2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全局覆盖机制与表示学习的生成式知识问答技术

刘琼昕 王亚男 龙航 王佳升 卢士帅

王正文, 宋慧慧, 樊佳庆, 刘青山. 基于语义引导特征聚合的显著性目标检测网络. 自动化学报, 2023, 49(11): 2386−2395 doi: 10.16383/j.aas.c210425
引用本文: 刘琼昕, 王亚男, 龙航, 王佳升, 卢士帅. 基于全局覆盖机制与表示学习的生成式知识问答技术. 自动化学报, 2022, 48(10): 2392−2405 doi: 10.16383/j.aas.c190785
Wang Zheng-Wen, Song Hui-Hui, Fan Jia-Qing, Liu Qing-Shan. Semantic guided feature aggregation network for salient object detection. Acta Automatica Sinica, 2023, 49(11): 2386−2395 doi: 10.16383/j.aas.c210425
Citation: Liu Qiong-Xin, Wang Ya-Nan, Long Hang, Wang Jia-Sheng, Lu Shi-Shuai. Generative knowledge question answering technology based on global coverage mechanism and representation learning. Acta Automatica Sinica, 2022, 48(10): 2392−2405 doi: 10.16383/j.aas.c190785

基于全局覆盖机制与表示学习的生成式知识问答技术

doi: 10.16383/j.aas.c190785
基金项目: 国家自然科学基金 (62072039) 资助
详细信息
    作者简介:

    刘琼昕:北京理工大学计算机学院副教授. 主要研究方向为人工智能, 自然语言处理, 具体研究知识推理, 关系抽取, 任务规划, 决策支持. 本文通信作者. E-mail: summer@bit.edu.cn

    王亚男:北京理工大学计算机学院硕士研究生. 主要研究方向为自然语言处理, 问答系统.E-mail: wyn1895@163.com

    龙航:北京理工大学计算机学院硕士研究生. 主要研究方向为自然语言处理, 表示学习, 问答系统.E-mail: longhang@ict.ac.cn

    王佳升:北京理工大学硕士研究生. 主要研究方向为深度学习, 自然语言处理和知识图谱.E-mail: 3120191049@bit.edu.cn

    卢士帅:北京理工大学计算机学院硕士研究生. 主要研究方向为自然语言处理领域的关系提取, 特别是关系提取中的小样本学习.E-mail: 3120191028@bit.edu.cn

Generative Knowledge Question Answering Technology Based on Global Coverage Mechanism and Representation Learning

Funds: Supported by National Natural Science Foundation of  China (62072039) 
More Information
    Author Bio:

    LIU Qiong-Xin Associate professor at the School of Computer Science and Technology, Beijing Institute of Technology. Her research interest covers artificial intelligence and natural language processing, specifically knowledge reasoning, relationship extraction, task planning, and decision support. Corresponding author of this paper

    WANG Ya-Nan Master student at the School of Computer Science and Technology, Beijing Institute of Technology. Her research interest covers natural language processing and question answering system

    LONG Hang Master student at the School of Computer Science and Technology, Beijing Institute of Technology. His research interest covers natural language processing, representation learning, and question answering system

    WANG Jia-Sheng Master student at the School of Computer Science and Technology, Beijing Institute of Technology. His research interest covers deep learning, natural language processing, and knowledge graphs

    LU Shi-Shuai Master student at the School of Computer Science and Technology, Beijing Institute of Technology. His research interest covers relation extraction in the field of natural language processing, especially few-shot-learning in relation extraction

  • 摘要: 针对现有生成式问答模型中陌生词汇导致答案准确率低下的问题和模式混乱导致的词汇重复问题, 本文提出引入知识表示学习结果的方法提高模型识别陌生词汇的能力, 提高模型准确率. 同时本文提出使用全局覆盖机制以平衡不同模式答案生成的概率, 减少由预测模式混乱导致的重复输出问题, 提高答案的质量. 本文在知识问答模型基础上结合知识表示学习的推理结果, 使模型具备模糊回答的能力. 在合成数据集和现实世界数据集上的实验证明了本模型能够有效地提高生成答案的质量, 能对推理知识进行模糊回答.
  • 显著性目标检测[1-5]能够对图像中在视觉上最与众不同的对象或区域进行检测与识别. 目前, 显著性目标检测已经成功地作为许多计算机视觉领域任务的预处理过程, 包括目标跟踪[6]、物体识别[7]、语义分割[8]等.

    传统方法[9-10]大多依靠颜色、纹理等手工特征或者启发式先验来捕获图像局部细节和全局上/下文. Goferman等[9]提出一种基于上/下文感知的方法, 对目标周围的不同区域均进行检测, 并最终基于四个心理学原理简单生成了显著性图. Yan等[10]设计了一个分层模型, 能够对显著信息进行层次分析, 并将不同层次的输出进行组合得到最终结果. 尽管上述算法取得了一定的成功, 但是由于缺乏高级语义信息的参与, 在复杂场景中检测显著物体的能力受到了很大限制.

    近年来, 卷积神经网络得到快速发展. 例如文献[11-13]的卷积神经网络所具备的金字塔结构, 能够在较浅层拥有丰富的低层边缘细节特征, 而较深层则包含了更多语义信息, 更擅长定位显著物体的确切位置. 基于上述先验, 大量基于卷积神经网络的深度模型被相继提出. Hou等[11]对编码过程中每个阶段都引入了跳跃连接, 对特征图进行多层次多角度的聚合连接, 输出精确的结果. Li等[14]将粗纹理的显著图作为前景信息, 将图像边界的超像素值作为背景信息, 并将两者结合, 得到最终的结果. Qin等[15]设计了一种嵌套的U型结构, 融合了不同感受野大小的特征, 能够捕捉更多的上/下文信息. 在这些方法中, U型结构由于能够通过在基础的分类网络上建立自上而下的路径来构建丰富的特征图, 而受到了最多的关注.

