2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间歇过程的批内自优化控制

叶凌箭

叶凌箭. 间歇过程的批内自优化控制. 自动化学报, 2022, 48(11): 2777−2787 doi: 10.16383/j.aas.c190855
引用本文: 叶凌箭. 间歇过程的批内自优化控制. 自动化学报, 2022, 48(11): 2777−2787 doi: 10.16383/j.aas.c190855
Ye Ling-Jian. Within-batch self-optimizing control for batch processes. Acta Automatica Sinica, 2022, 48(11): 2777−2787 doi: 10.16383/j.aas.c190855
Citation: Ye Ling-Jian. Within-batch self-optimizing control for batch processes. Acta Automatica Sinica, 2022, 48(11): 2777−2787 doi: 10.16383/j.aas.c190855

间歇过程的批内自优化控制

doi: 10.16383/j.aas.c190855
基金项目: 国家自然科学基金(61673349), 轻工过程先进控制教育部重点实验室开放课题(江南大学)基金(APCLI1802), 宁波市自然科学基金(2018A610188)资助
详细信息
    作者简介:

    叶凌箭:浙大宁波理工学院信息学院教授, 现为湖州师范学院教授. 2006年, 2011年分别获得浙江大学化工系学士, 控制系博士学位. 主要研究方向为控制结构设计, 不确定系统的实时优化. E-mail: lingjian.ye@zjhu.edu.cn

Within-batch Self-optimizing Control for Batch Processes

Funds: Supported by National Natural Science Foundation of China (61673349), Foundation of Key Laboratory of Advanced Process Control for Light Industry (Jiangnan University) (APCLI1802), and Ningbo Natural Science Foundation (2018A610188)
More Information
    Author Bio:

    YE Ling-Jian Professor at NingboTech University (current affiliation: Huzhou University). He received his bachelor and Ph.D. degrees in the Department of Chemical Engineering and the Department of Control Science and Engineering from Zhejiang University in 2006 and 2011, respectively. His research interest covers control structure design and real-time optimization of uncertain processes

  • 摘要: 针对间歇过程的实时优化问题, 提出了一种基于自优化控制的批内优化方法. 以测量变量的线性组合为被控变量, 在单批次内跟踪控制被控变量实现间歇过程的实时优化. 根据是否在间歇过程的不同阶段切换被控变量, 给出了两种自优化控制策略, 对每种策略又分别提出两种设定轨线选取方案. 为求解这些情形下的最优被控变量(组合矩阵), 以最小化平均经济损失为目标, 推导了组合矩阵和经济损失之间的函数关系, 分别将其描述为相应的非线性规划问题. 在此基础上, 进一步引入了扩张组合矩阵, 将这些非线性规划问题归纳为求解扩张组合矩阵的一致形式(扩张组合矩阵具有不同的结构约束), 并推导得到了其中一种方案的解析解计算方法. 以一个间歇反应器为研究对象, 验证了方法的有效性.
  • 图  1  间歇过程的离散化变量及自优化控制策略

    Fig.  1  Discretization of batch processes and self-optimizing control strategy

    图  2  最优扩张组合矩阵$\bar H$的求解步骤

    Fig.  2  Procedure for solving the optimal extended combination matrix $\bar H$

    图  3  标称点的最优输入轨迹

    Fig.  3  Optimal input trajectory at the nominal point

    图  4  策略2 (方案1)的设定值轨线

    Fig.  4  Setpoint trajectory for Strategy 2 (Scheme 1)

    图  5  批内自优化控制效果 $( k_1 $: +20%, $ k_2 $: −20%)

    Fig.  5  Within-batch self-optimizing performance $ (k_1 $: +20%, $ k_2 $: −20%)

    图  6  批内自优化控制效果 $( k_1 $: +40%, $ k_2 $: −40%)

    Fig.  6  Within-batch self-optimizing performance $( k_1 $: +40%, $ k_2 $: −40%)

    表  1  间歇反应器参数及标称值

    Table  1  Parameters for the reactor model and nominal values

    符号 物理含义 标称值
    $ k_1 $ 主反应的反应常数 0.053 L·mol/min
    $ k_2 $ 副反应的反应常数 0.128 L·mol/min
    $ u_L $ $ u $下限 0 L/min
    $ u_U $ $ u $上限 0.001 L/min
    $ c_{Bin} $ B 进料浓度 5 mol/L
    $ c_{Ao} $ A 初始浓度 0.72 mol/L
    $ c_{Bo} $ B 初始浓度 0.0614 mol/L
    $ V_o $ V 初始值 1 L
    $ t_f $ 批次运行时间 250 min
    下载: 导出CSV

    表  2  损失函数$ L_{\rm{av}} $

    Table  2  Loss function $ L_{\rm{av}} $

    策略及方案 $ N = 2 $ $ N = 20 $
    策略 2 (方案 1) 0.0371 0.0083
    策略 2 (方案 2) 0.03423 0.0024
    策略 3 (方案 3) 0.0368 0.0069
    策略 3 (方案 4) 0.03420 0.0022
    下载: 导出CSV

