $ V_4^2 $ 0.039 0 0
    $ V_4^3 $ 0 0 0
    $ V_4^4 $ 0 0 0
    下载: 导出CSV

    表  5  ZIP负载稀疏辨识结果

    Table  5  Sparse identification results for ZIP load

    字典函数 $ 1 $ $ V $ $ V^2 $ $ V^3 $ $ V^{3.5} $ $ V^4 $ $ V^6 $
    负载1 $1\times 10^{4}$ 1.001 0.011 0 0 0 0
    负载2 $1.1\times 10^{4}$ 2.005 0.019 0 0 0 0
    负载3 $1.2\times 10^{4}$ 2.993 0.029 0 0 0 0
    负载4 $1.3\times 10^{4}$ 4.009 0.041 0 0 0 0
    下载: 导出CSV

    表  6  指数负载稀疏辨识结果

    Table  6  Sparse identification results for exponential load

    字典函数 $ 1 $ $ V^{0.05} $ $ V^{0.08} $ $ V^{0.1} $ $ V^{0.5} $ $ V $ $ V^{2.5} $
    空调 0 0 0 0 1 0 0
    泵机 0 0 1 0 0 0 0
    大型工业电机 0 1 0 0 0 0 0
    小型工业电机 0 0 0 1 0 0 0
    下载: 导出CSV

    表  7  动态负载稀疏辨识结果

    Table  7  Sparse identification results for dynamic load

    字典函数 有功功率 无功功率
    $ y(t) $ 1.0001 1.0001
    $ q^{-1}y(t) $ −1.6003 −0.8997
    $ q^{-2}y(t) $ 0.7998 0.5003
    $ q^{-3}y(t) $ 0 0
    $ q^{-4}y(t) $ 0 0
    $ 1 $ 0.9002 0.8905
    $ V(t) $ 0.4003 0.0984
    $ V^2(t) $ 0.1727 0.4447
    $ V^3(t) $ 0 0
    $ V^4(t) $ 0 0
    下载: 导出CSV
  • [1] 孙秋野, 滕菲, 张化光. 能源互联网及其关键控制问题. 自动化学报, 2017, 43(2): 176−194