    尽管上述方法相对于传统方法已经取得了很大进步, 但是还有很大改进空间. 首先, 在U型结构的解码过程中, 高层语义信息逐渐传递到较浅层, 虽然较浅层获得了显著物体的语义信息, 但是位置信息同时也被稀释, 造成最终输出的预测图中并不是当前图像中最显著部分, 丢失了显著物体准确的空间定位; 其次, 低层特征拥有丰富的边界信息, 但是由于在网络的较浅层, 无法获得较大感受野, 此时如果只是简单地融合高层特征与低层特征, 是无法精确地捕捉图片中显著物体边界的, 尤其是小目标. 因此, 本文考虑在增大低层特征感受野, 提高其表征力后, 将其送入到高效的特征聚合模块中, 以此来细化显著物体的边缘.

    针对上述问题, 本文研究了如何在U型结构中通过高效的特征融合解决这些问题. 本文主要贡献包括以下3个方面: 1)混合注意力模块(Mixing attention module, MAM)对来自第5个残差层的特征利用注意力机制进行显著性增强, 得到更加关注显著物体的语义特征, 同时为了解决解码过程中显著物体位置信息被不断稀释的问题, 将其作为整个解码过程中的语义指导, 不断指导解码过程中的特征聚合, 生成更加具体的显著性图. 2)增大感受野模块(Enlarged receptive field module, ERFM)可以对来自低层的特征进行处理. 低层特征的边缘细节相当丰富, 但受限于感受野, 无法获得更加全局的信息. 因此, 考虑加入ERFM, 可以在保留原有边缘细节的同时, 获得更大的感受野, 增强语义信息. 3)多层次聚合模块(Multi-level aggregation module, MLAM)是对来自经过上述2个模块生成特征进行高效聚合, 以级联方式不断提取特征中的显著部分, 细化显著物体的边缘细节, 生成最终的显著图. 具体结构如图1所示.

    图 1  网络结构图
    Fig. 1  Network structure diagram

    近年来, 大量基于全卷积神经网络深度模型[16-17]被相继提出, 受益于全卷积神经网络强大的特征提取能力, 基于深度学习的方法已经在性能方面超越了大多数基于手工特征的传统方法. 文献[18]详细总结了传统方法. 本文主要讨论基于深度学习的显著性目标检测算法.

    注意力机制具有很强的特征选择能力, 能够将特征信息进行深度整合, 使得网络更加去关注所需的语义信息. 根据加工域的不同, 注意力机制可以分为空间域注意力和通道域注意力两类, 其中空间注意力模块旨在捕获特征图中任意两个空间位置之间的空间依赖性, 通道注意力模块旨在捕获任意两个通道之间的通道依赖性. 因此, 许多学者利用注意力机制进行显著性目标检测. Zhang等[19]提出一种渐近注意力引导网络的显著性方法, 在解码阶段, 级联多个注意力模块渐近地生成最终结果. Zhao等[20]考虑到不同层次的特征所具备的信息并不相同, 因此, 对来自不同层次的特征, 分别设计了不同角度的注意力模块, 并对多个结果进行融合, 得到最终的结果. Chen等[21]提出一种反向注意网络, 将粗糙的预测图反馈到中间特征层, 希望网络可以补全缺失的显著部分. Wang等[22]设计了一个金字塔注意力模块, 通过考虑多尺度注意力来增强显著特征的表征力. 上述方法都是对注意力机制的有效使用, 本文方法需要生成更加关注显著物体语义信息的高层特征, 利用注意力机制可以取得很好效果.

    大多数对特征进行聚合的方法都是采用编码−解码的框架, 其中编码器用于提取多尺度特征, 解码器用于聚合特征以生成不同级别的上/下文信息. Wu等[23]对深层特征进行优化, 提高其表征力, 并利用双分支结构对特征进行聚合, 生成细化后的结果. Deng等[24]设计一种循环策略, 不断聚合来自不同层次的特征, 对网络进行细化, 增强显著信息. Wang等[25]提出一个特征打磨模块, 通过重复使用该模块, 对特征不断细化, 聚合来自不同层次的特征, 得到最终结果. 上述方法都探索了高效的特征聚合方法, 虽然有一定效果, 但是对于空间细节的捕捉仍然不够, 并且在解码过程中, 由于缺少高级语义的指导, 导致预测出的显著物体位置出现了偏移. 本文针对上述问题, 设计了多层次聚合模块, 使其能够在高级语义的指导下, 精确地定位显著物体, 并且通过级联多个、多层次聚合模块, 可以实现对边缘细节的细化.

    图1所示, 本文建立一个编码−解码结构. 首先, 选用ResNeXt101作为特征提取器, 提取图片的各层特征; 其次, 利用MAM生成一个全局语义特征, 来引导解码过程, 通过上采样、卷积和元素累加等操作, 将全局语义融合到解码器的各层特征中; 接着, 编码过程中生成的各级特征通过ERFM后, 生成具备更多边界信息的低层特征; 最后, 将各级特征一起送入MLAM进行特征的有效聚合, 通过级联方式生成最终的显著性图.

    图片送入网络中, 经过编码后, 会生成一系列具备不同信息的特征. 最高层的特征具备最强的语义表征能力, 并且在解码过程中, 逐渐与低层特征进行融合, 最终得到显著图. 但是, 直接将这种语义信息进行解码融合, 会造成许多显著性细节的丢失, 原因在于高层特征的不同通道和不同空间位置对显著性计算的贡献是不同的. 具体地, 不同通道对同一对象会有不同响应, 而同一通道的不同空间位置也会包含不同的对象. 受文献[26]启发, 本文设计了混合注意力模块, 该模块分为通道注意力机制和空间注意力机制两部分, 用来捕捉不同通道和不同空间位置中最显著的部分, 利用这些最显著的语义信息, 对高层特征进行有效增强, 得到更具鲁棒性的全局语义特征. MAM模块结构见图2.