    表  3  100组随机扰动下的非线性损失统计量

    Table  3  Statistics of nonlinear losses for 100 groups of random disturbances

    方案 平均损失 最大损失 标准差
    标称操作 0.0036 0.0227 0.0068
    控制$ c_B $ 0.0042 0.0165 0.0054
    策略 2 (方案 1) 0.0026 0.0167 0.0050
    策略 2 (方案 2) 0.0007 0.0053 0.0016
    下载: 导出CSV
  • [1] Chachuat B, Srinivasan B, Bonvin D. Adaptation strategies for real-time optimization. Computers & Chemical Engineering, 2009. 33(10): 1557-1567
    [2] 柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战. 自动化学报, 2009, 35(6): 641-649 doi: 10.3724/SP.J.1004.2009.00641

    Chai Tian-You. Challenges of Optimal Control for Plant-wide Production Processes in Terms of Control and Optimization Theories. Acta Automatica Sinica, 2009, 35(6): 641-649 doi: 10.3724/SP.J.1004.2009.00641
    [3] Engell S. Feedback control for optimal process operation. Journal of Process Control, 2007, 17(3): 203-219 doi: 10.1016/j.jprocont.2006.10.011
    [4] Chen C Y, Joseph B. On-line optimization using a two-phase approach: an application study. Industrial & Engineering Chemistry Research, 1987, 26(9): 1924-1930
    [5] Marlin T E, Hrymak A N. Real-time operations optimization of continuous processes. In: AIChE Symposium Series. 1997: New York, NY, USA: American Institute of Chemical Engineers, 1987. 1971−2002
    [6] Marchetti A, Chachuat B, Bonvin D. Modifier-Adaptation Methodology for Real-Time Optimization. Industrial & Engineering Chemistry Research, 2009, 48(13): 6022-6033
    [7] Marchetti A G, Francois G, Faulwasser T, Bonvin D. Modifier adaptation for real-time optimization—methods and applications. Processes, 2016, 4(4): 55 doi: 10.3390/pr4040055
    [8] 代伟, 柴天佑. 数据驱动的复杂磨矿过程运行优化控制方法. 自动化学报, 2014, 40(9): 2005-2014

    Dai Wei, Chai Tian-You. Data-driven optimal operational control of complex grinding processes. Acta Automatica Sinica, 2014, 40(9): 2005-2014
    [9] 李金娜, 高溪泽, 柴天佑, 范家璐. 数据驱动的工业过程运行优化控制. 控制理论与应用, 2016, 33(12): 1584-1592 doi: 10.7641/CTA.2016.60455

    Li Jin-Na, Gao Xi-Zhe, Chai Tian-You. Data-driven operational optimization control of industrial processes. Control Theory & Applications, 2016, 33(12): 1584-1592 doi: 10.7641/CTA.2016.60455
    [10] 代伟, 陆文捷, 付俊, 马小平. 工业过程多速率分层运行优化控制. 自动化学报, 2019, 45(10): 1946-1959

    Dai Wei, Lu Wen-Jie, Fu Jun, Ma Xiao-Ping. Multi-rate Layered Optimal Operational Control of Industrial Processes. Acta Automatica Sinica, 2019, 45(10): 1946-1959
    [11] Skogestad S. Plantwide control: the search for the self-optimizing control structure. Journal of Process Control, 2000. 10(5): p. 487-507 doi: 10.1016/S0959-1524(00)00023-8
    [12] Ye L, Cao Y, Yuan X. Global approximation of self-optimizing controlled variables with average loss minimization. Industrial & Engineering Chemistry Research, 2015, 54(48): 12040-12053
    [13] Jaschke J, Cao Y, Kariwala V. Self-optimizing control–A survey. Annual Reviews in Control, 2017, 43: 199-223 doi: 10.1016/j.arcontrol.2017.03.001
    [14] Ye L, Miao A, Zhang H. Real-Time Optimization of Gold Cyanidation Leaching Process in a Two-Layer Control Architecture Integrating Self-Optimizing Control and Modifier Adaptation. Industrial & Engineering Chemistry Research, 2017, 56(14): 4002-4016
    [15] 叶凌箭, 关宏伟. 金氰化浸出过程的自优化控制. 控制与决策, 2017, 32(3): 481-486

    Ye Ling-Jian, Guan Hong-Wei. Self-optimizing control of gold cyanidation leaching process. Control and Decision, 2017, 32(3): 481-486
    [16] Ye L, Cao Y, Yuan X, Zhang H. Retrofit self-optimizing control: A step forward toward real implementation. IEEE Transactions On Industrial Electronics, 2017, 64(6): 4662-4670 doi: 10.1109/TIE.2017.2668991
    [17] Francisco M, Skogestad S, Vega P. Model predictive control for the self-optimized operation in wastewater treatment plants: Analysis of dynamic issues. Computers & Chemical Engineering, 2015, 82: 259-272
    [18] 卢静宜, 曹志兴, 高福荣. 批次过程控制—回顾与展望. 自动化学报, 2017, 43(6): 933-943

