2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合语义和多层特征融合的行人检测

储珺 束雯 周子博 缪君 冷璐

储珺, 束雯, 周子博, 缪君, 冷璐. 结合语义和多层特征融合的行人检测. 自动化学报, 2022, 48(1): 282−291 doi: 10.16383/j.aas.c200032
引用本文: 储珺, 束雯, 周子博, 缪君, 冷璐. 结合语义和多层特征融合的行人检测. 自动化学报, 2022, 48(1): 282−291 doi: 10.16383/j.aas.c200032
Chu Jun, Shu Wen, Zhou Zi-Bo, Miao Jun, Leng Lu. Combining semantics with multi-level feature fusion for pedestrian detection. Acta Automatica Sinica, 2022, 48(1): 282−291 doi: 10.16383/j.aas.c200032
Citation: Chu Jun, Shu Wen, Zhou Zi-Bo, Miao Jun, Leng Lu. Combining semantics with multi-level feature fusion for pedestrian detection. Acta Automatica Sinica, 2022, 48(1): 282−291 doi: 10.16383/j.aas.c200032

结合语义和多层特征融合的行人检测

doi: 10.16383/j.aas.c200032
基金项目: 国家自然科学基金 (62162045, 61866028), 江西省重点研发计划项目 (20192BBE50073), 研究生创新基金(YC2018094) 资助
详细信息
    作者简介:

    储珺:江西省图像处理与模式识别重点实验室(南昌航空大学)教授. 主要研究方向为计算机视觉, 模式识别和深度学习. 本文通信作者. E-mail: chujun99602@163.com

    束雯:江西省图像处理与模式识别重点实验室(南昌航空大学)硕士研究生. 主要研究方向为图像处理, 计算机视觉. E-mail: shuwen0418@163.com

    周子博:江西省图像处理与模式识别重点实验室(南昌航空大学)硕士研究生. 主要研究方向为图像处理, 计算机视觉. E-mail: abaabc13@163.com

    缪君:江西省图像处理与模式识别重点实验室(南昌航空大学)副教授. 主要研究方向为计算机视觉, 3D重建和模式识别. E-mail: miaojun@nchu.edu.cn

    冷璐:江西省图像处理与模式识别重点实验室(南昌航空大学)副教授. 主要研究方向为计算机视觉, 模式识别和生物特征模板保护. E-mail: leng@nchu.edu.cn

Combining Semantics With Multi-level Feature Fusion for Pedestrian Detection

Funds: Supported by National Natural Science Foundation of China (62162045, 61866028), Jiangxi Key Research and Development Project (20192BBE50073), Innovation Foundation for Postgraduate (YC2018094)
More Information
    Author Bio:

    CHU Jun Professor at Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition (Nanchang Hangkong University). Her research interest covers computer vision, pattern recognition, and deep learning. Corresponding author of this paper

    SHU Wen Master student at Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition (Nanchang Hangkong University). Her research interest covers image processing and computer vision

    ZHOU Zi-Bo Master student at Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition (Nanchang Hangkong University). His research interest covers image processing and computer vision

    MIAO Jun Associate professor at Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition (Nanchang Hangkong University). His research interest covers computer vision, 3D reconstruction, and pattern recognition

    LENG Lu Associate professor at Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition (Nanchang Hangkong University). His research interest covers computer vision, pattern recognition, and biometric template protection

  • 摘要: 遮挡及背景中相似物干扰是行人检测准确率较低的主要原因. 针对该问题, 提出一种结合语义和多层特征融合(Combining semantics with multi-level feature fusion, CSMFF)的行人检测算法. 首先, 融合多个卷积层特征, 并在融合层上添加语义分割, 得到的语义特征与相应的卷积层连接作为行人位置的先验信息, 增强行人和背景的辨别性. 然后, 在初步回归的基础上构建行人二次检测模块(Pedestrian secondary detection module, PSDM), 进一步排除误检物体. 实验结果表明, 所提算法在数据集Caltech和CityPersons上漏检率(Miss rate, MR)为7.06 %和11.2 %. 该算法对被遮挡的行人具有强鲁棒性, 同时可方便地嵌入到其他检测框架.
  • 图  1  本文算法框架

    Fig.  1  Overview of our proposed framework

    图  2  基于目标框和物体轮廓为边界的逐像素分割结果

    Fig.  2  The pixel-by-pixel segmentation results based on object box boundary and object contour boundary

    图  3  添加语义分割前后Conv5_3层的特征可视化对比

    Fig.  3  Visual comparison of features of Conv5_3 layer before and after adding semantic segmentation

    图  4  CSMFF与各种对比算法在Caltech测试数据集上MR-FPPI变化

    Fig.  4  The variations of MR-FPPI of our proposed CSMFF with state-of-the-art approaches on the Caltech test dataset

