-
摘要: 随着工业4.0的发展, 不同种类的新型工业应用被部署到工厂中, 这对现有工业无线技术提出了实时性和高速率的要求. 为了同时满足这两种需求, 本文在支持高速率的IEEE802.11的基础上, 提出了基于软件定义的动态时分多址(Time division multiple access, TDMA)机制无线接入系统. 首先, 为了提供时延有界的传输服务, 设计并实现了基于MAC (Medium access control)层的动态TDMA接入机制. 然后, 为了满足工业无线网络中的动态变化的带宽需求, 考虑设备数据量的动态变化, 在SDN (Software defined network)控制器上通过基于最小二乘法的线性回归算法预测设备时隙需求, 再将动态时隙分配问题转化为优化问题以最大化网络中所有设备动态时隙需求. 最后, 通过仿真对比TDMA时隙分配算法的性能, 并在实际网络环境中开展系统部署与测试. 结果表明, 相对于其他TDMA接入机制, 动态TDMA机制在保障时延有界的同时能有效提升传输性能.Abstract: With the development of Industry 4.0, various types of new industrial applications are deployed in factories, which introduces real-time and high-rate requirements for existing industrial wireless technologies. To satisfy the two requirements simultaneously, we propose a software-defined based dynamic TDMA (time division multiple access) wireless access system with high-speed IEEE802.11. Firstly, to guarantee the transport service with bounded delay, we design a dynamic TDMA access mechanism based on MAC (medium access control) layer. Moreover, to meet the dynamic bandwidth requirements in industrial wireless networks, the linear time-regression algorithm based on the least square method on the SDN (software defined network) controller considering the dynamic changes in the amount of device data is used to predict the device time slot requirements, then the dynamic time slot allocation problem is translated into an optimization problem to maximize the dynamic slot requirements of all devices in the network. Finally, we conduct simulations to compare the performance of TDMA channel resources management algorithms, and implement them in real networks to evaluate the performance of dynamic TDMA system. The experimental results demonstrate that comparing with existing TDMA wireless access mechanisms, the dynamic TDMA mechanism can guarantee delay bound and improve the transmission performance efficiently.
-
表 1 测试硬件设备以及参数
Table 1 Testing hardware devices and parameters
设备名称 设备型号 数目 CPU 内存 网卡 操作系统 控制器 台式机 1 I5-7300 四核 16 GB AR9580 Windows7 AP WNDR4300 1 QCA9553 128 MB AR9580 OpenWRT 多媒体设备 台式机 4 E7200 双核 2 GB AR9280 Ubuntu14 周期性数据设备 WNDR3800 12 AR7161 128 MB AR9220 OpenWRT 表 2 数据帧参数设置
Table 2 Data frame parameter
数据类型 帧长 (Byte) 平均发包数目 (个/s) 周期性数据 260 125 多媒体数据 860 ~ 1060 250 移动端数据 550 Random (250) -
[1] Vitturi S, Zunino C, Sauter T. Industrial communication systems and their future challenges: next-generation ethernet, IIoT, and 5G. Proceedings of the IEEE, 2019, 107(6): 944-961. doi: 10.1109/JPROC.2019.2913443 [2] 王飞跃, 张军, 张俊, 王晓. 工业智联网: 基本概念、关键技术与核心应用. 自动化学报, 2018, 44(09): 1606-1617.Wang Fei-Yue, Zhang Jun, Zhang Jun, Wang Xiao. Industrial Internet of Minds: Concept, Technology and Application. Acta Automatica Sinica, 2018, 44(09): 1606-1617. [3] Boyes H, Hallaq B, Cunningham J, Watson T. The industrial internet of things (IIoT): an analysis framework. Computers in Industry, 2018, 101: 1-12. doi: 10.1016/j.compind.2018.04.015 [4] Bello L L, Steiner W. A perspective on IEEE time-sensitive networking for industrial communication and automation systems. Proceedings of the IEEE, 2019, 107(6): 1094-1120. doi: 10.1109/JPROC.2019.2905334 [5] Jin X, Xia C, Guan N, Xu C, Li D, Zeng P. Real-time scheduling of massive data in time sensitive networks with a limited number of schedule entries. IEEE Access, 2020, 8: 6751-6767. doi: 10.1109/ACCESS.2020.2964690 [6] 黄韬, 汪硕, 黄玉栋等. 确定性网络研究综述. 通信学报, 2019, 40(06): 160-176.Huang Tao, Wang Shuo, Huang Yu-Dong, et al. Survey of the deterministic network. Journal on Communications, 2019, 40(06): 160-176. [7] Liu Y, Kashef M, Lee K B, Benmohamed L, Candell R. Wireless network design for emerging IIoT applications: reference framework and use cases. Proceedings of the IEEE, 2019, 107(6): 1166-1192. doi: 10.1109/JPROC.2019.2905423 [8] Yousefi H H, Kavian Y S, Mahmoudi A. A Markov model for investigating the impact of IEEE802.15.4 MAC layer parameters and number of clusters on the performance of wireless sensor networks. Wireless Networks, 2019, 25(7): 4415−4430 [9] Papadopoulos G Z, Matsui T, Thubert P, Texier G Watteyne T, Montavont N. Leapfrog collaboration: Toward determinism and predictability in industrial-IoT applications. In: Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France: IEEE, 2017. 