    图 2  混合注意力模块
    Fig. 2  Mixing attention module
    2.1.1   空间注意力机制

    对于从残差块5中提取的高层特征, 首先, 将其宽、高维度展开成一维向量并进行转置, 得到二维矩阵${{\boldsymbol{X}}}\in {\bf{R}}^{H W \times C}$, $C $是该特征的通道数, $H$和$W $分别是高和宽, $HW $为高与宽相乘的数量. 然后, 经过3个并行的全连接层${{\boldsymbol{W}}_{{q}}}$、${{\boldsymbol{W}}_{{k}}}$和${{\boldsymbol{W}}_{{v}}}$对通道进行降维, 分别得到${\boldsymbol{Q}} = {\boldsymbol{X}}{{\boldsymbol{W}}_{{q}}}$、 ${\boldsymbol{K}} = {\boldsymbol{X}}{{\boldsymbol{W}}_{{k}}}$、$\boldsymbol{V} = {\boldsymbol{X}}{{\boldsymbol{W}}_{{v}}}$三个矩阵. 接着, 利用$\boldsymbol{A} = {\boldsymbol{Q}}{{\boldsymbol{K}}^{\rm{T}}}$得到相关性矩阵, 其中, $\boldsymbol A_{ij} $代表$\boldsymbol Q $中第$i $行与$\boldsymbol K $中第j行的内积, 即两个不同空间位置处向量的相关性. 并且对相关性矩阵$\boldsymbol A $的每一行利用Softmax函数进行归一化, 约束到(0, 1)内. 最后, 将相关性矩阵$\boldsymbol A $与$\boldsymbol V $相乘, 并且经过一个全连接层${{\boldsymbol{W}}_{{s}}}$对通道维度进行恢复, 得到空间显著性增强后的特征图${{\boldsymbol{X}}^{{S}}} = {\boldsymbol{AV}}{{\boldsymbol{W}}_{{s}}}$, 最终的特征表达式为:

    $$ {{\boldsymbol{X}}^{{S}}} = \sigma \left( {{\boldsymbol{X}}{{\boldsymbol{W}}_{{q}}}{{\left( {{\boldsymbol{X}}{{\boldsymbol{W}}_{{k}}}} \right)}^{\rm{T}}}} \right){\boldsymbol{X}}{{\boldsymbol{W}}_{{v}}}{{\boldsymbol{W}}_{{s}}}$$ (1)

    式中, ${{\boldsymbol{W}}_{{q}}},{{\boldsymbol{W}}_{{k}}},{{\boldsymbol{W}}_{{v}}} \in {\bf{R}}^{{C \times C/4}}$, ${{\boldsymbol{W}}_{{s}}} \in {\bf{R}}^{(C/4) \times C}$, $\sigma ( \cdot )$为Softmax函数.

    2.1.2   通道注意力机制

    通道维度的操作与上述类似, 也是对残差块5提取的特征先沿着宽、高维度展开成一维向量并转置, 得到${{\boldsymbol{X}}} \in {\bf{R}}^{H W \times C}$经过三个全连接层, 输出 ${\boldsymbol{Q}} = {\boldsymbol{X}}{{\boldsymbol{W}}_{{q}}}$, ${\boldsymbol{K}} = {\boldsymbol{X}}{{\boldsymbol{W}}_{{k}}}$, $\boldsymbol{V} = {\boldsymbol{X}}{{\boldsymbol{W}}_{{v}}}$. 考虑到降维会带来过多的信息损失, 因此本文算法没有对通道进行降维. 然后, 通过${\boldsymbol{B}} = {{\boldsymbol{K}}^{\rm{T}}}{\boldsymbol{Q}}$得到相关性矩阵, 其中$\boldsymbol B_{ij} $代表了$\boldsymbol K $中第$i $列与$\boldsymbol Q $中第$j $列的内积, 即两个不同通道向量的相关性. 同样, 需要对相关性矩阵$\boldsymbol B $的每一列利用Softmax函数进行归一化, 约束到(0, 1)内. 最后, 将$\boldsymbol V $与$\boldsymbol B $相乘且经过一个全连接层${{\boldsymbol{W}}_{{s}}}$, 得到通道显著性增强后的特征图${{\boldsymbol{X}}^{\boldsymbol{C}}} = {\boldsymbol{VB}}{{\boldsymbol{W}}_{{s}}}$, 最终的特征表达式为:

    $$ {{\boldsymbol{X}}^{\boldsymbol{C}}} = {\boldsymbol{X}}{{\boldsymbol{W}}_{{v}}}\sigma \left( {{{\left( {{\boldsymbol{X}}{{\boldsymbol{W}}_{{k}}}} \right)}^{{{\rm{T}}}}}{\boldsymbol{X}}{{\boldsymbol{W}}_{{q}}}} \right){{\boldsymbol{W}}_{{s}}}$$ (2)

    式中, ${{\boldsymbol{W}}_{{q}}},{{\boldsymbol{W}}_{{k}}},{{\boldsymbol{W}}_{{v}}},{{\boldsymbol{W}}_{{s}}} \in {\bf{R}}^{C \times C}$. 最后合并这两个分支的输出. 考虑到残差结构的影响, 本文将合并后的特征与输入X进行相加, 生成最终特征图${{\boldsymbol{Y}}} \in {\bf{R}}^{H W \times C}$:

    $$ {\boldsymbol{Y}} = {{\boldsymbol{X}}^{{C}}} \oplus {{\boldsymbol{X}}^{{S}}} \oplus {\boldsymbol{X}}$$ (3)

    式中, “$\oplus $”表示元素级的特征图相加. Y在经过转置并且将维度展开恢复后, 送入到后续的模块中.

