2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大规模超环神经网络分岔动力学

张跃中 肖敏 王璐 徐丰羽

张跃中, 肖敏, 王璐, 徐丰羽. 大规模超环神经网络分岔动力学. 自动化学报, 2022, 48(4): 1129−1136 doi: 10.16383/j.aas.c200130
引用本文: 张跃中, 肖敏, 王璐, 徐丰羽. 大规模超环神经网络分岔动力学. 自动化学报, 2022, 48(4): 1129−1136 doi: 10.16383/j.aas.c200130
Zhang Yue-Zhong, Xiao Min, Wang Lu, Xu Feng-Yu. Bifurcation dynamics of large-scale neural networks composed of super multi-ring networks. Acta Automatica Sinica, 2022, 48(4): 1129−1136 doi: 10.16383/j.aas.c200130
Citation: Zhang Yue-Zhong, Xiao Min, Wang Lu, Xu Feng-Yu. Bifurcation dynamics of large-scale neural networks composed of super multi-ring networks. Acta Automatica Sinica, 2022, 48(4): 1129−1136 doi: 10.16383/j.aas.c200130

大规模超环神经网络分岔动力学

doi: 10.16383/j.aas.c200130
基金项目: 国家自然科学基金(62073172, 61573194, 51775284), 江苏省自然科学基金(BK20181389)资助
详细信息
    作者简介:

    张跃中:南京邮电大学自动化学院人工智能学院硕士研究生. 主要研究方向为神经网络动力学. E-mail: m13255191236@163.com

    肖敏:南京邮电大学自动化学院人工智能学院教授. 主要研究方向为非线性控制理论, 复杂网络, 神经网络, 信息网络融合系统和反常扩散系统. 本文通信作者. E-mail: candymanxm2003@aliyun.com

    王璐:南京邮电大学自动化学院人工智能学院硕士研究生. 主要研究方向为信息物理融合系统. E-mail: wangdadeer@aliyun.com

    徐丰羽:南京邮电大学自动化学院人工智能学院教授. 主要研究方向为机器人及其自动化. E-mail: xufengyu598@163.com

Bifurcation Dynamics of Large-scale Neural Networks Composed of Super Multi-ring Networks

Funds: Supported by National Natural Science Foundation of China (62073172, 61573194, 51775284) and Natural Science Foundation of Jiangsu Province (BK20181389)
More Information
    Author Bio:

    ZHANG Yue-Zhong Master student at the College of Automation & College of Artificial intelligence, Nanjing University of Posts and Telecommunications. His research interest covers neural network dynamics

    XIAO Min Professor at the College of Automation & College of Artificial intelligence, Nanjing University of Posts and Telecommunications. His research interest covers nonlinear control theory, complex networks, neural networks, cyber-physical systems, and anomalous diffusion systems. Corresponding author of this paper

    WANG Lu Master student at the College of Automation & College of Artificial intelligence, Nanjing University of Posts and Telecommunications. Her research interest covers cyber-physical systems

    XU Feng-Yu Professor at the College of Automation & College of Artificial intelligence, Nanjing University of Posts and Telecommunications. His research interest covers robotics and automation

  • 摘要: 目前绝大多数神经网络分岔动力学局限于结构简单、低维少节点模型, 这与真实的大规模神经网络系统相去甚远. 因此, 研究大量神经元耦合的高维神经网络模型更具实际应用价值. 环状及辐射状结构在神经网络中普遍存在, 提出了一类大规模超环时滞神经网络模型, 结构包含一个大环和任意多个小环, 并且每个环上拥有任意多个神经元. 运用特征值法和分岔理论, 选取时滞为分岔参数, 给出了该超环神经网络模型的稳定性条件和Hopf分岔判据. 数值仿真结果, 验证该理论结果的正确性.
  • 图  1  一类融合多种结构的超环神经网络模型图

    Fig.  1  Model diagram of a class of super multi ring neural network fused with multiple structures

    图  2  $\tau $ = 3.15 s < τ0时, 网络(15)渐近稳定

    Fig.  2  When $\tau $ = 3.15 s < τ0, network (15) is asymptotically stable

    图  3  $\tau $ = 3.3 s > τ0时, 网络(15)失稳

    Fig.  3  Network (15) is unstable when $\tau $ = 3.3 s > τ0

    表  1  网络(15)的初始参数设定表

    Table  1  Initial parameter setting table for network (15)

    参数$\rho $$v_j^{(k)},\forall j,k = {1,2,3}$
    初始值0.75-0.6
    下载: 导出CSV

    表  2  结构变化影响分岔点位置情况表

    Table  2  Table of the influence of structural change on the location of bifurcation points

    环的个数结构简图神经元个数分岔点
    3616.2
    493.22
    5122.08
    下载: 导出CSV
  • [1] 张耀中, 胡小方, 周跃, 段书凯. 基于多层忆阻脉冲神经网络的强化学习及应用. 自动化学报, 2019, 45(8): 1536-1547.

