2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中心对称多胞体的故障可分离性评价

王桢榕 王振华 沈毅

王桢榕, 王振华, 沈毅. 基于中心对称多胞体的故障可分离性评价. 自动化学报, 2022, 48(8): 1921−1930 doi: 10.16383/j.aas.c190770
引用本文: 王桢榕, 王振华, 沈毅. 基于中心对称多胞体的故障可分离性评价. 自动化学报, 2022, 48(8): 1921−1930 doi: 10.16383/j.aas.c190770
Wang Zhen-Rong, Wang Zhen-Hua, Shen Yi. Fault isolability evaluation based on zonotope. Acta Automatica Sinica, 2022, 48(8): 1921−1930 doi: 10.16383/j.aas.c190770
Citation: Wang Zhen-Rong, Wang Zhen-Hua, Shen Yi. Fault isolability evaluation based on zonotope. Acta Automatica Sinica, 2022, 48(8): 1921−1930 doi: 10.16383/j.aas.c190770

基于中心对称多胞体的故障可分离性评价

doi: 10.16383/j.aas.c190770
基金项目: 国家自然科学基金(61773145, 61973098), 哈尔滨工业大学深空探测着陆与返回技术国防重点学科基金(HIT.KLOF.2018.073)资助
详细信息
    作者简介:

    王桢榕:哈尔滨工业大学航天学院硕士研究生. 主要研究方向为基于模型的故障诊断. E-mail: arong_wang@163.com

    王振华:哈尔滨工业大学航天学院副教授. 主要研究方向为故障诊断与容错控制技术. E-mail: zhenhua.wang@hit.edu.cn

    沈毅:哈尔滨工业大学航天学院教授. 主要研究方向为故障诊断, 飞行器控制, 超声信号处理. 本文通信作者. E-mail: shen@hit.edu.cn

Fault Isolability Evaluation Based on Zonotope

Funds: Supported by National Natural Science Foundation of China (61773145, 61973098) and the Key Laboratory Opening Funds of Harbin Institute of Technology (HIT.KLOF.2018.073)
More Information
    Author Bio:

    WANG Zhen-Rong Master student at the School of Astronautics, Harbin Institute of Technology. Her main research interest is model-based fault diagnosis

    WANG Zhen-Hua Associate professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers fault diagnosis and fault-tolerant control

    SHEN Yi Professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers fault diagnosis, flight vehicle control, and ultrasound signal processing. Corresponding author of this paper

  • 摘要: 针对包含幅值有界而分布形式未知的故障及输入干扰项的线性离散系统, 提出了一种新的系统故障可分离性的量化评价方法. 故障可分离性是故障可诊断性中的重要部分, 针对现有方法中基于方向相似度的故障可分离性评价方法存在的不足加以补充, 提出了利用中心对称多胞体对故障可分离性进行分析, 将中心对称多胞体集合转化为多面体的表示形式, 以达到对故障可分离性量化评价的目的, 同时给出了具体评价原理和评价指标. 最后, 通过数值仿真算例, 验证了该方法的有效性和优越性.
  • 图  1  各个故障模式组合下系统输出结果

    Fig.  1  System output results under the combination of various fault modes

    表  1  基于方向相似度可分离性评价结果(s = 5)

    Table  1  Fault isolability evaluation results based on directional similarity (s = 5)

    次数评价结果 次数评价结果 次数评价结果
    10.0977 60.7662 110.9239
    20.734570.0191120.3114
    30.138080.7235130.6323
    40.458090.1939140.3153
    50.2760100.4178150.2760
    下载: 导出CSV

    表  2  基于方向相似度可分离性评价结果(s = 500)

    Table  2  Fault isolability evaluation results based on directional similarity (s = 500)

    次数评价结果次数评价结果次数评价结果
    10.648160.6836110.6811
    20.648070.6885120.6734
    30.638080.6654130.6559
    40.629490.6294140.6289
    50.6698100.6168150.6610
    下载: 导出CSV

