2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梯形网络和改进三训练法的半监督分类

莫建文 贾鹏

莫建文, 贾鹏. 基于梯形网络和改进三训练法的半监督分类. 自动化学报, 2022, 48(8): 2088−2096 doi: 10.16383/j.aas.c190869
引用本文: 莫建文, 贾鹏. 基于梯形网络和改进三训练法的半监督分类. 自动化学报, 2022, 48(8): 2088−2096 doi: 10.16383/j.aas.c190869
Mo Jian-Wen, Jia Peng. Semi-supervised classification model based on ladder network and improved tri-training. Acta Automatica Sinica, 2022, 48(8): 2088−2096 doi: 10.16383/j.aas.c190869
Citation: Mo Jian-Wen, Jia Peng. Semi-supervised classification model based on ladder network and improved tri-training. Acta Automatica Sinica, 2022, 48(8): 2088−2096 doi: 10.16383/j.aas.c190869

基于梯形网络和改进三训练法的半监督分类

doi: 10.16383/j.aas.c190869
基金项目: 国家自然科学基金(61661017, 61967005, U1501252), 广西自然科学基金(2017GXNSFBA198212), 桂林电子科技大学研究生创新项目基金(2019YCXS020)资助
详细信息
    作者简介:

    莫建文:桂林电子科技大学信息与通信学院副教授. 主要研究方向为机器视觉, 智能图像处理. 本文通信作者. E-mail: mo_jianwen@126.com

    贾鹏:桂林电子科技大学信息与通信学院硕士研究生. 主要研究方向为智能图像处理. E-mail: jiapeng_jay@163.com

Semi-supervised Classification Model Based on Ladder Network and Improved Tri-training

Funds: Supported by National Natural Science Foundation of China (61661017, 61967005, U1501252), Natural Science Foundation of Guangxi (2017GXNSFBA198212), and Postgraduate Innovation Project of Guilin University of Electronic Science and Technology (2019YCXS020)
More Information
    Author Bio:

    MO Jian-Wen  Associate professor at the School of Information and Communication, Guilin University of Electronic Science and Technology. His research interest covers machine vision and intelligent image processing. Corresponding author of this paper

    JIA Peng  Master student at the School of Information and Communication, Guilin University of Electronic Science and Technology. His main research interest is intelligent image processing

  • 摘要: 为了提高半监督深层生成模型的分类性能, 提出一种基于梯形网络和改进三训练法的半监督分类模型. 该模型在梯形网络框架有噪编码器的最高层添加3个分类器, 结合改进的三训练法提高图像分类性能. 首先, 用基于类别抽样的方法将有标记数据分为3份, 模型以有标记数据的标签误差和未标记数据的重构误差相结合的方式调整参数, 训练得到3个Large-margin Softmax分类器; 接着, 用改进的三训练法对未标记数据添加伪标签, 并对新的标记数据分配不同权重, 扩充训练集; 最后, 利用扩充的训练集更新模型. 训练完成后, 对分类器进行加权投票, 得到分类结果. 模型得到的梯形网络的特征有更好的低维流形表示, 可以有效地避免因为样本数据分布不均而导致的分类误差, 增强泛化能力. 模型分别在MNIST数据库, SVHN数据库和CIFAR10数据库上进行实验, 并且与其他半监督深层生成模型进行了比较, 结果表明本文所提出的模型得到了更高的分类精度.
  • 图  1  LN-TT SSC模型

    Fig.  1  LN-TT SSC model

    图  2  MNIST数据的流行表示图

    Fig.  2  A popular representation of MNIST

    图  3  LN-TT SSC模型趋于收敛时的图片对比

    Fig.  3  Comparison of image when the LN-TT SSC model tends to converge

    表  1  LN-TT SSC模型及混合方案在SVHN和CIFAR10数据集上的分类精度(%)

    Table  1  Classification accuracy of LN-TT SSC model and hybrid scheme on SVHN and CIFAR10 (%)

    模型SVHNCIFAR10
    基准实验 $(\Pi$+ softmax)88.7583.56
    方案 A $(\Pi$+ LM-Softmax)91.3586.11
    方案 B (VGG19 + softmax)89.7284.73
    LN-TT SSC93.0588.64
    下载: 导出CSV

    表  2  MNIST数据集上的分类精度(%)

    Table  2  Classification accuracy on MNIST dataset (%)

    模型${N_1}$= 100${N_2}$= 1000
    Ladder network[11]98.8899.06
    CAT-GAN[8]99.0999.11
    Improved-GAN[9]98.5899.15
    GAR[19]98.9299.21
    SSE-GAN[10]99.1092.23
    LN-TT SSC99.1499.30
    下载: 导出CSV

    表  3  SVHN数据集上的分类精度(%)

    Table  3  Classification accuracy on SVHN dataset (%)

    模型${N_1}$= 100${N_2}$= 1000
    Ladder network[11]75.5087.06
    CAT-GAN[8]77.6888.90
    Improved-GAN[9]81.5790.78
    GAR[19]80.8792.08
    SSE-GAN[10]81.0892.92
    LN-TT SSC82.1393.05
    下载: 导出CSV

