2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于事件触发的AUVs固定时间编队控制

王洪斌 高静 苏博 王跃灵

王洪斌, 高静, 苏博, 王跃灵. 基于事件触发的AUVs固定时间编队控制. 自动化学报, 2022, 48(9): 2277−2287 doi: 10.16383/j.aas.c190816
引用本文: 王洪斌, 高静, 苏博, 王跃灵. 基于事件触发的AUVs固定时间编队控制. 自动化学报, 2022, 48(9): 2277−2287 doi: 10.16383/j.aas.c190816
Wang Hong-Bin, Gao Jing, Su Bo, Wang Yue-Ling. Fixed-time formation of AUVs based on event-triggered control. Acta Automatica Sinica, 2022, 48(9): 2277−2287 doi: 10.16383/j.aas.c190816
Citation: Wang Hong-Bin, Gao Jing, Su Bo, Wang Yue-Ling. Fixed-time formation of AUVs based on event-triggered control. Acta Automatica Sinica, 2022, 48(9): 2277−2287 doi: 10.16383/j.aas.c190816

基于事件触发的AUVs固定时间编队控制

doi: 10.16383/j.aas.c190816
基金项目: 国家自然科学基金(61473248)资助
详细信息
    作者简介:

    王洪斌:燕山大学教授. 主要研究方向为过程自动化, 机器人控制技术, 变结构控制系统, 鲁棒控制和视觉伺服. E-mail: hb_wang@ysu.edu.cn

    高静:燕山大学电气工程学院研究生. 主要研究方向为自主水下航行器编队控制. 本文通信作者.E-mail: jing1883049@163.com

    苏博:燕山大学电气工程学院博士研究生. 主要研究方向为水下机器人非线性控制.E-mail: bosu@stumail.ysu.edu.cn

    王跃灵:燕山大学工业计算机控制工程河北省重点实验室讲师, 机械工程学院博士研究生. 主要研究方向为智能控制, 迭代学习控制和自适应控制.E-mail: yuelingw@ysu.edu.cn

Fixed-time Formation of AUVs Based on Event-triggered Control

Funds: Supported by National Natural Science Foundation of China (61473248)
More Information
    Author Bio:

    WANG Hong-Bin Professor at Yanshan University. His research interest covers process automation, robot control technology, variable structure control system, robust control and visual servo

    GAO Jing Master student at the School of Electrical Engineering, Yanshan University. Her main research interest is formation control of autonomous underwater vehicle formation control. Corresponding author of this paper

    SU Bo Ph.D. candidate at the School of Electrical Engineering, Yanshan University. Her main research interest is nonlinear control of underwater vehicles and underactuated system control

    WANG Yue-Ling Lecturer at the Key laboratory of Industrial Computer Control Engineering of Hebei Province, and Ph.D. candidate at the School of Mechanical Engineering, Yanshan University. His research interest covers intelligent control, iterative learning control, and adaptive control

  • 摘要: 针对多自主水下航行器编队系统受限于有限的通信资源及收敛速度慢等问题, 提出一种基于事件触发的自主水下航行器固定时间领航−跟随编队控制方法. 首先, 将动态面控制算法与反步法结合, 消除“计算膨胀”问题; 其次, 为节约有限通信资源, 将事件触发通讯机制和固定时间理论引入多自主水下航行器编队控制中, 设计编队控制器, 实现编队系统的固定时间稳定, 且系统收敛时间与初始状态无关, 并通过理论证明无Zeno行为; 最后, 对4艘自主水下航行器的编队进行仿真实验, 验证算法的有效性.
  • 图  1  领航−跟随多AUVs编队示意图