    表  3  数据分散程度评价

    Table  3  Evaluation of data dispersion

    窗口长度极差$(R)$标准差$(\sigma)$  窗口长度极差$(R)$标准差$(\sigma)$
    50.91280.2577  2250.16690.0349
    100.75190.17582500.13350.0297
    500.35010.08823750.12130.0278
    1000.29410.06044500.09140.0259
    1750.18980.05145000.07180.0226
    下载: 导出CSV

    表  4  基于方向相似度可分离性评价结果(s = 500)

    Table  4  Fault isolability evaluation results based on directional similarity (s = 500)

    故障$f_{1}$$f_{2}$$f_{3}$$f_{4}$
    $f_{1}$NULL1.00000.92360.4780
    $f_{2}$1.0000NULL0.92360.4780
    $f_{3}$0.92360.9236NULL0.6411
    $f_{4}$0.47800.47800.6411NULL
    下载: 导出CSV

    表  5  基于中心对称多胞体可分离性评价结果$(s=500)$

    Table  5  Fault isolability evaluation results based on Zonotope $(s=500)$

    故障$f_{1}$$f_{2}$$f_{3}$$f_{4}$
    $f_1$NULL1.00000.44640.1508
    $f_2$1.0000NULL0.44630.1508
    $f_3$0.44630.4463NULL0.3380
    $f_4$0.15080.15080.3380NULL
    下载: 导出CSV

    表  6  基于中心对称多胞体可分离性评价结果$(s=5)$

    Table  6  Fault isolability evaluation results based on Zonotope $(s=5)$

    故障$f_{1}$$f_{2}$$f_{3}$$f_{4}$
    $f_1$NULL1.00000.36650.2961
    $f_2$1.0000NULL0.36650.2961
    $f_3$0.36650.3665NULL0.3645
    $f_4$0.29610.29610.3645NULL
    下载: 导出CSV
  • [1] Chen J, Patton R J. Robust Model-based Fault Diagnosis for Dynamic Systems. New York: Springer, 2012.
    [2] Wang Z H, Shi P, Lim C C. H-/H fault detection observer in finite frequency domain for linear parameter-varying descriptor systems. Automatica, 2017, 86: 38-45 doi: 10.1016/j.automatica.2017.08.021
    [3] 汤文涛, 王振华, 王烨, 沈毅. 基于未知输入集员滤波器的不确定系统故障诊断. 自动化学报, 2018, 44(9): 1717-1724

    Tang Wen-Tao, Wang Zhen-Hua, Wang Ye, Shen Yi. Fault diagnosis for uncertain systems based on unknown input set-membership filters. Acta Automatica Sinica, 2018, 44(9): 1717-1724
    [4] 张柯, 姜斌. 基于故障诊断观测器的输出反馈容错控制设计. 自动化学报, 2010, 36(2): 274-281 doi: 10.3724/SP.J.1004.2010.00274

    Zhang Ke, Jiang Bin. Fault diagnosis observer-based output feedback fault tolerant control design. Acta Automatica Sinica, 2010, 36(2): 274-281 doi: 10.3724/SP.J.1004.2010.00274
    [5] 冯建文, 孙黎, 刘金龙. 波音737-8事故简析. 航空动力, 2019(2): 50-55

    Feng Jan-Wen, Sun Li, Liu Jin-Long. Brief analysis of the Boeing 737-8 crashes. Aerospace Power, 2019(2): 50-55
    [6] 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933-1943 doi: 10.3724/SP.J.1004.2013.01933

    Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933-1943 doi: 10.3724/SP.J.1004.2013.01933
    [7] Zhang J C, Zhu F L, Karimi H R, Wang F N. Observer-based sliding mode control for T-S fuzzy descriptor systems with time delay. IEEE Transactions on Fuzzy Systems, 2019, 27(10): 2009-2023 doi: 10.1109/TFUZZ.2019.2893220
    [8] 王大轶, 符方舟, 刘成瑞, 李文博, 刘文静, 何英姿, 等. 控制系统可诊断性的内涵与研究综述. 自动化学报, 2018, 44(9): 1537-1553

