2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合动力电动汽车的跟车控制与能量管理

赵秀春 郭戈

赵秀春, 郭戈. 混合动力电动汽车的跟车控制与能量管理. 自动化学报, 2022, 48(1): 162−170 doi: 10.16383/j.aas.c200136
引用本文: 赵秀春, 郭戈. 混合动力电动汽车的跟车控制与能量管理. 自动化学报, 2022, 48(1): 162−170 doi: 10.16383/j.aas.c200136
Zhao Xiu-Chun, Guo Ge. Tracking control and energy management of hybrid electric vehicles. Acta Automatica Sinica, 2022, 48(1): 162−170 doi: 10.16383/j.aas.c200136
Citation: Zhao Xiu-Chun, Guo Ge. Tracking control and energy management of hybrid electric vehicles. Acta Automatica Sinica, 2022, 48(1): 162−170 doi: 10.16383/j.aas.c200136

混合动力电动汽车的跟车控制与能量管理

doi: 10.16383/j.aas.c200136
基金项目: 国家自然科学基金(U1808205, 61573077, 61973053, 51975089, 51575079), 辽宁省教育厅科学研究经费(LJYT201915)资助
详细信息
    作者简介:

    赵秀春:大连民族大学讲师, 大连理工大学控制科学与工程专业博士研究生. 2006年获得东北大学硕士学位. 主要研究方向为车辆控制技术, 混合动力电动汽车能量管理. E-mail: zxc_xiu@163.com

    郭戈:东北大学教授. 1998年获得东北大学博士学位. 主要研究方向为智能交通系统, 运动目标检测跟踪网络. 本文通信作者. E-mail: geguo@yeah.net

Tracking Control and Energy Management of Hybrid Electric Vehicles

Funds: Supported by National Natural Science Foundation of China (U1808205, 61573077, 61973053, 51975089, 51575079), and Scientific Research Fund of Liaoning Provincial Education Department (LJYT201915)
More Information
    Author Bio:

    ZHAO Xiu-Chun Lecturer at Dalian Minzu University, Ph. D. candidate at Control Science and Engineering, Dalian University of Technology. She received her master degree from Northeastern Unversity in 2006. Her research interest covers vehicle control technology, and hybrid electric vehicle energy management

    GUO Ge Professor at Northeastern University. He received his Ph. D. degree from Northeastern University in 1998. His research interest covers intelligent transportation system, and moving target detection and tracking with network. Corresponding author of this paper

  • 摘要: 混合动力电动汽车(Hybrid electric vehicles, HEVs)的能量管理问题至关重要, 而混合动力电动汽车的跟车控制不仅涉及跟车效果与安全性, 也影响着能量的高效利用. 将HEVs的跟车控制与能量管理相结合, 提出一种基于安全距离的HEVs车辆跟踪与能量管理控制方法. 首先, 考虑坡度、载荷变动建立了HEVs车辆跟车系统的非线性模型, 并基于安全距离, 提出一种基于道路观测器的动态面控制(Dynamic surface control, DSC)进行车辆跟踪控制. 然后, 结合跟踪控制下工况循环, 采用滚动动态规划(Dynamic programming, DP)算法进行混合动力电动汽车能量实时优化控制. 最后, 通过仿真研究进行验证.
  • 图  1  HEV控制系统

    Fig.  1  HEV control system

    图  2  Power-split HEV功率关系

    Fig.  2  Power-split HEV power relationship

    图  3  发动机燃油消耗率

    Fig.  3  Engine fuel consumption rate map in Advisor

    图  4  发动机燃油消耗率−功率曲线

    Fig.  4  Engine fuel consumption rate and power

    图  5  道路坡度

    Fig.  5  Road slope

    图  6  HEV车辆位置

    Fig.  6  Position profile of HEV

    图  7  HEV车辆速度曲线

    Fig.  7  Velocity profile of HEV

    图  8  速度工况曲线

    Fig.  8  Velocity cycle of HEV

    图  9  SOC变化曲线

    Fig.  9  SOC of HEV

    图  10  功率分配曲线

    Fig.  10  Power distribution of HEV

    表  1  HEV车辆主要参数

    Table  1  Parameters of HEV

    参数数值单位参数数值单位
    整车质量1332kg车轮半径0.287m
    重力加速度9.81N/kg迎风面积1.746m2
    车身长度3m空气密度1.29kg/m3
    风阻系数0.3滚动阻力系数0.3m/s
    下载: 导出CSV