    Lu Jing-Yi, Cao Zhi-Xing, Gao Fu-Rong. Batch Process Control-Overview and Outlook. Acta Automatica Sinica, 2017, 43(6): 933-943
    [19] Lu J, Cao Z, Zhao C, Gao F. 110th Anniversary: An Overview on Learning-Based Model Predictive Control for Batch Processes. Industrial & Engineering Chemistry Research, 2019, 58(37): 17164-17173.
    [20] 池荣虎, 侯忠生, 黄彪. 间歇过程最优迭代学习控制的发展: 从基于模型到数据驱动. 自动化学报, 2017, 43(6): 917-932

    CHI Rong-Hu, HOU Zhong-Sheng, HUANG Biao. Optimal Iterative Learning Control of Batch Processes: From Model-based to Data-driven. Acta Automatica Sinica, 2017, 43(6): 917-932
    [21] Lu J, Cao Z, Gao F. Multipoint iterative learning model predictive control. IEEE Transactions on Industrial Electronics, 2018, 66(8): 6230-6240
    [22] Lu J, Cao Z, Zhang R, Gao F. Nonlinear monotonically convergent iterative learning control for batch processes. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5826-5836
    [23] Srinivasan B, Bonvin D, Visser V, Palanki S. Dynamic optimization of batch processes - Ⅱ. Role of measurements in handling uncertainty. Computers & Chemical Engineering, 2003, 27(1): 27-44
    [24] Cao Z, Gondhalekar R, Dassau E, Doyle F J. Extremum seeking control for personalized zone adaptation in model predictive control for type 1 diabetes. IEEE Transactions on Biomedical Engineering, 2017, 65(8): 1859-1870.
    [25] Cao Z, Dürr H B, Ebenbauer C, Allgower F, Gao F. Iterative learning and extremum seeking for repetitive time-varying mappings. IEEE Transactions on Automatic Control, 2016, 62(7): 3339-3353.
    [26] 史洪岩, 苑明哲, 王天然, 袁德成. 间歇过程动态优化方法综述. 信息与控制, 2012, 41(1): 75-82

    Shi Hong-yan, Yuan Ming-Zhe, Wang Tian-Ran, Yuan De-Cheng. A suvey on dynamic optimization methods of batch processes. Information and Control, 2012, 41(1): 75-82
    [27] Srinivasan B, Palanki S, Bonvin D. Dynamic optimization of batch processes - I. Characterization of the nominal solution. Computers & Chemical Engineering, 2003, 27(1): 1-26
    [28] Halvorsen I J, Skogestad S, Morud J C, Alstad V. Optimal selection of controlled variables. Industrial & Engineering Chemistry Research, 2003. 42(14): 3273-3284
    [29] Kariwala V. Optimal measurement combination for local self-optimizing control. Industrial & Engineering Chemistry Research, 2007. 46(11): 3629-3634
    [30] Alstad V, Skogestad S, Hori E S. Optimal measurement combinations as controlled variables. Journal of Process Control, 2009. 19(1): 138-148 doi: 10.1016/j.jprocont.2008.01.002
    [31] Alstad V, Skogestad S. Null space method for selecting optimal measurement combinations as controlled variables. Industrial & Engineering Chemistry Research, 2007. 46(3): 846-853
    [32] Francois G, Srinivasan B, Bonvin D. Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty. Journal of Process Control, 2005. 15(6): 701-712 doi: 10.1016/j.jprocont.2004.11.006
    [33] 叶凌箭, 宋执环, 马修水. 间歇过程的批间自优化控制. 化工学报, 2015, 66(07): 2573-2580

    Ye Ling-Jian, Song Zhi-Huan, Ma Xiu-Shui. Batch-to-batch self-optimizing control for batch processes. CIESC Journal, 2015, 66(07): 2573-2580
    [34] Ye Ling-Jian, Guan Hong-Wei, Yuan Xiao-Feng, Ma Xiu-Shui. Run-to-run optimization of batch processes with self-optimizing control strategy. The Canadian Journal Of Chemical Engineering, 2017. 95(4): 724-736 doi: 10.1002/cjce.22692
    [35] Ye L, Skogestad S. Dynamic self-optimizing control for unconstrained batch processes. Computers & Chemical Engineering, 2018. 117: 451-468
    [36] Skogestad S. Control structure design for complete chemical plants. Computers & Chemical Engineering, 2004. 28(1-2): 219-234
    [37] Biegler L T, Zavala V M. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization. Computers & Chemical Engineering, 2009. 33(3): 575-582
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1542
  • HTML全文浏览量:  363
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 录用日期:  2020-06-11
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-11-22

目录

    /

    返回文章
    返回