2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向扑翼飞行控制的建模与奇异摄动分析

钱辰 方勇纯 李友朋

钱辰, 方勇纯, 李友朋. 面向扑翼飞行控制的建模与奇异摄动分析. 自动化学报, 2022, 48(2): 434−443 doi: 10.16383/j.aas.c190858
引用本文: 钱辰, 方勇纯, 李友朋. 面向扑翼飞行控制的建模与奇异摄动分析. 自动化学报, 2022, 48(2): 434−443 doi: 10.16383/j.aas.c190858
Qian Chen, Fang Yong-Chun, Li You-Peng. Control oriented modeling and singular perturbation analysis in flapping-wing flight. Acta Automatica Sinica, 2022, 48(2): 434−443 doi: 10.16383/j.aas.c190858
Citation: Qian Chen, Fang Yong-Chun, Li You-Peng. Control oriented modeling and singular perturbation analysis in flapping-wing flight. Acta Automatica Sinica, 2022, 48(2): 434−443 doi: 10.16383/j.aas.c190858

面向扑翼飞行控制的建模与奇异摄动分析

doi: 10.16383/j.aas.c190858
基金项目: 国家自然科学基金(61873132)资助
详细信息
    作者简介:

    钱辰:南开大学人工智能学院机器人与信息自动化研究所博士研究生. 主要研究方向为扑翼飞行器和其他仿生机器人.E-mail: chainplain@mail.nankai.edu.cn

    方勇纯:南开大学人工智能学院机器人与信息自动化研究所教授. 主要研究方向为视觉伺服, 微纳米控制系统, 非线性控制, 欠驱动系统控制. 本文通信作者.E-mail: fangyc@nankai.edu.cn

    李友朋:南开大学人工智能学院机器人与信息自动化研究所硕士研究生. 主要研究方向为扑翼飞行器设计与控制.E-mail: liyp@mail.nankai.edu.cn

Control Oriented Modeling and Singular Perturbation Analysis in Flapping-wing Flight

Funds: Supported by National Natural Science Foundation of China (61873132)
More Information
    Author Bio:

    QIAN Chen Ph.D. candidate at the Institute of Robotics and Automatic Information System (IRAIS), College of Artificial Intelligence, Nankai University. His research interest covers design and control of flapping wing vehicles and other bionic robots

    FANG Yong-Chun Professor at the Institute of Robotics and Automatic Information System (IRAIS), College of Artificial Intelligence, Nankai University. His research interest covers visual servoing, micro/nano control systems, nonlinear control, and underactuated systems control. Corresponding author of this paper

    LI You-Peng Master student at the Institute of Robotics and Automatic Information System (IRAIS), College of Artificial Intelligence, Nankai University. His research interest covers design and control of flapping wing vehicles

  • 摘要: 针对扑翼飞行中的周期性和时标不一现象, 以及扑翼飞行实际控制中的问题, 本文基于奇异摄动理论, 提出了一种针对扑翼周期系统的稳定性分析方法. 具体而言, 首先建立了扑翼飞行器的多刚体模型, 为后文对翅翼动力学的奇异摄动分析铺平道路; 其次, 对多刚体模型进行简化, 抽象出扑翼飞行动力学的核心问题, 并针对实际控制中的问题, 提出了利用奇异摄动理论分析扑翼飞行周期稳定性的方法, 指出了其相对于其他方法的优越性; 最后, 在自制的四自由度扑翼飞行器完成了真实的飞行实验, 验证了所提方法的有效性.
    1)  1 如要确定解的存在性, 则额外需要对边界层系统有稳定性条件, 具体可参考文献[38, 40].
  • 图  1  不同种类扑翼飞行多刚体模型中的坐标系建立

    Fig.  1  The coordinate setup in the multi-rigid body dynamics of different flapping wing flights

    图  2  翅翼两级连杆系统中各刚体坐标系之间的旋转平移示意图

    Fig.  2  The schematic for the rotations and the translations between different frames of a two-link wing