1−6 [10] Koutsiamanis R A, Papadopoulos G Z, Fafoutis X, Julian M, Fiore D, Thubert P, Montavont N. From best effort to deterministic packet delivery for wireless industrial IoT networks. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4468-4480. doi: 10.1109/TII.2018.2856884 [11] Prinz F, Schoeffler M, Lechler A, Verl A W. Dynamic real-time orchestration of I4.0 components based on time-sensitive networking. Procedia CIRP, 2018, 72: 910-915. doi: 10.1016/j.procir.2018.03.174 [12] Messenger J L. Time-sensitive networking: an introduction. IEEE Communications Standards Magazine, 2018, 2(2): 29-33. doi: 10.1109/MCOMSTD.2018.1700047 [13] Nasrallah A, Thyagaturu A S, Alharbi Z, Wang C, Shao X, Reisslein M, ElBakoury H. Ultra-low latency networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Communications Surveys & Tutorials, 2018, 21(1): 88-145. [14] Xia N, Chen H H, Yang C S. Radio resource management in machine-to-machine communications—a survey. IEEE Communications Surveys & Tutorials, 2017, 20(1): 791-828. [15] Genc E, Del Carpio L F. Wi-Fi QoS enhancements for Downlink Operations in industrial automation using TSN. In: Proceedings of the 15th IEEE International Workshop on Factory Communication Systems (WFCS), Sundsvall, Sweden: IEEE, 2019.1−6 [16] Cena G, Scanzio S, Valenzano A. Improving effectiveness of seamless redundancy in real industrial Wi-Fi networks. IEEE Transactions on Industrial Informatics, 2017, 14(5): 2095-2107. [17] Wei Y H, Leng Q, Han S, Mok A K, Zhang W, Tomizuka M. RT-WiFi: Real-time high-speed communication protocol for wireless cyber-physical control applications. In: Proceedings of the 34th IEEE Real-Time Systems Symposium, Vancouver, Canada: IEEE, 2013. 140−149 [18] Cheng Y, Yang D, Zhou H. Det-wifi: a multihop tdma mac implementation for industrial deterministic applications based on commodity 802.11 hardware. Wireless Communications and Mobile Computing, 2017, 2017: 1-10. [19] Amodu O A, Othman M. A survey of hybrid MAC protocols for machine-to-machine communications. Telecommunication Systems, 2018, 69(1): 141-165. doi: 10.1007/s11235-018-0434-4 [20] Shahin N, Ali R, Kim Y T. Hybrid slotted-csma/ca-tdma for efficient massive registration of iot devices. IEEE Access, 2018, 6: 18366-18382. doi: 10.1109/ACCESS.2018.2815990 [21] Shoaei A D, Derakhshani M, Parsaeefard S, LeNgoc T. Learning-based hybrid TDMA-CSMA MAC protocol for virtualized 802.11 WLANs. In: Proceedings of the 26th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China: IEEE, 2015. 1861−1866 [22] Cruces C, Torrego R, Arriola A, Val I. Deterministic hybrid architecture with time sensitive network and wireless capabilities. In: Proceedings of the 23rd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, IEEE, 2018. 1119−1122 [23] Adame T, Carrascosa M, Bellalta B. Time-sensitive networking in IEEE 802.11 be: on the way to low-latency WiFi 7. Computer Science, 2019, 1912. [24] Yu M, Rexford J, Freedman M J, Wang J. Scalable flow-based networking with difane. ACM SIGCOMM Computer Communication Review, 2011, 41(4): 351-362. [25] Xu C, Jin W, Wang X H, Zhao G F, Yu S. MC-VAP: a multi-connection virtual access point for high performance software-defined wireless networks. Journal of network and computer applications, 2018, 122: 88-98. doi: 10.1016/j.jnca.2018.08.009 [26] Sood K, Yu S, Xiang Y. Software-defined wireless networking opportunities and challenges for internet-of-things: a review. IEEE Internet of Things Journal, 2015, 3(4): 453-463. [27] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J. Openflow: enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69-74. doi: 10.1145/1355734.1355746