    表  1  Caltech数据集中部分子集的划分标准

    Table  1  Evaluation settings for partial subsets of the Caltech dataset

    子集行人高度 (Height)行人被遮挡程度 (Occlusion)
    Reasonable$ > $50 PXsocc$ < $0.35
    Partial$ > $50 PXs0.10$ < $occ$ \le $0.35
    Heavy$ > $50 PXs0.35$ < $occ$ \le $0.80
    下载: 导出CSV

    表  2  CityPersons数据集中部分子集的划分标准

    Table  2  Evaluation settings for partial subsets of the CityPersons dataset

    子集行人高度 (Height)行人被遮挡程度 (Occlusion)
    Bare$ > $50 PXsocc$ \le $0.10
    Reasonable$ > $50 PXsocc$ < $0.35
    Partial$ > $50 PXs0.10$ < $occ$ \le $0.35
    Heavy$ > $50 PXs0.35$ < $occ$ \le $0.80
    下载: 导出CSV

    表  3  在Caltech测试数据集上对比算法性能以及运行速度比较

    Table  3  Performance and runtime comparisons of our proposed CSMFF with state-of-the-art approaches on the Caltech test dataset

    方法Reasonable MR (%)Partial MR (%)Heavy MR (%)速度 (s/帧)
    PL-CNN[16]12.4016.68
    Faster R-CNN$ + $ATT[32]10.3322.2945.18
    MS-CNN[10]9.9519.2459.940.40
    RPN$ + $BF[13]9.5824.2374.360.60
    AdaptFasterRCNN[14]9.1826.5557.58
    F-DNN[21]8.6515.4155.130.30
    PCN[20]8.4516.0955.81
    F-DNN$ + $SS[21]8.1815.1153.762.48
    CSMFF7.0614.3650.620.12
    下载: 导出CSV

    表  4  在CityPersons测试数据集上不同算法性能比较

    Table  4  Performance comparison of our proposed CSMFF with state-of-the-art approaches on the CityPersons test dataset

    方法骨干网络Bare MR (%)Reasonable MR (%)Partial MR (%)Heavy MR (%)
    TLL[33]ResNet-5010.015.517.253.6
    Repulsion Loss[34]ResNet-507.613.216.856.9
    LBST[35]ResNet-5012.853.7
    CC-CNN[36]VGG-168.211.814.1
    OR-CNN[37]VGG-166.712.815.355.7
    Faster R-CNN[14]VGG-1615.4
    CSMFFVGG-167.511.213.450.1
    下载: 导出CSV

    表  5  在Caltech测试数据集上融合不同卷积层的性能

    Table  5  Performance of fusing different convolutional layers on the Caltech test dataset

    卷积层 MR (%)
    Conv2_2Conv3_3Conv4_3Conv5_3PFEMCSMFF
    12.227.06
    32.4218.15
    18.7211.79
    下载: 导出CSV

    表  6  在Caltech数据集上测试每个组件的消融实验

    Table  6  Ablation experiments for testing each component on the Caltech dataset

    组件选择
    Faster R-CNN
    多层特征融合
    语义分割分支
    PSDM
    PFEM MR (%)14.9313.2712.5812.22
    CSMFF MR (%)12.119.538.687.06
    下载: 导出CSV
  • [1] Danelljan M, Bhat G, Khan F S, Felsberg M. Atom: Accurate tracking by overlap maximization. In: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, California, USA: IEEE, 2019. 4660−4669
    [2] 李幼蛟, 卓力, 张菁, 李嘉锋, 张辉. 行人再识别技术综述[J]. 自动化学报, 2018, 44(9): 1554-1568

    Li You-Jiao, Zhuo Li, Zhang jing, Li Jia-Feng, Zhang Hui. Overview of Pedestrian Re-identification Technology. Acta Automatica Sinica, 2018, 44(9): 1554-1568
    [3] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2012. 3354−3361
    [4] 王梦来, 李想, 陈奇, 李澜博, 赵衍运. 基于CNN的监控视频事件检测[J]. 自动化学报, 2016, 42(6): 892-903