    图  3  扑动翅翼周期轨道控制示意图

    Fig.  3  The schematic for the control of flapping-wing periodic orbit

    图  4  四自由度扑翼飞行器示意图 ((a)惯性坐标系与机体坐标系设置; (b)翅翼驱动与控制机构; (c1)无偏转的翅翼姿态; (c2)偏转后的翅翼姿态; (d1) 无偏转的尾翼姿态; (d2) 偏转后的尾翼姿态)

    Fig.  4  The schematic for the 4-DoF flapping wing vehicle ((a) Inertial coordinate system and body coordinate system setup; (b) Flapping wings actuation and control mechanism; (c1) Flapping wings in default state; (c2) Flapping wings in deflection state; (d1) Tail in default state; (d2) Tail in deflection state)

    图  5  运动捕捉系统辅助的四自由度扑翼飞行器实际飞行

    Fig.  5  The real flight of the developed 4-DoF flapping wing system with the help of the motion capture system

    图  6  不同两翼转角差下悬停飞行时的控制输入与机体姿态

    Fig.  6  The control inputs and fuselage attitudes in the hovering flight with different two-wings deflection-angle deviations

    图  7  六维测力/力矩平台上的安装示意图

    Fig.  7  The setup of the 6-DoF force/torque measuring platform

    图  8  由翅翼偏转引起的绕z轴周期变化的力矩 ((a)在不同偏转角下力矩的周期变化; (b)转角差值为−0.3倍最大转角的力矩多周期统计特性; (c)转角差值为0.3倍最大转角时的力矩多周期统计特性)

    Fig.  8  The periodically changing torque around z-axis induced by the wings deflection ((a) Periodic variation of torque under different deflection angles; (b) Statistical characteristics of the torque with the deflection angle of −0.3 limit angle; (c) Statistical characteristics of the torque with the deflection angle of 0.3 limit angle)

  • [1] 贺威, 丁施强, 孙长银, 扑翼飞行器的建模与控制研究进展. 自动化学报, 2017, 43(5): 685-696.

    He Wei, Ding Shi-Qiang, Sun Chang-Yin. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sinica, 2017, 43(5): 685-696.
    [2] 丁其川, 熊安斌, 赵新刚, 韩建达, 基于表面肌电的运动意图识别方法研究及应用综述. 自动化学报, 2016, 42(1): 13-25.

    Ding Qi-Chuan, Xiong An-Bin, Zhao Xin-Gang, Han Jian-Da. A Review on Researches and Applications of sEMG-based Motion Intent Recognition Methods. Acta Automatica Sinica, 2016, 42(1): 13-25.
    [3] 李剑锋, 李国通, 张雷雨, 杨东升, 王海东, 穿戴式柔性下肢助力机器人发展现状及关键技术分析. 自动化学报, 2020, 46(3): 427-438.

    Li Jian-Feng, Li Guo-Tong, Zhang Lei-Yu, Yang Dong-Sheng, Wang Hai-Dong. Advances and Key Techniques of Soft Wearable Lower Limb Power-assisted Robots. Acta Automatica Sinica, 2020, 46(3): 427-438.
    [4] 王天柱, 吴正兴, 喻俊志, 谭民, 张峰, 冰雪运动生物力学及其机器人研究进展. 自动化学报, 2019, 45(9): 1620-1636.

    Wang Tian-Zhu, Wu Zheng-Xing, Yu Jun-Zhi, Tan Min, Zhang Feng. Progress and Perspective of Ice and Snow Sport Biomechanics and Related Robots. Acta Automatica Sinica, 2019, 45(9): 1620-1636.
    [5] Fei, F, Tu Z, Zhang J, Deng X Y. Learning extreme hummingbird maneuvers on flapping wing robots. In: Proceedings of the 2019 International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 109−115
    [6] Tu, Z, Fei, F, Zhang J, Deng X. An At-Scale Tailless Flapping-Wing Hummingbird Robot. I. Design, Optimization, and Experimental Validation. IEEE Transactions on Robotics, 2020, to be published.
    [7] He G, Su T, Jia T, Zhao L, Zhao Q. Dynamics Analysis and Control of a Bird Scale Underactuated Flapping-Wing Vehicle. IEEE Transactions on Control Systems Technology, 2020, 28(4): 1233-1242. doi: 10.1109/TCST.2019.2908145
    [8] 昂海松, 微型飞行器的设计原则和策略. 航空学报, 2016, 37(1): 69-80.