    表  4  CIFAR10数据集上的分类精度(%)

    Table  4  Classification accuracy on CIFAR10 dataset (%)

    模型${N_1}$= 2000${N_2}$= 4000
    Ladder network[11]76.5679.68
    CAT-GAN[8]78.8380.42
    Temporal-Ensembling[17]87.84
    GAR[19]82.1083.35
    SSE-GAN[10]83.6685.14
    VAT[21]82.8885.61
    LN-TT SSC84.1488.64
    下载: 导出CSV
  • [1] 刘建伟, 刘媛, 罗雄麟. 半监督学习方法. 计算机学报, 2015, 38(8): 1592-1617 doi: 10.11897/SP.J.1016.2015.01592

    Liu Jian-Wei, Liu Yuan, Luo Xiong-Lin. Semi-supervised learning. Journal of Computer Science, 2015, 38(8): 1592-1617 doi: 10.11897/SP.J.1016.2015.01592
    [2] Chau V T N, Phung N H. Combining self-training and tri-training for course-level student classification. In: Proceedings of the 2018 International Conference on Engineering, Applied Sciences, and Technology, Phuket, Thailand: IEEE, 2018. 1−4
    [3] Lu X C, Zhang J P, Li T, Zhang Y. Hyperspectral image classification based on semi-supervised rotation forest. Remote Sensing, 2017, 9(9): 924-938 doi: 10.3390/rs9090924
    [4] Cheung E, Li Y. Self-training with adaptive regularization for S3VM. In: Proceedings of the 2017 International Joint Conference on Neural Networks, Anchorage, AR, USA: IEEE, 2017. 3633−3640
    [5] Kvan Y, Wadysaw S. Convolutional and recurrent neural networks for face image analysis. Foundations of Computing and Decision Sciences, 2019, 44(3): 331-347 doi: 10.2478/fcds-2019-0017
    [6] 罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述. 自动化学报, 2017, 43(8): 1306-1318

    Luo Jian-Hao, Wu Jian-Xin. A review of fine-grained image-classification based on depth convolution features. Acta Automatica Sinica, 2017, 43(8): 1306-1318
    [7] 林懿伦, 戴星原, 李力, 王晓, 王飞跃. 人工智能研究的新前线: 生成对抗网络. 自动化学报, 2018, 44(5): 775-792

    Lin Yi-Lun, Dai Xing-Yuan, Li Li, Wang Xiao, Wang Fei-Yue. A new frontier in artificial intelligence research: generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 775-792
    [8] Springenberg J T. Unsupervised and semi-supervised learning with categorical generative adversarial networks. In: Proceedings of the 2005 International Conference on Learning Representations, 2015. 1−20
    [9] Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for training GANs. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain: ACM, 2016. 2234−2242
    [10] 付晓, 沈远彤, 李宏伟, 程晓梅. 基于半监督编码生成对抗网络的图像分类模型. 自动化学报, 2020, 46(3): 531-539

    Fu Xiao, Shen Yuan-Tong, Li Hong-Wei, Cheng Xiao-Mei. Image classification model based on semi-supervised coding generative adversarial networks. Acta Automatica Sinica, 2020, 46(3): 531-539
    [11] Pezeshki M, Fan L X, Brakel P, Courville A, Bengio Y. Deconstructing the ladder network architecture. In: Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA: ACM, 2016. 2368−2376
    [12] Rasmus A, Valpola H, Honkala M, Berglund M, Raiko T. Semi-supervised learning with ladder networks. Computer Science, 2015, 9(1): 1-9
    [13] Zhao S, Song J, Ermon S. Learning hierarchical features from generative models. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia: ACM, 2017. 4091−4099
    [14] Saito K, Ushiku Y, Harada T. Asymmetric tri-training for unsupervised domain adaptation. International Conference on Machine Learning, 2017: 2988-2997
    [15] Chen D D, Wang W, Gao W, Zhou Z H. Tri-net for semi-supervised deep learning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden: ACM, 2018. 2014−2020
    [16] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Computer Science and Information Systems, 2014.
    [17] Samuli L, Timo A. Temporal ensembling for semi-supervised learning. In: Proceedings of the 2017 International Conference on Learning Representation, 2017. 1−13
    [18] Liu W Y, Wen Y D, Yu Z D, Yang M. Large-margin softmax loss for convolutional neural networks. In: Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA: ACM, 2016. 507−516
    [19] Kilinc O, Uysal I. GAR: an efficient and scalable graph-based activity regularization for semi-supervised learning. Neuro-computing, 2018, 296(28): 46-54
    [20] Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9: 2579-2605
    [21] Miyato T, Maeda S, Koyama M, Lshii S. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 7(23): 99–112
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  979
  • HTML全文浏览量:  191
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 修回日期:  2020-05-22
  • 网络出版日期:  2022-07-12
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回