    Fig.  1  The diagram of leader-follower formation of AUVs

    图  2  编队跟踪控制示意图

    Fig.  2  The diagram of formation control

    图  3  工况 1 下的轨迹

    Fig.  3  The trajectory under working Condition 1

    图  12  跟随 AUV 1 的事件触发时刻

    Fig.  12  The triggered interval of AUV 1

    图  4  工况 1 下的位置

    Fig.  4  The position under working Condition 1

    图  5  工况 1 下的位置跟踪误差

    Fig.  5  The position tracking error under working Condition 1

    图  6  工况 1 下的速度

    Fig.  6  The velocity under working Condition 1

    图  7  工况 1 下速度跟踪误差

    Fig.  7  The velocity tracking error under working Condition 1

    图  8  工况 1 下的虚拟控制律

    Fig.  8  The virtual control law under working Condition 1

    图  9  工况 1 下的控制输入

    Fig.  9  The control input under working Condition 1

    图  10  工况 1 下的事件触发时刻仿真图

    Fig.  10  The triggered interval under working Condition 1

    图  11  跟随AUV 1的控制输入${\tau _f}(t)$

    Fig.  11  The control input ${\tau _f}(t)$ of AUV 1

    图  13  工况2下的轨迹

    Fig.  13  The trajectory under working condition 2

    图  17  工况 2 下的事件触发时刻仿真图

    Fig.  17  The triggered interval under working condition 2

    图  14  工况 2 下的位置跟踪误差

    Fig.  14  The position tracking error under working condition 2

    图  15  工况 2 下速度跟踪误差

    Fig.  15  The velocity tracking error under working condition 2

    图  16  工况 2 下的控制输入

    Fig.  16  The control input under working condition 2

    图  18  跟随 AUV 1 的位置跟踪误差

    Fig.  18  The position tracking error of AUV 1

    图  19  跟随 AUV 1 的速度跟踪误差${z_2}(t)$

    Fig.  19  The velocity tracking error of AUV 1

    表  1  跟随 AUVs 的任意初始状态

    Table  1  The arbitrary initial state of AUVs

    工况状态AUV 1AUV 2AUV 3
    1${p_f}\left( 0 \right)$${\left[ {1,0,0} \right]^{\rm{T}}}$${\left[ {1,1.5,2} \right]^{\rm{T}}}$${\left[ {2,0,1} \right]^{\rm{T}}}$
    ${\upsilon _f}\left( 0 \right)$${\left[ { - 1,3,2} \right]^{\rm{T}}}$${\left[ {3,2,4} \right]^{\rm{T}}}$${\left[ {3, - 1, - 4} \right]^{\rm{T}}}$
    2${p_f}\left( 0 \right)$${\left[ {7, - 3,2} \right]^{\rm{T}}}$${\left[ { - 10,8,2} \right]^{\rm{T}}}$${\left[ {12, - 8,2} \right]^{\rm{T}}}$
    ${\upsilon _f}\left( 0 \right)$${\left[ {6,0,8} \right]^{\rm{T}}}$${\left[ {4, - 3,1} \right]^{\rm{T}}}$${\left[ { - 1,4, - 3} \right]^{\rm{T}}}$
    下载: 导出CSV

    表  2  跟随者AUVs的事件触发次数和触发率

    Table  2  Event-triggered and triggered ratios for follower AUVs

    工况采样次数触发次数触发率 (%)
    121212
    AUV 137993.79.9
    AUV 2 10001000561255.612.5
    AUV 3 581355.813.5
    下载: 导出CSV

    表  3  本文算法和PID算法的比较结果

    Table  3  Comparison results in the algorithm of proposed in paper and PID

    均方差PID算法本文算法平均值PID算法本文算法
    ${D_{{z_{1x}}}}$2.96671.6717${E_{{z_{1x}}}}$−1.0323−0.6265
    ${D_{{z_{1y}}}}$1.47820.6209${E_{{z_{1y}}}}$0.47940.3294
    ${D_{{z_{1z}}}}$1.31270.4251${E_{{z_{2z}}}}$−0.3611−0.4203
    ${D_{{z_{2u}}}}$2.19020.9823${E_{{z_{2u}}}}$0.32290.0098
    ${D_{{z_{2v}}}}$1.66321.0471${E_{{z_{2v}}}}$0.08980.0871
    ${D_{{z_{2w}}}}$3.46032.3432${E_{{z_{2w}}}}$−0.0569−0.7105
    下载: 导出CSV
  • [1] Liu M, Li W, Pei X. Convex optimization algorithms for cooperative localization in autonomous underwater vehicles. Acta Automatica Sinica, 2010, 36(5): 704-710
    [2] Wu D, Yan Z, Chen T. Cooperative current estimation based multi-AUVs localization for deep ocean applications. Ocean Engineering, 2019, 188: 106-148
    [3] Braginsky B, Baruch A, Guterman H, Development of an autonomous surface vehicle capable of tracking autonomous underwater vehicles. Ocean Engineering, 2020, 197: 106-868
    [4] Meyer H, Roberts E, Rapp H, Davies A. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep-Sea Research Part I, 2019, 153: 103-137
    [5] 张国庆, 黄晨峰, 吴晓雪, 张显库. 考虑伺服系统增益不确定的船舶动力定位自适应有限时间控制. 自动化学报, 2018, 44(10): 1907−1912