    低层特征的边缘细节非常丰富, 但由于下采样的次数有限, 感受野相对受限, 无法捕捉全局的信息. 在解码过程中, 如果仅仅是简单利用低层特征, 虽然边缘的细节信息得到利用, 但并没有充分挖掘特征的空间细节. 受文献[27]启发, 本文设计如图3所示的增大感受野模块. 低层特征经过该模块后, 在保证边缘细节不丢失的前提下, 扩大了感受野, 具备了更多空间细节.

    图 3  增大感受野模块
    Fig. 3  Enlarged receptive field module

    首先, 对于特征$M \in {\bf{R}}^{C \times H \times W}$, 设计四个并行分支$({l_i},i = 1,2,3,4)$, 其中$ {l_1} $采用一个$1 \times 1$卷积, 剩下的三个分支均采用$3 \times 3$卷积, 并且对这三个分支设置不同的扩张率. 根据低层特征分辨率的不同设置不同的扩张率: 对于分辨率较低的特征设置较小的扩张率, 对于分辨率较高的特征设置较大的扩张率. 本文最大的扩张率设置为$d = 5,8, 11$, 并随着特征图的缩小而不断缩小(具体设置见第3.6节). 然后, 对四个分支输出进行通道维度拼接, 并利用一个$1 \times 1$卷积得到融合后的特征.

    在解码过程中, 高效利用每一层的特征尤为关键. 以前的研究只对高层特征与低层特征进行简单的拼接融合, 得到的结果非常粗糙. 因此, 本文设计了多层次聚合模块, 对来自不同层、不同空间尺度的特征进行有效聚合. 该模块的输入分为MAM生成的语义特征$H_1 $, 经过ERFM增强后的低层特征$L $和当前进行解码的特征$H_2 $三个部分. 图4是多层次聚合模块示意图.

    图 4  多层次聚合模块
    Fig. 4  Multi-level aggregation module

    整个聚合过程分为2个阶段: 第1阶段是语义特征对当前解码特征的指导融合. 首先让$H_1 $经过两个并行的$1 \times 1$卷积, 第1个分支与$H_1 $在通道维度上进行拼接融合后, 与第2个分支的结果相加完成第1次融合, 得到高层特征$H $:

    $$ H = {f_{conv}}({f_{cat}}({f_{{\text{c}}onv}}({H_1}),{H_2})) \oplus {f_{conv}}({H_1}) $$ (4)

    式中, ${f_{conv}}( \cdot )$指卷积操作, ${f_{cat}}( \cdot )$指通道的拼接操作. 第2阶段是第1阶段融合得到的高层特征$H $与经过ERFM增强后的低层特征L的聚合. 此阶段分为自下而上和自上而下两个并行分支. 自下而上是$H $向$L $的聚合, 此阶段$L $不变, $H $经过一次上采样和一个$1 \times 1$卷积后与L进行通道维度的拼接, 得到聚合图${X^{h \to l}}$:

    $$ {X^{h \to l}} = {f_{conv}}({f_{cat}}(L,{f_{up}}(H))) $$ (5)

    式中, ${f_{up}}( \cdot )$指上采样操作. 自上而下是$L $向H的聚合, 此阶段$H $不变, $L $首先经过一个并行的池化操作, 其中最大池化可以提取特征中响应值较大的信息即特征中所包含的显著信息, 平均池化可以得到特征的全局信息. 经过并行池化后, 特征$L $具备更强的表征力, 并且与H有相同的空间尺寸, 此时将其与特征$H $在通道维度上进行拼接, 并利用$1 \times 1$卷积完成融合. 然后, 对其进行上采样, 得到最终的${X^{l \to h}}$:

    $$ {X^{l \to h}} = {f_{up}}({f_{conv}}({f_{cat}}(H,{f_{avg}}(L) + {f_{\max }}(L)))) $$ (6)

    式中, ${f_{\max }}( \cdot )$和${f_{avg}}( \cdot )$分别代表最大池化和平均池化操作. 最后, 对两个分支得到的聚合特征也进行一次聚合:

    $$ Z = {f_{conv}}({f_{cat}}({X^{l \to h}},{X^{h \to l}})) $$ (7)

    本文代码是在Pytorch1.5.0框架下完成, 并且使用1张GeForce GTX2080Ti GPU进行训练. 训练数据使用DUTS[28]数据集中10553张图片. 使用Adam[29]优化器进行优化, 初始学习率设置为$1 \times 10^4$, 并且在每训练完成两个周期后衰减一半, 批量大小为8. 使用ResNeXt101作为特征提取器提取各层特征, 并加载在ImageNet上预训练的分类权重, 作为初始权重. 为了减少过拟合的影响, 在训练阶段, 对图片进行了随机翻转和遮挡, 并将图片缩放到$320 \times 320 $像素后, 将其随机裁剪为$288 \times 288$像素, 输入到网络中进行训练; 测试阶段, 仅将图片缩放到$288 \times 288 $像素后, 输入到网络中进行测试.

    本文在6个基准数据集上进行实验, 包括DUTS-TE[28]、DUT-OMRON[30]、ECSSD[31]、HKU-IS[32]、PASCAL-S[33]和SOD[34]. 其中, DUTS-TE与训练集的10553张图片同属一个数据集, 包含5019张测试图片. DUT-OMRON是最具有挑战性的数据集, 包含5188张图片, 该数据集的难点在于背景非常复杂, 对网络预测显著目标有很大干扰作用. ECSSD相对简单, 由1000张图片组成, 其中显著目标形状与外观有很大差异. HKU-IS包含4447张图片, 其中包含多个具有不同类别或外观的显著物体. PASCAL-S包含850张图片, 图片中物体之间会出现很大程度的重叠. SOD只有300张图片, 但场景的复杂多变, 带来很大挑战.