    Wang Meng-Lai, Li Xiang, Chen Qi, Li Yuan-Bo, Zhao Yan-Yun. CNN-based surveillance video event detection. Acta Automatica Sinica, 2016, 42(6): 892-903
    [5] Kanazawa A, Black M J, Jacobs D W, Malik J. End-to-end recovery of human shape and pose. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, USA: IEEE, 2018. 7122−7131
    [6] Zhang S, Benenson R, Omran M, Hosang J, Schiele B. How far are we from solving pedestrian detection? In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: IEEE, 2016. 1259−1267
    [7] Girshick R. Fast R-CNN. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 1440−1448
    [8] Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. In: Proceedings of the 2015 Advances in Neural Information Processing Systems (NIPS). Montreal, Quebec, Canada: MIT Press, 2015. 91−99
    [9] Yang F, Choi W, Lin Y. Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: IEEE, 2016. 2129−2137
    [10] Cai Z, Fan Q, Feris R S, Vasconcelos N. A unified multi-scale deep convolutional neural network for fast object detection. In: Proceedings of the 2016 European Conference on Computer Vision. Scottsdale, AZ, USA: Springer, 2016. 354−370
    [11] Gidaris S, Komodakis N. Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 1134−1142
    [12] Li J, Liang X, Shen S M, Xu T F, Feng J S, Yan S C. Scale-aware Fast R-CNN for pedestrian detection. IEEE Transactions on Multimedia, 2017, 20(4): 985-996
    [13] Zhang L L, Lin L, Liang X D, He K M. Is Faster R-CNN doing well for pedestrian detection? In: Proceedings of the 2016 European Conference on Computer Vision. Amsterdam, Noord-Holland, The Netherlands: IEEE, 2016. 443−457
    [14] Zhang S, Benenson R, Schiele B. CityPersons: A diverse dataset for pedestrian detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Hawaii, USA: IEEE, 2017. 3213−3221
    [15] Dollár P, Wojek C, Schiele B, Perona P. Pedestrian detection: A benchmark. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009. 304−311
    [16] Yun I, Jung C, Wang X R, Hero A O, Kim J K. Part-level convolutional neural networks for pedestrian detection using saliency and boundary box alignment. IEEE Access, 2019, 7: 23027-23037 doi: 10.1109/ACCESS.2019.2899105
    [17] Fidler S, Mottaghi R, Yuille A, Urtasun R. Bottom-up segmentation for top-down detection. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon, USA: IEEE, 2013. 3294−3301
    [18] Hariharan B, Arbeláez P, Girshick R, Malik J. Simultaneous detection and segmentation. In: Proceedings of the 2014 European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 297−312
    [19] Arbeláez P, Pont-Tuset J, Barron J T, Marques F, Malik J. Multiscale combinatorial grouping. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, USA: IEEE, 2014. 328−335
    [20] Wang S G, Cheng J, Liu H J, Tang M. PCN: Part and context information for pedestrian detection with CNNs. arXiv preprint arXiv: 1804.04483, 2018.
    [21] Du X, El-Khamy M, Lee J, Davis L. Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection. In: Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa, California, USA: IEEE, 2017. 953−961
    [22] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409. 1556, 2014.
    [23] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Proceedings of the 2011 International Conference on Artificial Intelligence and Statistics. Espoo, Finland, German: Springer, 2011. 315−323
    [24] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: IEEE, 2016. 770−778
    [25] Hochreiter S, Younger A S, Conwell P R. Learning to learn using gradient descent. In: Proceedings of the 2001 International Conference on Artificial Neural Networks. Vienna, Austria, German: Springer, 2001. 87−94
    [26] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv: 1502.03167, 2015.
    [27] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Imagenet: A large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA: IEEE, 2009. 248−255
    [28] Jia Y Q, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv: 1408.5093, 2014.
    [29] Zhang S, Benenson R, Schiele B. Filtered channel features for pedestrian detection. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, Massachusetts, USA: IEEE, 2015. 1751−1760
    [30] Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, Nevada, USA: IEEE, 2016. 3213−3223
    [31] Dollar P, Wojek C, Schiele B, Perona P. Pedestrian Detection: An evaluation of the state of the art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(4): 743-761
    [32] Zhang S, Yang J, Schiele B. Occluded pedestrian detection through guided attention in CNNs. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, USA: IEEE, 2018. 6995−7003
    [33] Song T, Sun L Y, Xie D, Sun H M, Pu S L. Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In: Proceedings of the 2018 European Conference on Computer Vision. Munich, Germany: Springer, 2018. 536−551
    [34] Wang X, Xiao T, Jiang Y, Shao S, Sun J, Shen C H. Repulsion loss: Detecting pedestrians in a crowd. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, USA: IEEE, 2018. 7774−7783
    [35] Cao J L, Pang Y W, Han J G, Gao B L, Li X L. Taking a look at small-scale pedestrians and occluded pedestrians. IEEE Transactions on Image Processing, 2019, 29: 3143-3152.
    [36] Zhao Y, Yuan Z J, Chen B D. Training cascade compact cnn with region-iou for accurate pedestrian detection. IEEE Transactions on Intelligent Transportation Systems, 2019: 1-11.
    [37] Zhang S F, Wen L Y, Bian X, Lei Z, Li S Z. Occlusion-aware R-CNN: Detecting pedestrians in a crowd. In: Proceedings of the 2018 European Conference on Computer Vision. Munich, Germany: Springer, 2018. 637−653
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  304
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 录用日期:  2020-06-01
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回