    Zhang Guo-Qing, Huang Chen-Feng, Wu Xiao-Xue, Zhang Xian-Ku. Adaptive finite time dynamic position control of fully actuated ship with servo system uncertainties. Acta Automatica Sinica, 2018, 44(10): 1907-1912
    [6] Gao Z, Guo G. Velocity free leader-follower formation control for autonomous underwater vehicles with line-of-sight range and angle constraints. Information Sciences, 2019, 486: 359-378 doi: 10.1016/j.ins.2019.02.050
    [7] Yan Z, Yang Z, Yue L, Wang L, Jia H, Zhou J. Discrete time coordinated control of leader-following multiple AUVs under switching topologies and communication delays. Ocean Engineering, 2019, 172: 361-372 doi: 10.1016/j.oceaneng.2018.12.018
    [8] Wang J, Wang C, Wei Y, Zhang C. Sliding mode based neural adaptive formation control of underactuated AUVs with leader-follower strategy. Applied Ocean Research, 2020, 94: 10-19
    [9] Yan Z, Wang M, Xu J. Robust adaptive sliding mode control of underactuated autonomous underwater vehicles with uncertain dynamics. Ocean Engineering, 2019, 173: 802-809 doi: 10.1016/j.oceaneng.2019.01.008
    [10] Sorbi L, De Capua G P, Fontaine J G. A behavior based mission planner for cooperative autonomous underwater vehicles. Marine Technology Society Journal, 2012, 46(2): 32-44 doi: 10.4031/MTSJ.46.2.5
    [11] Xing L, Wen C, Guo F, Liu Z. Event-based consensus for linear multi-agent systems without continuous communication. IEEE Transactions on Cybernetics, 2017, 47(8): 2132-2142 doi: 10.1109/TCYB.2016.2610419
    [12] Wang J, Xu Y, Xu Y, Yang D. Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control. Applied Mathematics and Computation, 2019, 369: 333-343
    [13] 杨彬, 周琪, 曹亮, 鲁仁全. 具有指定性能和全状态约束的多智能体系统事件触发控制. 自动化学报, 2019, 45(8): 1527-1535

    Yang Bin, Zhou Qi, Cao Liang, Lu Ren-Quan. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527-1535
    [14] Fu M, Yu L. Finite-time extended state observer based distributed formation control for marine surface vehicles with input saturation and disturbances. Ocean Engineering, 2018, 159: 219-227 doi: 10.1016/j.oceaneng.2018.04.016
    [15] Jin X. Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica, 2016, 68: 228-236 doi: 10.1016/j.automatica.2016.01.064
    [16] Huang C, Zhang X, Zhang G. Improved decentralized finite-time formation control of underactuated USVs via a novel disturbance observer. Ocean Engineering, 2019, 174: 117-124 doi: 10.1016/j.oceaneng.2019.01.043
    [17] Tian B, Lu H, Zuo Z, Yang W. Fixed-time leader-follower output feedback consensus for second-order multi-agent systems. IEEE Transactions on Cybernetics, 2019, 49(4): 1545-1550 doi: 10.1109/TCYB.2018.2794759
    [18] Liu J, Zhang Y, Sun C, Yu Y. Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control, Information Sciences, 2019, 480: 261-272 doi: 10.1016/j.ins.2018.12.037
    [19] Liu Y, Yang G, Fixed-time fault-tolerant consensus control for multi-agent systems with mismatched disturbances. Neurocomputing, 2019, 366: 154-160 doi: 10.1016/j.neucom.2019.07.093
    [20] Guo Z, Chen C. Event-triggered fixed-time cooperative tracking control for uncertain nonlinear second-order multi-agent systems under directed network topology. Journal of the Franklin Institute, 2019: 1-20
    [21] Gao Z, Guo G. Fixed-time Sliding Mode Formation Control of AUVs Based on a Disturbance Observer. IEEE/CAA Journal of Automatica Sinica, 2020, 7(02): 539-545
    [22] Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 2012, 57(8): 2016-2110
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  963
  • HTML全文浏览量:  147
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-30
  • 录用日期:  2020-03-11
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2022-09-16

目录

    /

    返回文章
    返回