    本文使用平均绝对误差(Mean absolute error, MAE)、${F_\beta }$(F-measure) 和${S_m}$(Structure measure)作为评价指标.

    1) MAE计算预测的显著图与真实标签之间的差异:

    $${\rm{MAE}} = \frac{1}{{W \times H}}\sum\limits_{x = 1}^W {\sum\limits_{y = 1}^H {\left| {{\boldsymbol{P}}(x,y) - {\boldsymbol{G}}(x,y)} \right|} } $$ (8)

    式中, $\boldsymbol P$指预测的显著图, $\boldsymbol G$指真实标签值.

    2)${F_\beta }$是一种经典且有效的测量指标, 通过对查准率(Precision)与查全率(Recall)设置不同的权重来计算:

    $$ {F_\beta }{\text{ = }}\frac{{(1{\text{ + }}{\beta ^2}) \times {\rm{{Re} call}} \times {{\rm{Pre}}} {\rm{cision}}}}{{{\beta ^2} \times {\rm{{Pre} cision}} + {\rm{{Re} call}}}} $$ (9)

    式中, ${\beta ^2}$设置为0.3.

    3)${S_m}$用来考虑预测的显著图与真实标签之间的全局和局部的结构相似性, 该指标的详细介绍见文献[35].

    本文使用标准的二元交叉熵损失作为训练的损失函数:

    $$ \begin{split} {L_{bce}} =\;& - \sum\limits_{(x,y)} [{\boldsymbol{G}}(x,y){\rm{lg}}({\boldsymbol{P}}(x,y)) \;+\\ &(1 - {\boldsymbol{G}}(x,y)){\rm{lg}}(1 - {\boldsymbol{P}}(x,y))]\end{split} $$ (10)

    本文与最新10种基于深度学习的方法进行比较, 包括U2Net[15]、PAGR[19]、RAS[21]、CPD[23]、DGRL[36]、MLMS[37]、PoolNet[38]、AFNet[39]、BASNet[40]和ITSD[41]. 为了指标的公平性, 所有指标均在同一评测代码下进行评测, 并且所有用于评测的显著图均从作者发布的模型中得出.

    3.5.1   定量分析

    表1表2表3分别列出了各算法的${F_\beta }$、MAE和${S_m}$评价指标结果. 本文方法在3项指标中均表现优异. 由表1表3可以看出, 本文方法在指标${F_\beta }$和${S_m}$上大幅领先于其他方法, 即便是次优的ITSD算法, 在较难的数据集DUT-OMRON中, 本文也在${F_\beta }$指标上领先其0.003, ${S_m}$指标领先其0.007. 这主要得益于本文多层次聚合模块能够最大限度地保留显著物体的空间信息和边界细节. 对于表2中MAE指标, 本文方法也仅在相对较难的3个数据集上表现稍有不足, 但与第1名的差距是非常小的, 基本保持在0.001 ~ 0.002之间. 图5是各方法的查准率−查全率曲线图, 加粗实线是本文方法, 由图5可以看出, 本文算法性能的优越性.

    表 1  不同方法的${F_\beta }$指标结果比较
    Table 1  Comparison of ${F_\beta }$ values of different models
    数据集本文方法PAGRRASDGRLCPDMLMSPoolNetAFNetBASNetU2NetITSD
    ECSSD0.9510.9240.9210.9210.9360.9300.9440.9350.9420.9510.947
    DUT-OMRON0.8270.7710.7860.7740.7940.7930.8080.7970.8050.8230.824
    PASCAL-S0.8730.8470.8370.8440.8660.8580.8690.8680.8540.8590.871
    HKU-IS0.9370.9190.9130.9100.9240.9220.9330.9230.9280.9350.934
    DUTS-TE0.8880.8550.8310.8280.8640.8540.8800.8620.8600.8730.883
    SOD0.8730.8380.8100.8430.8500.8620.8670.8510.8610.880
    注: ${F_\beta }$值越大越好, 加粗数字为最优结果, 加下划线数字为次优结果.
    下载: 导出CSV 
    | 显示表格
    表 2  不同方法的MAE指标结果比较
    Table 2  Comparison of MAE values of different models
    数据集本文方法PAGRRASDGRLCPDMLMSPoolNetAFNetBASNetU2NetITSD
    ECSSD0.0340.0640.0560.0430.0400.0380.0390.0420.0370.0340.035
    DUT-OMRON0.0580.0710.0620.0620.0560.0600.0560.0570.0560.0540.061
    PASCAL-S0.0650.0890.1040.0720.0740.0690.0750.0690.0760.0740.072
    HKU-IS0.0320.0470.0450.0360.0330.0340.0330.0360.0320.0310.031
    DUTS-TE0.0420.0530.0600.0490.0430.0450.0400.0460.0470.0440.041
    SOD0.0930.1450.1240.1030.1120.1060.1000.1140.1080.095
    注: MAE值越小越好.
    下载: 导出CSV 
    | 显示表格
    表 3  不同方法的${S_m}$指标结果比较
    Table 3  Comparison of ${S_m}$ values of different models
    数据集 本文方法PAGRRASDGRLCPDMLMSPoolNetAFNetBASNetU2NetITSD
    ECSSD0.9320.8890.8930.9060.9150.9110.9210.9140.9160.9280.925
    DUT-OMRON0.8470.7750.8140.8100.8180.8170.8360.8260.8360.8470.840
    PASCAL-S0.8650.7490.7950.8690.8440.8490.8450.8500.8380.8440.859
    HKU-IS0.9300.8870.8870.8970.9040.9010.9170.9050.9090.9160.917
    DUTS-TE0.8730.8380.8390.8420.8670.8560.8830.8660.8530.8610.872
    SOD0.8080.7200.7640.7710.7710.7800.7950.7720.7860.809
    注: ${S_{{m} } }$值越大越好.
    下载: 导出CSV 
    | 显示表格
    图 5  不同算法的查准率−查全率曲线示意图
    Fig. 5  Comparison of precision−recall curves of different methods
    3.5.2   定性分析