    Ang Hai-song, Design principles and strategies of micro air vehicle, Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 69-80.
    [9] 昂海松, 肖天航, 郑祥明, 微型飞行器的低雷诺数、非定常气动设计与分析, 无人系统技术, 2018(4): 17-32.

    Ang Hai-song, Xiao Tian-hang, ZHENG Xiang-ming. Design and Analysis of Low Reynolds Number and Unsteady Aerodynamic Based on Micro Air Vehicles, Unmanned Systems Technology, 2018(4): 17-32.
    [10] 杨文青, 宋笔锋, 宋文萍, 陈利丽, 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战, 实验流体力学, 2015, 29(3): 1-10.

    Yang Wen-qing, Song Bi-feng, Song Wen-pin, Chen Li-li. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle, Journal of Experiments in Fluid Mechanics, 2015, 29(3): 1-10.
    [11] Ellington C P, Van Den Berg C, Willmott A P. Leading-edge vortices in insect flight, Nature, 1996, 384(6610): 626. doi: 10.1038/384626a0
    [12] Van Den Berg C, Ellington C P. The three–dimensional leading–edge vortex of a “hovering” model hawkmoth. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1997, 352(1351): 329-340. doi: 10.1098/rstb.1997.0024
    [13] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight. Science, 1999, 284(5422): 1954-1960. doi: 10.1126/science.284.5422.1954
    [14] Sane S P, Dickinson M H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight, Journal of experimental biology, 2002, 205(8): 1087-1096.
    [15] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. Journal of experimental Biology, 1973, 59(1): 169-230.
    [16] Miller L A, Peskin C S. Flexible clap and fling in tiny insect flight. Journal of Experimental Biology, 2009, 212(19): 3076-3090. doi: 10.1242/jeb.028662
    [17] Percin M, Hu Y, van Oudheusden B W, Remes B, Scarano F. Wing flexibility effects in clap-and-fling. International Journal of Micro Air Vehicles, 2011, 3(4): 217-227. doi: 10.1260/1756-8293.3.4.217
    [18] Shyy W, Aono H, Chimakurthi S K, Trizila P, Kang C, Cesnik C, H Liu. Recent progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 2010, 46(7): 284-327. doi: 10.1016/j.paerosci.2010.01.001
    [19] Chin D D, Lentink D. Flapping wing aerodynamics: from insects to vertebrates. Journal of Experimental Biology, 2016, 219(7): 920-932. doi: 10.1242/jeb.042317
    [20] Lee Y J, Lua K B, Lim T T, Yeo K S, A quasi-steady aerodynamic model for flapping flight with improved adaptability. Bioinspiration & biomimetics, 2016, 11(3): 036005.
    [21] Nabawy M R A, Crowther W J. On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor. Journal of The Royal Society Interface, 2014, 11(93): 20131196. doi: 10.1098/rsif.2013.1196
    [22] Nabawy M R A, Crowther W J. On the quasi-steady aerodynamics of normal hovering flight part II: model implementation and evaluation. Journal of The Royal Society Interface, 2014, 11(94): 20131197. doi: 10.1098/rsif.2013.1197
    [23] Nogar S M, Gogulapati A, McNamara J J, Oppenheimer M W, Doman B. Control-oriented modeling of coupled electromechanical-aeroelastic dynamics for flapping-wing vehicles. Journal of Guidance, Control, and Dynamics, 2017, 40(7): 1664-1679. doi: 10.2514/1.G002503
    [24] Sun M, Wang J, Xiong Y. Dynamic flight stability of hovering insects. Acta Mechanica Sinica, 2007, 23(3): 231-246. doi: 10.1007/s10409-007-0068-3
    [25] Sun M. Insect flight dynamics: stability and control. Reviews of Modern Physics, 2014, 86(2): 615. doi: 10.1103/RevModPhys.86.615