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy Internet and Its Key Control Issues. Acta Automatica Sinica, 2017, 43(2): 176−194
    [2] R. H. Lasseter. Smart distribution: Coupled microgrids. Proceedings of the IEEE, 2011, 99(6): 1074−1082 doi: 10.1109/JPROC.2011.2114630
    [3] Pepermans G, Driesen J, Haeseldonckx D, Belmans R, Dhaeseleer W. Distributed generation: Definition, benefits and issues. Energy Policy, 2005, 33(6): 787−798 doi: 10.1016/j.enpol.2003.10.004
    [4] Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M. A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Transactions on Smart Grid, 2015, 6(6): 3006−3019 doi: 10.1109/TSG.2015.2412779
    [5] Sun Q Y, Zhang Y B, He H B, Ma D Z, Zhang H W. A novel energy function-based stability evaluation and nonlinear control approach for energy internet. IEEE Transactions on Smart Grid, 2017, 8(3): 1195−1210 doi: 10.1109/TSG.2015.2497691
    [6] Zhang Y, Xie L, Ding Q F. Interactive control of coupled microgrids for guaranteed system-wide small signal stability. IEEE Transactions on Smart Grid, 2016, 7(2): 1088−1096 doi: 10.1109/TSG.2015.2495233
    [7] Guedes R B L, Silva F H J R, Alberto L F C, Bretas N G. Large disturbance voltage stability assessment using extended Lyapunov function and considering voltage dependent active loads. In: Proceedings of the 2005 IEEE Power Engineering Society General Meeting. San Francisco, CA, USA: IEEE, 2005. 1760−1767
    [8] Zhang K Q, Zhu H, Guo S M. Dependency analysis and improved parameter estimation for dynamic composite load modeling. IEEE Transactions on Power Systems, 2017, 32(4): 3287−3297 doi: 10.1109/TPWRS.2016.2623629
    [9] Ballanti A, Ochoa L F. Voltage-led load management in whole distribution networks. IEEE Transactions on Power Systems, 2018, 33(2): 1544−1554 doi: 10.1109/TPWRS.2017.2716945
    [10] Xu W, Vaahedi E, Mansour Y, Tamby J. Voltage stability load parameter determination from field tests on BC hydro's system. IEEE Transactions on Power Systems, 1997, 12(3): 1290−1297 doi: 10.1109/59.630473
    [11] Knyazkin V, Cañizares C, Soder L. On the parameter estimation and modeling of aggregate power system loads. IEEE Transactions on Power Systems, 2004, 19(2): 1023−1031 doi: 10.1109/TPWRS.2003.821634
    [12] Jazayeri P, Rosehart W, Westwick D T. Multistage algorithm for identification of nonlinear aggregate power system loads. IEEE Transactions on Power Systems, 2007, 22(3): 1072−1079 doi: 10.1109/TPWRS.2007.901281
    [13] Ding F, Liu X P, Liu G J. Identification methods for Hammerstein nonlinear systems. Digital Signal Processing, 2011, 21(2): 215−238 doi: 10.1016/j.dsp.2010.06.006
    [14] Karlsson D, Hill D J. Modelling and identification of nonlinear dynamic loads in power systems. IEEE Transactions on Power Systems, 1994, 9(1): 157−166 doi: 10.1109/59.317546
    [15] Choi B K, Chiang H D, Li Y H, Li H, Chen Y T, Huang D H, Lauby M G. Measurement-based dynamic load models: Derivation, comparison, and validation. IEEE Transactions on Power Systems, 2006, 21(3): 1276−1283 doi: 10.1109/TPWRS.2006.876700
    [16] Ju P, Handschin E, Karlsson D. Nonlinear dynamic loadmodelling: Model and parameter estimation. IEEE Transactions on Power Systems, 1996, 11(4): 1689−1697 doi: 10.1109/59.544629
    [17] Rouhani A, Abur A. Real-time dynamic parameter estimation for an exponential dynamic load model. IEEE Transactions on Smart Grid, 2016, 7(3): 1530−1536 doi: 10.1109/TSG.2015.2449904
    [18] Regulski P, Vilchis-Rodriguez D S, Djurovic S, Terzija V. Estimation of composite load model parameters using an improved particle swarm optimization method. IEEE Transactions on Power Delivery, 2015, 30(2): 553−560 doi: 10.1109/TPWRD.2014.2301219
    [19] Miranian A, Rouzbehi K. Nonlinear power system load identification using local model networks. IEEE Transactions on Power Systems, 2013, 28(3): 2872−2881 doi: 10.1109/TPWRS.2012.2234142
    [20] Bostanci M, Koplowitz J, Taylor C W. Identification of power system load dynamics using artificial neural networks. IEEE Transactions on Power Systems, 1997, 12(4): 1468−1473 doi: 10.1109/59.627843
    [21] Chang G W, Chen C I, Liu Y J. A neural-network-based method of modeling electric arc furnace load for power engineering study. IEEE Transactions on Power Systems, 2010, 25(1): 138−146 doi: 10.1109/TPWRS.2009.2036711
    [22] Lu C H. Wavelet fuzzy neural networks for identification and predictive control of dynamic systems. IEEE Transactions on Industrial Electronics, 2011, 58(7): 3046−3058 doi: 10.1109/TIE.2010.2076415
    [23] Kontis E O, Papadopoulos T A, Chrysochos A I, Papagiannis G K. Measurement-based dynamic load modeling using the vector fitting technique. IEEE Transactions on Power Systems, 2018, 33(1): 338−351 doi: 10.1109/TPWRS.2017.2697004
    [24] Arif A, Wang Z Y, Wang J H, Mather B, Bashualdo H, Zhao D B. Load modeling—A review. IEEE Transactions on Smart Grid, 2018, 9(6): 5986−5999 doi: 10.1109/TSG.2017.2700436
    [25] Majumder R, Chaudhuri B, Ghosh A, Ledwich G, Zare F. Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Transactions on Power Systems, 2010, 25(2): 796−808 doi: 10.1109/TPWRS.2009.2032049
    [26] 孙秋野, 滕菲, 张化光, 马大中. 能源互联网动态协调优化控制体系构建. 中国电机工程学报, 2015, 35(14): 3667−3677