    图6是本文方法与其他10种方法的显著性图. 由图6可以看出, 本文方法对显著信息的捕捉明显更强. 在第1行中, 即便是指标与本文最接近的ITSD也将座椅当作显著物体, 但是在人类的视觉效果上, 明亮的灯与背景的区分度更大, 本文方法因为有全局语义指导特征聚合, 可以捕捉到壁灯的显著信息. 在第2行中, 围绳与人之间有很多交叉, 即便是当前性能较好的方法也并没有将目标完整地识别出来, 而本文方法由于对低层特征进行了感受野增强, 可以捕捉目标周围更多的上/下文信息, 能够将全部目标识别出来, 但同时也存在围绳部分被识别为人的问题. 综上所述, 本文算法对于复杂背景下的物体边界并不能很好地细化. 但对于背景较简单的物体(如第5行和最后1行), 本文均能很好地预测出边界轮廓.

    图 6  不同算法的显著性图
    Fig. 6  Salient maps of different methods

    表4是在数据集ECSSD上针对各模块的消融实验结果: 1)混合注意力模块. 由表4第3行可知, 当缺少混合注意力模块时, MAE指标上升了0.008, 由此可见, 利用该模块生成的全局语义特征引导特征聚合, 能够大幅提升聚合性能; 2)增大感受野模块. 由表4第4行可知, MAE指标上升了0.005, 主要是因为缺少了感受野增强, 没有充分提取低层特征的空间上/下文信息, 不利于细化边界; 3)多层次融合模块. 由表4第2行可知, 当用简单的上采样和相加操作代替该模块时, MAE上升了0.011, 说明多层次融合模块聚合方式非常高效.

    表 4  消融实验结果
    Table 4  Results of ablation experiment
    MAMERFMMLAMMAE/${F_\beta }$
    0.049/0.935
    0.045/0.937
    0.042/0.942
    0.039/0.944
    0.034/0.951
    注: MAE值越小越好, 加粗字体为最优结果, “✓”为使用指定模块.
    下载: 导出CSV 
    | 显示表格

    表5是对ERFM模块中, 不同扩张率设置的对比实验结果. 表5中不同设置组合从左向右依次对应不同分辨率的特征图(见图3), 即左边第1组扩张率对应分辨率最大的特征图, 最后1组扩张率对应分辨率最小的特征图. 表5的第4行是本文方法的设置. 由表5第1行可以看出, 当扩张率全部设置为(1, 3, 5)时, 与本文方法相比, MAE上升了0.005, 而随着本文方法对分辨率较高的特征图分配更大的扩张率时, MAE的指标不断降低. 实验结果表明, 在本文方法中, 扩张率的选择是有效的.

    表 5  ERFM模块中, 不同扩张率设置的对比实验
    Table 5  Comparative experiment of different dilation rate configurations in ERFM
    扩张率的不同设置组合MAE/${F_\beta }$
    (1, 3, 5), (1, 3, 5), (1, 3, 5), (1, 3, 5)0.039/0.946
    (1, 3, 5), (1, 3, 5), (3, 5, 7), (1, 3, 5)0.037/0.948
    (1, 3, 5), (4, 6, 8), (3, 5, 7), (1, 3, 5)0.036/0.950
    (5, 8, 11), (4, 6, 8), (3, 5, 7), (1, 3, 5)0.034/0.951
    下载: 导出CSV 
    | 显示表格

    表6是对MLAM模块第2阶段中, 自上而下和自下而上两个分支在数据集ECSSD上的消融实验结果. 由表6第1行可知, 当只使用自下而上分支时, 相比两个并行分支均使用时, MAE上升了0.007; 而只使用自上而下分支时, 上升了0.006. 由此可见, 本文方法将两个分支并行使用的方式是有效的, 能够对精度有所提升.

    表 6  MLAM模块中, 两个分支的消融实验
    Table 6  Ablation experiment of two branches in MLAM
    自下而上分支自上而下分支MAE/${F_\beta }$
    0.041/0.940
    0.040/0.946
    0.034/0.951
    下载: 导出CSV 
    | 显示表格

    表7是对MAM中, 注意力模块位置关系的消融实验结果. 前2行是将两个模块串联并考虑其先后位置, 第3行是两个模块并行即本文方法. 当通道注意力位置在前时, 与本文方法相比, MAE上升了0.002; 当空间注意力位置在前时, MAE上升了0.004. 该实验结果验证了本文将两个模块设置成并行的有效性.

    表 7  MAM模块中, 注意力模块位置关系的消融实验
    Table 7  Ablation experiment on the position relationship of attention module in MAM
    注意力模块之间的位置关系MAE/${F_\beta }$
    通道注意力在前0.036/0.947
    空间注意力在前0.038/0.944
    并行放置 (本文方法)0.034/0.951
    下载: 导出CSV 
    | 显示表格

    本文提出一种基于语义引导特征聚合的显著性目标检测算法, 主要包括混合注意力模块、增大感受野模块和多层次融合模块3个模块. MAM能够生成更佳的语义特征, 用来指导解码过程中的特征融合, 使得聚合的特征能够更好地定位显著物体; ERFM能够丰富低层特征所具备的上/下文信息, 并将增强后的特征输入到MLAM中; MLAM利用MAM生成的语义信息, 对当前解码的特征和ERFM输出的低层特征进行指导融合, 并最终以级联方式逐步恢复边界细节, 生成最终的显著图. 本文与目前流行的10种算法在6个基准数据集上进行了实验比较, 由可视化图6可以看出, 本文算法能够有效地保留显著物体的空间位置信息, 并且边缘也得到了很好细化. 实验结果也验证了本文算法具有领先性能.