    [26] Wu J H, Sun M. Floquet stability analysis of the longitudinal dynamics of two hovering model insects. Journal of the Royal Society Interface, 2012, 9(74): 2033-2046. doi: 10.1098/rsif.2012.0072
    [27] Taha H E, Tahmasian S, Woolsey C A, Nayfeh A H, Muhammad R H. The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight. Bioinspiration & biomimetics, 2015, 10(1): 016002.
    [28] Cheng B, Deng X. Translational and rotational damping of flapping flight and its dynamics and stability at hovering. IEEE Transactions on Robotics, 2011, 27(5): 849-864. doi: 10.1109/TRO.2011.2156170
    [29] Zhang J, Cheng B, Deng X. Instantaneous wing kinematics tracking and force control of a high-frequency flapping wing insect MAV. Journal of Micro-Bio Robotics, 2016, 11(1-4): 67-84. doi: 10.1007/s12213-015-0085-4
    [30] Karásek M, Muijres F T, De Wagter C, Remes B, de Croon G. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 2018, 361(6407): 1089-1094. doi: 10.1126/science.aat0350
    [31] Jafferis N T, Helbling E F, Karpelson M, Wood R. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 2019, 570(7762): 491. doi: 10.1038/s41586-019-1322-0
    [32] Chen Y, Wang H, Helbling E F, Jafferis N T, Zufferey R, Ong A, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2017, 2(11): eaao5619. doi: 10.1126/scirobotics.aao5619
    [33] Ramezani A, Shi X C, Chung S J, Hutchinson S. Nonlinear flight controller synthesis of a bat-inspired micro aerial vehicle. In: Proceedings of the 2016 AIAA Guidance, Navigation, and Control Conference. San Diego, USA: AIAA, 2016.
    [34] Ramezani A, Shi X C, Chung S J, Hutchinson S. Lagrangian modeling and flight control of articulated-winged bat robot. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE/RSJ 2015. 2867−2874
    [35] Orlowski C T, Girard A R. Longitudinal flight dynamics of flapping-wing micro air vehicles. Journal of Guidance, Control, and Dynamics, 2012, 35(4): 1115-1131. doi: 10.2514/1.55923
    [36] Orlowski C T, Girard A R. Dynamics, stability, and control analyses of flapping wing micro-air vehicles. Progress in Aerospace Sciences, 2012, 51: 18-30. doi: 10.1016/j.paerosci.2012.01.001
    [37] Hassan A M, Taha H E. Differential-geometric-control formulation of flapping flight multi-body dynamics. Journal of Nonlinear Science, 2019, 29(4): 1379-1417. doi: 10.1007/s00332-018-9520-8
    [38] Fenichel N. Geometric singular perturbation theory for ordinary differential equations. Journal of differential equations, 1979, 31(1), 53-98. doi: 10.1016/0022-0396(79)90152-9
    [39] Hek G. Geometric singular perturbation theory in biological practice. Journal of Mathematical Biology, 2010, 60(3), 347-386. doi: 10.1007/s00285-009-0266-7
    [40] Farkas M. Periodic Motions. Springer Science and Business Media, 2013.
    [41] Qian C, Fang Y, Li Y. Quaternion-Based Hybrid Attitude Control for an Under-Actuated Flapping Wing Aerial Vehicle. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2341-2352. doi: 10.1109/TMECH.2019.2930584
    [42] Phan H V, Park H C. Generation of control moments in an insect-like tailless flapping-wing micro air vehicle by changing the stroke-plane angle. Journal of Bionic Engineering, 2016, 13(3): 449-457. doi: 10.1016/S1672-6529(16)60318-9
  • 加载中
图(8)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  468
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 录用日期:  2020-07-12
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2022-02-18

目录

    /

    返回文章
    返回