    Wang Da-Yi, Fu Fang-Zhou, Liu Cheng-Rui, Li Wen-Bo, Liu Wen-Jing, He Ying-Zi, et al. Connotation and research status of diagnosability of control systems: A review. Acta Automatica Sinica, 2018, 44(9): 1537-1553
    [9] Han W X, Wang Z H, Shen Y. H-/L fault detection observer for linear parameter-varying systems with parametric uncertainty. International Journal of Robust and Nonlinear Control, 2019, 29(10): 2912-2926 doi: 10.1002/rnc.4530
    [10] Li X H, Zhu F L, Xu L Y. Actuator and sensor fault reconstructions for uncertain Lipschitz nonlinear systems based on H observers. Asian Journal of Control, 2015, 17(6): 2206-2217 doi: 10.1002/asjc.1123
    [11] 张文瀚, 王振华, 沈毅. 基于鲁棒正不变集的传感器故障区间估计. 自动化学报, 2020, 46(9): 1986-1993

    Zhang Wen-Han, Wang Zhen-Hua, Shen Yi. Interval estimation for sensor fault based on robust positive invariant set. Acta Automatica Sinica, 2020, 46(9): 1986-1993
    [12] Tang W T, Wang Z H, Shen Y. Fault detection and isolation for discrete-time descriptor systems based on H-/L observer and zonotopic residual evaluation. International Journal of Control, 2020, 93(8): 1867-1878 doi: 10.1080/00207179.2018.1535716
    [13] Wang Z H, Shen Y, Zhang X L. Actuator fault estimation for a class of nonlinear descriptor systems. International Journal of Systems Science, 2014, 45(3): 487-496 doi: 10.1080/00207721.2012.724100
    [14] IEEE STD 1522−2004. IEEE TrialUse Standard for Testability and Diagnosability Characteristics and Metrics. Piscataway, NJ: IEEE Standards Press, 2004.
    [15] 郭其一, 黄世泽. 非线性系统存在过程扰动时故障可分离研究. 同济大学学报(自然科学版), 2017, 45(8): 1183-1190 doi: 10.11908/j.issn.0253-374x.2017.08.012

    Guo Qi-Yi, Huang Shi-Ze. Study on the condition of separable fault of serial nonlinear system under the process noise. Journal of Tongji University (Natural Science), 2017, 45(8): 1183-1190 doi: 10.11908/j.issn.0253-374x.2017.08.012
    [16] 姜斌, 冒泽慧, 杨浩, 张友民. 控制系统的故障诊断与故障调节. 北京: 国防工业出版社, 2009. 1−6

    Jiang Bin, Mao Ze-Hui, Yang Hao, Zhang You-Min. Fault Diagnosis and Fault Accommodation for Control Systems. Beijing: National Defense Industry Press, 2009. 1−6
    [17] 李晗, 萧德云. 基于数据驱动的故障诊断方法综述. 控制与决策, 2011, 26(1): 1-9, 16

    Li Han, Xiao De-Yun. Survey on data driven fault diagnosis methods. Control and Decision, 2011, 26(1): 1-9, 16
    [18] Yue H H, Qin S J. Reconstruction-based fault identification using a combined index. Industrial & Engineering Chemistry Research, 2001, 40(20): 4403-4414
    [19] Hua Y Z, Li Q D, Ren Z, Liu C R. A data driven method for quantitative fault diagnosability evaluation. In: Proceedings of the 2016 Chinese Control and Decision Conference (CCDC). Yinchuan, China: IEEE, 2016. 1890−1894
    [20] Zhang K, Jiang B, Shi P. Observer-based Fault Estimation and Accomodation for Dynamic Systems. Berlin: Springer, 2013.
    [21] Zhong M Y, Song Y, Ding S X. Parity space-based fault detection for linear discrete time-varying systems with unknown input. Automatica, 2015, 59: 120-126 doi: 10.1016/j.automatica.2015.06.013
    [22] Zhang X M, Zhu F L, Guo S H. Actuator fault detection for uncertain systems based on the combination of the interval observer and asymptotical reduced-order observer. International Journal of Control, 2020, 93(11): 2653-2661 doi: 10.1080/00207179.2019.1620329
    [23] 李岳炀, 钟麦英. 具有多测量数据包丢失的线性离散时变系统故障检测滤波器设计. 自动化学报, 2015, 41(9): 1638-1648