  • 图  1  MCQA 模型图

    Fig.  1  The overall diagram of MCQA

    图  2  模型词典示意图

    Fig.  2  The diagram of vocabulary

    图  3  解码器工作机制示意图

    Fig.  3  The diagram of working mechanism of decoder

    图  4  MCQA (TE, CE)与CoreQA 答案对比样例

    Fig.  4  The comparison of MCQA (TE, CE) and CoreQA sample outputs

    图  5  社区问答样例

    Fig.  5  The sample outputsof community QA

    图  6  知识补全示意图

    Fig.  6  The diagram of knowledge base completion

    图  7  模糊问答样例

    Fig.  7  The sample outputs of ambiguously QA

    表  1  问答数据集规模

    Table  1  The size of QA datasets

    数据集 问答对数量 关系数量
    SimpleQuestions 101 754 1 631
    生日问答数据集 239 922 5
    社区问答数据集 505 021 4 011
    下载: 导出CSV

    表  2  SimpleQuestion 数据集实验结果

    Table  2  The experimental results of SimpleQuestion datasets

    方法 准确率 (%)
    BiCNN[13] 90.0
    AMPCNN[29] 91.3
    HR-BiLSTM[30] 93.3
    CoreQA 92.8
    MCQA (WE, CE) 93.8
    MCQA (TE, CE) 94.3
    下载: 导出CSV

    表  3  生日数据集实验结果 (%)

    Table  3  The experimental results of birthday datasets (%)

    方法 $ {{P}_{g}} $ $ {{P}_{y}} $ $ {{P}_{m}} $ $ {{P}_{d}} $ $ {{P}_{r}} $
    Seq2Seq 67.3 23.4 37.2
    NMT 71.6 27.1 54.7
    CopyNet 75.2 71.9
    GenQA (本文) 73.4 63.2 65.8 77.1 62.6
    CoreQA 75.6 84.8 93.4 81 80.3
    MCQA (WE, CE) 89.8 89.1 98.4 93.2 84.1
    MCQA (TE, CE) 88.6 89.4 98.7 93.6 84.6
    下载: 导出CSV

    表  4  社区问答实验结果 (%)

    Table  4  The experimental results of community QA datasets (%)

    方法 正确性 流畅性 一致性
    CopyNet 19.4 21.3
    GenQA (本文) 24.3 38.3 24.1
    CoreQA 49.3 51.8 62.5
    MCQA (WE, CE) 52.3 55.8 65.2
    MCQA (TE, CE) 54.1 56.3 65.0
    下载: 导出CSV

    表  5  模糊问答推理结果 (%)

    Table  5  The prediction results of ambiguously QA (%)

    方法 $ {{P}_{y}} $ $ {{P}_{m}} $ $ {{P}_{d}} $
    PTransE 93.2 97.4 95.0
    下载: 导出CSV

    表  6  模糊问答结果 (%)

    Table  6  The results of ambiguously QA (%)

    方法 $ {{F1}_{t}} $ $ {{P}_{y}} $ $ {{P}_{m}} $ $ {{P}_{d}} $ $ {{P}_{r}} $
    MCQA (WE, CE) 87.7 78.1 88.2 90.8 80.9
    下载: 导出CSV
  • [1] Vanessa L, Victoria U, Marta S, Enrico M. Is question answering fit for the semantic web?: A survey. Semantic Web, 2011, 2(2): 125-155 doi: 10.3233/SW-2011-0041
    [2] Sydorova A, Poerner N, Roth B. Interpretable question answering on knowledge bases and text. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019. 4943−4951
    [3] Cho K, Merriënboer B V, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using rnn encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: Association for Computational Linguistics, 2014. 1724−1734
    [4] Gu J T, Lu Z D, Li H, Li V O K. Incorporating copying mechanism in sequence-to-sequence learning. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: the Association for Computational Linguistics, 2016. 1631−1640
    [5] Gulcehre C, Ahn S, Nallapati R, Zhou B W, Bengio Y. Pointing the unknown words. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: the Association for Computational Linguistics, 2016. 140−149
    [6] He S Z, Liu C, Liu K, Zhao J. Generating natural answers by incorporating copying and retrieving mechanisms in sequence-to-sequence learning. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada: the Association for Computational Linguistics, 2017. 199−208
    [7] 刘康, 张元哲, 纪国良, 来斯惟, 赵军. 基于表示学习的知识库问答研究进展与展望. 自动化学报, 2016, 42(6): 807-818