    表  2  燃油消耗对比

    Table  2  Comparison of fuel consumption

    优化方法 (ECE 工况)燃油消耗 (l/100 km)提高 (%)
    Advisor6.3
    本文算法4.6812
    下载: 导出CSV
  • [1] Li L, Wang X Y, Song J. Fuel consumption optimization for smart hybrid electric vehicle during a car-following process. Mechanical Systems and Signal Processing, 2017, 87: 17-29
    [2] 赵秀春, 郭戈. 混合动力电动汽车能量管理策略研究综述. 自动化学报, 2016. 42(3): 321-334

    Zhao Xiu-Chun, Guo Ge. Survey on energy management strategies for hybrid electric vehicles. Actaautomatic sincia, 2016, 42(3): 321-334
    [3] Li X, Evangelou S. Torque-leveling threshold-changing rule-based control for parallel hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6509-6523 doi: 10.1109/TVT.2019.2916720
    [4] Anbaran S A, Idris N R N, Jannati M, Aziz M J, Alsofyani I. Rule-based supervisory control of split-parallel hybrid electric vehicle. In: Proceedings of the 2014 IEEE Conference on Energy Conversion. Johor Bahru, Malaysia: IEEE Press, 2014. 7−12
    [5] Denis N, Dubois M R, Desrochers A. Fuzzy-based blended control for the energy management of a parallel plug-in hybrid electric vehicle. IET Intelligent Transport Systems, 2015, 9(1): 30-37 doi: 10.1049/iet-its.2014.0075
    [6] Murphey Y L, Park J, Chen Z H, Kuang M L, Masrur M A, Phillips A M. Intelligent hybrid vehicle power control Part I: machine learning of optimal vehicle power. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3519-3530 doi: 10.1109/TVT.2012.2206064
    [7] Zhang R D and Tao J L. GA-based fuzzy energy management system for FC/SC-powered HEV considering H2 consumption and load variation. IEEE Transactions on Fuzzy Systems, 2018, 26(4): 1833-1843 doi: 10.1109/TFUZZ.2017.2779424
    [8] Liu J C, ChenY Z, Zhan J Y, Shang F. Heuristic dynamic programming based online energy management strategy for plug-in hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4479-4493 doi: 10.1109/TVT.2019.2903119
    [9] 常远. 基于动态规划的并联混合动力动车组能量管理策略研究. 内燃机与配件, 2019. 8: 114-119 doi: 10.3969/j.issn.1674-957X.2019.10.055

    Chang Yuan. Research on energy management strategy of parallel hybrid electric multiple unit based on dynamic programming. Internal combustion engine and parts, 2019. 8: 114-119 doi: 10.3969/j.issn.1674-957X.2019.10.055
    [10] Larsson V, Johannesson M L, Egardt B, Karlsson S. Commuter route optimized energy management of hybrid electricvehicles. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1145-1154 doi: 10.1109/TITS.2013.2294723
    [11] Ko J, Ko S, Son H, Yoo B, Cheon J, Kim H. Development of brake system and regenerative braking cooperative control algorithm for automatic-transmission-based hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 2015, 64(2): 431-440 doi: 10.1109/TVT.2014.2325056
    [12] Li G Q, Görges D. Ecological adaptive cruise control and energy management strategy for hybrid electric vehicles based on heuristic dynamic programming. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3526-3535 doi: 10.1109/TITS.2018.2877389
    [13] Zeng X R, Wang J M. A parallel hybrid electric vehicle energy management strategy using stochastic model predictive control with road grade preview. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2416-2423 doi: 10.1109/TCST.2015.2409235
    [14] Yan F J, Wang J M, Huang K S. Hybrid electric vehicle model predictive control torque-split strategy incorporating engine transient characteristics. IEEE Transactions on Vehicular Technology, 2012, 61(6): 2458-2467
    [15] Moon S, Moon I, Yi K. Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance. Control Engineering Practice, 2017, 5: 442-455
    [16] Chen J Z, Zhou Y, Liang H. Effects of ACC and CACC vehicles on traffic flow based on an improved variable time headway spacing strategy. IET Intelligent Transport Systems, 2019, 13(9): 1365-1373 doi: 10.1049/iet-its.2018.5296
    [17] 陈虹, 郭露露, 宫洵等. 智能时代的汽车控制. 自动化学报, 2020. 46(7): 1313-1332