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang, Ma Da-Zhong. Construction of dynamic coordinated optimization control system for energy internet. Proceedings of the CSEE, 2015, 35(14): 3667−3677
    [27] 孙秋野, 王睿, 马大中, 刘振伟. 能源互联网中自能源的孤岛控制研究. 中国电机工程学报, 2017, 37(11): 3087−3098

    Sun Qiu-Ye, Wang Rui, Ma Da-Zhong, Liu Zhen-Wei. An islanding control strategy research of we-energy in energy internet. Proceedings of the CSEE, 2017, 37(11): 3087−3098
    [28] Zhang Y, Xie L. A transient stability assessment framework in power electronic-interfaced distribution systems. IEEE Transactions on Power Systems, 2016, 31(6): 5106−5114 doi: 10.1109/TPWRS.2016.2531745
    [29] Kolluri R R, Mareels I, Alpcan T, Brazil M, Hoog J, Thomas D A. Power sharing in angle droop controlled microgrids. IEEE Transactions on Power Systems, 2017, 32(6): 4743−4751 doi: 10.1109/TPWRS.2017.2672569
    [30] Kundur P, Power System Stability and Control. New York: McGraw-Hill, 1994.
    [31] Bokhari A, Alkan A, Doğan R, Diaz-Aguilo M, De Leon F, Czarkowski D, Zabar Z, Birenbaum L. Experimental determination of the ZIP coefficients for modern residential, commercial, and industrial loads. IEEE Transactions on Power Delivery, 2013, 29(3): 1372−1381
    [32] Collin A J, Tsagarakis G, Kiprakis A E, McLaughlin S. Development of low-voltage load models for the residential load sector. IEEE Transactions on Power Systems, 2014, 29(5): 2180−2188 doi: 10.1109/TPWRS.2014.2301949
    [33] Milanovic J V, Yamashita K, Villanueva S M, Djokic S Z, Korunovic L M. International industry practice on power system load modeling. IEEE Transactions on Power Systems, 2013, 28(3): 3038−3046 doi: 10.1109/TPWRS.2012.2231969
    [34] Hatipoglu K, Fidan I, Radman G. Investigating effect of voltage changes on static ZIP load model in a microgrid environment. In: Proceedings of the Conference on North American Power Symposium. Champaign, USA: IEEE, 2012. 1−5
    [35] Bao Y, Wang L Y, Wang C S, Wang Y. Hammerstein models and real-time system identification of load dynamics for voltage management. IEEE Access, 2018, 6: 34598−34607 doi: 10.1109/ACCESS.2018.2849002
    [36] Pan W, Yuan Y, Goncalves J, Stan G B. A sparse Bayesian approach to the identification of nonlinear state-space systems. IEEE Transactions on Automatic Control, 2016, 61(1): 182−187 doi: 10.1109/TAC.2015.2426291
    [37] Qu Q, Sun J, Wright J. Finding a sparse vector in a subspace: linear sparsity using alternating directions. IEEE Transactions on Information Theory, 2016, 62(10): 5855−5880 doi: 10.1109/TIT.2016.2601599
    [38] Palmer J A, Kreutz-Delgado K, Wipf D P, Rao B D. Variational EM algorithms for non-Gaussian latent variable models. Advances in Neural Information Processing Systems, 2006, 18: 1059−1066
    [39] Zhang Z, Xu Y, Yang J, Li X L, Zhang D. A survey of sparse representation: Algorithms and applications. IEEE Access, 2015, 3(1): 490−530
    [40] Guo F H, Wen C Y, Mao J F, Song Y D. Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4355−4364 doi: 10.1109/TIE.2014.2379211
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  1800
  • HTML全文浏览量:  1302
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-23
  • 录用日期:  2020-06-11
  • 网络出版日期:  2020-09-28
  • 刊出日期:  2020-09-28

目录

    /

    返回文章
    返回