    Liu Kang, Zhang Yuan-Zhe, Ji Guo-Liang, Lai Si-Wei, Zhao Jun. Representation learning for question answering over knowledge base: an overview. Acta Automatica Sinica, 2016, 42(6): 807-818
    [8] Tang X, Chen L, Cui J, Wei B. Knowledge representation learning with entity descriptions, hierarchical types, and textual relations. Information Processing & Management, 2019, 56(3): 809-822
    [9] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv: 1301.3781, 2013.
    [10] Unger C, Freitas A, Cimiano P. An introduction to question answering over linked data. In: Proceedings of Reasoning on the Web in the Big Data Era — the 10th International Summer School. Athens, Greece: IEEE, 2014. 100−140
    [11] Bast H, Haussmann E. More accurate question answering on freebase. In: Proceedings of the 24th International Conference on Information and Knowledge Management. Melbourne, VIC, Australia: ACM, 2015. 1431−1440
    [12] Bordes A, Chopra S, Weston J. Question answering with subgraph embeddings. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: ACL, 2014. 615−620
    [13] Yih W, Chang M W, He X D, Gao J F. Semantic parsing via staged query graph generation: Question answering with knowledge base. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing. Beijing, China: ACL, 2015. 1321−1331
    [14] Sun Y W, Zhang L L, Cheng G, Qu Y Z. Sparqa: Skeleton-based semantic parsing for complex questions over knowledge bases. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York, USA: arXiv: 2003.13956, 2020.
    [15] Xu K, Wu L F, Wang Z G, Yu M, Chen L W, Sheinin V. Exploiting rich syntactic information for semantic parsing with graph-to-sequence model. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: ACL, 2018. 918−924
    [16] Miller A, Fisch A, Dodge J, Karimi A H, Weston J. Key-value memory networks for directly reading documents. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas, USA: ACL, 2016. 1400−1409
    [17] Bordes A, Usunier N, Chopra S, Weston J. Large-scale simple question answering with memory networks. arXiv: 1506.02075. 2015.
    [18] Yin J, Jiang X, Lu Z D, Shang L F, Li H, Li X M. Neural generative question answering. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: IJCAI/AAAI, 2016. 2972−2978
    [19] Liu C, He S Z, Liu K, Zhao J. Curriculum learning for natural answer generation. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI/AAAI, 2018. 4223−4229
    [20] Wang T Z, Cai M, Li J X. A neural conversational model using MMI-WMD decoder based on the Seq2Seq with attention mechanism. In: Proceedings of the 2019 Chinese Control and Decision Conference (CCDC). Nanchang, China: IEEE, 2019. 2696−2700
    [21] Sharma A, Contractor D, Kumar H, Joshi S. Neural conversational QA: Learning to reason vs exploiting patterns. arXiv: 1909.03759, 2019.
    [22] Lei W Q, Jin X, Kan M Y, Ren Z C, He X N, Yin D W. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia: ACL, 2018. 1437−1447
    [23] Rashkin H, Smith E M, Li M, Boureau Y L. Towards empathetic open-domain conversation models: A new benchmark and dataset. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019. 5370−5381
    [24] Lin Y K, Liu Z Y, Sun M S. Modeling relation paths for representation learning of knowledge bases. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: ACL, 2015. 705−714
    [25] Quan W, Mao Z D, Wang B, Li G. Knowledge graph embedding: A survey of approaches and applications. IEEE Transactions on Knowledge & Data Engineering, 2017, 29(12): 2724-2743
    [26] Bordes A, Weston J, Usunier N. Open question answering with weakly supervised embedding models. In: Proceedings of the 2014 Machine Learning and Knowledge Discovery in Databases European Conference. Nancy, France: Springer, 2014. 165−180
    [27] Bahdanau D, Cho K Y, Bengio Y. Neural machine translation by jointly learning to align and translate. Arxiv: 1409.0473, 2014
    [28] 冯冲, 石戈, 郭宇航, 龚静, 黄河燕. 基于词向量语义分类的微博实体链接方法. 自动化学报, 2016, 42(6): 915-922

    Feng C, Shi G, Guo YH, Gong J, Huang HY. An entity linking method for microblog based on semantic categorization by word embeddings. Acta Autom. Sinica, 2016, 42(6): 915-922
    [29] Yin W P, Yu M, Xiang B, Zhou B, Schutze H. Simple question answering by attentive convolutional neural network. ArXiv: 1606.03391, 2016.
    [30] Yu M, Yin W P, Hasan K S, Santos C D, Xiang B, Zhou B W. Improved neural relation detection for knowledge base question answering. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada: ACL, 2017. 571−581
    [31] Deng Y, Xie Y X, Li Y L, Yang M, Shen Y. Multi-task learning with multi-view attention for answer selection and knowledge base question answering. In: Proceedings of the 33rd Conference on Artificial Intelligence. Honolulu, Hawaii, USA: AAAI, 2019. 6318−6325
  • 期刊类型引用(11)

    1. 王君,韦娅萍. 事件触发下多智能体系统规定时间二分一致性. 系统科学与数学. 2024(01): 71-85 . 百度学术
    2. 郭胜辉,罗世坚,黄大荣,宋家锋. 自动驾驶车辆道路跟驰与状态一致性控制. 中国科学:信息科学. 2024(02): 394-412 . 百度学术
    3. 赵华荣,彭力,吴治海,谢林柏,于洪年. 随机时延下多输入多输出多智能体系统事件触发双向编队. 控制与决策. 2024(04): 1251-1259 . 百度学术
    4. 熊勇刚,付茂林,李波,姚焘,张锐. 基于领航-跟随法的多机器人编队控制. 机电工程技术. 2024(03): 136-141 . 百度学术
    5. 时宏伟,滕婧婧,李凌云,郭胜辉. 含不确定参数的智能网联汽车协同编队控制. 西安工程大学学报. 2024(03): 117-125 . 百度学术
    6. 刘沛明,郭祥贵. 基于观测器的人在环多机械臂系统预设性能二分一致性. 自动化学报. 2024(09): 1761-1771 . 本站查看
    7. 张宏宏,李文华,郑家毅,刘宏斌,张鹏,高鹏,甘旭升. 有人/无人机协同作战:概念、技术与挑战. 航空学报. 2024(15): 168-194 . 百度学术
    8. 彭战松,李铁柱. 基于相对方向的非线性无人机群反步编队跟踪控制. 飞行力学. 2023(01): 34-39 . 百度学术
    9. 钱贝,周绍磊,肖支才,闫实,祁亚辉,侯鹏森. 通信时延条件下的单一领导者多无人机系统编队控制. 电光与控制. 2023(05): 66-72 . 百度学术
    10. 刘青松,习晓苗,柴利. 具有类万有引力的有界置信观点动力学分析与应用. 自动化学报. 2023(09): 1967-1975 . 本站查看
    11. 关睿. 机械制造智能化技术与机电一体化的融合研究. 造纸装备及材料. 2022(12): 126-128 . 百度学术

    其他类型引用(15)

  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  720
  • HTML全文浏览量:  212
  • PDF下载量:  277
  • 被引次数: 26
出版历程
  • 收稿日期:  2019-11-15
  • 录用日期:  2020-04-10
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2022-10-14

目录

/

返回文章
返回