    Zhang Yao-Zhong, Hu Xiao-Fang, Zhou Yue, Duan Shu-Kai. A novel reinforcement learning algorithm based on multilayer memristive spiking neural network with applications. Acta Automatica Sinica, 2019, 45(8): 1536-1547.
    [2] 杨刚, 王乐, 戴丽珍, 杨辉. 基于连接自组织发育的稀疏跨越-侧抑制神经网络设计. 自动化学报, 2019, 45(4): 808-818.

    Yang Gang, Wang Le, Dai Li-Zhen, Yang Hui. Design of sparse span-lateral inhibition neural network based on connection self-organization development. Acta Automatica Sinica, 2019, 45(4): 808-818.
    [3] Zhen W, Li L, Li Y, Cheng Z. Stability and Hopf bifurcation of a three-neuron network with multiple discrete and distributed delays. Neural Processing Letters, 2018, 48(5): 1481-1502.
    [4] Cheng Z, Xie K, Wang T, Cao J. Stability and Hopf bifurcation of three-triangle neural networks with delays. Neurocomputing, 2018, 322: 206-215. doi: 10.1016/j.neucom.2018.09.063
    [5] Xu C, Liao M, Li P, Guo Y. Bifurcation analysis for simplified five-neuron bidirectional associative memory neural networks with four delays. Neural Processing Letters, 2019, 50: 2219–2245. doi: 10.1007/s11063-019-10006-y
    [6] Wang T, Cheng Z, Bu R, Ma R. Stability and Hopf bifurcation analysis of a simplified six-neuron tridiagonal two-layer neural network model with delays. Neurocomputing, 2019, 332: 203-214. doi: 10.1016/j.neucom.2018.12.005
    [7] Bootan R, Yuliya N, Konstantin B. Dynamics of unidirectionally-coupled ring neural network with discrete and distributed delays. Journal of Mathematical Biology, 2020, 80: 1617-1653. doi: 10.1007/s00285-020-01475-0
    [8] Xu C J, Liao M X, Li P L, Guo Y, Xiao Q M, Yuan S. Influence of multiple time delays on bifurcation of fractional-order neural networks. Applied Mathematics and Computation, 2019, 361: 565-582. doi: 10.1016/j.amc.2019.05.057
    [9] Ali M S, Narayanan G, Shekher V, Alsulami H, Saeed T. Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms. Applied Mathematics and Computation, 2020, 369: 124896
    [10] Li Z, Huang C, Zhang Y. Comparative analysis on bifurcation of four-neuron fractional ring networks without or with leakage delays. Advances in Difference Equations, 2019, 179: 1-22.
    [11] Yao Y, Xiao M, Cao J. Stability switches and Hopf bifurcation of a neuron system with both leakage and distributed delays. Neural Processing Letters, 2019, 50(2): 341-355.
    [12] Zhang Z Z, Yuan H Z. Hopf bifurcation in a delayed predator-prey system with modified Leslie-Gower and Holling-type III schemes. Acta Automatica Sinica, 2013, 5: 610-616.
    [13] Wang H P, Li J, Zhang K. Stability and Hopf bifurcation of the maglev system with delayed speed feedback control. Acta Automatica Sinica, 2007, 8: 829-834.
    [14] Dong T, Bai J Q, Yang L. Bifurcation analysis of delayed complex-valued neural Network with diffusions. Neural Processing Letters, 2019, 50(2): 1019-1033. doi: 10.1007/s11063-018-9899-0
    [15] Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators, Nature, 2000, 403(6767): 335−338
    [16] Hassard B D, Kazarinoff N D, Wan Y H. Theory and applications of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981.
    [17] Xiao M, Zheng W X, Cao J. Hopf bifurcation of an (n+1)-neuron bidirectional associative memory neural network model with delays. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 118-132. doi: 10.1109/TNNLS.2012.2224123
    [18] Huang C, Cao J, Xiao M, Alsaedi A, Hayat T. Effects of time delays on stability and Hopf bifurcation in a fractional ring-structured network with arbitrary neurons. Communications in Nonlinear Science and Numerical Simulation, 2018, 57: 1-13. doi: 10.1016/j.cnsns.2017.09.005
    [19] Milo R, Shen O S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: Simple building blocks of complex networks, Science, 2002, 298
    [20] 杨华. 矩阵与线性方程组的图解法. 天津: 南开大学, 2007.

    Yang Hua. A Graphical Method for Matrices and Systems of Linear Equations. Tianjin: Nankai University, 2007.
    [21] 胡寿松. 自动控制原理. 北京: 科学出版社, 2013. 95−97

    Hu Shou-Song. Automatic Control Theory. Beijing: Science Press, 2013. 95−97
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1228
  • HTML全文浏览量:  294
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 录用日期:  2020-09-07
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-04-13

目录

    /

    返回文章
    返回