    Li Yue-Yang, Zhong Mai-Ying. Fault detection filter design for linear discrete time-varying systems with multiple packet dropouts. Acta Automatica Sinica, 2015, 41(9): 1638-1648
    [24] Eguchi S, Copas J. Interpreting Kullback-Leibler divergence with the Neyman-Pearson lemma. Journal of Multivariate Analysis, 2006, 97(9): 2034-2040 doi: 10.1016/j.jmva.2006.03.007
    [25] Eriksson D, Frisk E, Krysander M. A method for quantitative fault diagnosability analysis of stochastic linear descriptor models. Automatica, 2013, 49(6): 1591-1600 doi: 10.1016/j.automatica.2013.02.045
    [26] 蒋栋年, 李炜, 王君, 孙晓静. 基于故障可诊断性量化评价的传感器优化配置方法研究. 自动化学报, 2018, 44(6): 1128-1137

    Jiang Dong-Nian, Li Wei, Wang Jun, Sun Xiao-Jing. Research on sensor optimal placement method using quantitative evaluation of fault diagnosability. Acta Automatica Sinica, 2018, 44(6): 1128-1137
    [27] Li W B, Wang D Y, Liu C R. Fault diagnosability evaluation for spacecraft control systems via direction similarity. Chinese Control Conference. In: Proceedings of the 33rd ChineseControl Conference. Nanjing, China: IEEE, 2014. 3191−3196
    [28] Shen Q K, Jiang B, Shi P. Active fault-tolerant control against actuator fault and performance analysis of the effect of time delay due to fault diagnosis. International Journal of Control, Automation and Systems, 2017, 15(2): 537-546 doi: 10.1007/s12555-015-0307-5
    [29] Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications (2nd edition). New York: Springer, 2003.
    [30] Cramér H. Mathematical Methods of Statistics (Volume 43). Princeton University, USA press, 1999.
    [31] 李佶桃, 王振华, 沈毅. 线性离散系统的有限频域集员故障检测观测器设计. 自动化学报, 2020, 46(7): 1531-1538 doi: 10.16383/j.aas.c170725

    Li Ji-Tao, Wang Zhen-Hua, Shen Yi. Set-membership fault detection observer design in finite-frequency domain for linear discrete-time system. Acta Automatica Sinica, 2020, 46(7): 1531-1538 doi: 10.16383/j.aas.c170725
    [32] Combastel C. An Extended Zonotopic and Gaussian Kalman Filter (EZGKF) merging set-membership and stochastic paradigms: Toward non-linear filtering and fault detection. Annual Reviews in Control, 2016, 42: 232-243 doi: 10.1016/j.arcontrol.2016.07.002
    [33] Combastel C. Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence. Automatica, 2015, 55: 265-273 doi: 10.1016/j.automatica.2015.03.008
    [34] Althoff M, Stursberg O, Buss M. Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes. Nonlinear Analysis: Hybrid Systems, 2010, 4(2), 233-249 doi: 10.1016/j.nahs.2009.03.009
    [35] Ziegler G M. Lectures on Polytopes. New York: Lectures on Polytopes, 1995.
    [36] Gover E, Krikorian N. Determinants and the volumes of parallelotopes and zonotopes. Linear Algebra and Its Applications, 2010, 433(1): 28-40 doi: 10.1016/j.laa.2010.01.031
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  537
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回