    Chen Hong, Guo Lu-Lu, Gong Xun, et al. Automotive control in intelligent era. Actaautomatic sincia, 2020. 46(7): 1313-1332
    [18] Stefania S, Alessandro S, Antonio S V, et al. Platooning maneuvers in vehicular networks: a distributed and consensus-based approach. IEEE Transactions on Intelligent Vehicles, 2019, 4(1): 59-72 doi: 10.1109/TIV.2018.2886677
    [19] Wang C, Nijmeijer H. String stable heterogeneous vehicle platoon using cooperative adaptive cruise control. In: Proceedings of the 18th International Conference on Intelligent Transportation Systems. Las Palmas, Spain: IEEE, 2015. 1977−1982
    [20] Li Y F, Chen W B, Peeta S, Wang Y B. Platoon control of connected multi-vehicle systems under V2X communications: design and experiments. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1891-1902 doi: 10.1109/TITS.2019.2905039
    [21] Zheng Y, Li S E, Wang J Q, Cao D P, Li K Q. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 14-26 doi: 10.1109/TITS.2015.2402153
    [22] Luo Y, Chen T, and Li K. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle. Mechanical Systems and Signal Processing, 2015, 64-65: 29-45 doi: 10.1016/j.ymssp.2015.02.025
    [23] Di Cairano S, Bernardini D, Bemporad A, Kolmanovsky IV. Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management. IEEE Transactions on Control Systems Technology, 2014, 22(3): 1018-1031 doi: 10.1109/TCST.2013.2272179
    [24] Tajeddin S, Vajedi M, Azad N. A newton/GMRES approach to predictive ecological adaptive cruise control of a plug-in hybrid electric vehicle in carfollowing scenarios. IFAC-Papers Online, 2016, 49(21): 59-65 doi: 10.1016/j.ifacol.2016.10.511
    [25] Luo Y, Chen T, Zhang S W, Li K Q. Intelligent hybrid electric vehicle ACC with coordinated control of tracking ability, fuel economy, and ride comfort. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2303-2308 doi: 10.1109/TITS.2014.2387356
    [26] Yu K J, Yang H Z, et al. Model predictive control for hybrid electric vehicle platooning using slope information. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 1894-1909 doi: 10.1109/TITS.2015.2513766
    [27] Guo G, Yue W. Autonomous platoon control allowing range-limited sensors. IEEE Transactions on Vehicular Technology, 2012, 61(7): 2901-2912.
    [28] 王琼, 郭戈. 车队速度滚动时域动态规划及非线性控制. 自动化学报, 2019. 45(5): 888-896 doi: 10.1109/TVT.2012.2203362

    Wang Qiong, Guo Ge. Platoon speed receding horizon dynamic programming and nonlinear control. Acta Automatica Sinica, 2019, 45(5): 888-896 doi: 10.1109/TVT.2012.2203362
    [29] Qu Z, Dawson D M, Lim S Y, Dorsey J F. A new class of robust control laws for tracking of robots. International Journal of Robotics Research, 1994, 13(4): 355-363 doi: 10.1177/027836499401300407
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  516
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回