2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

进化计算在复杂机电系统设计自动化中的应用综述

范衠 朱贵杰 李文姬 游煜根 李晓明 林培涵 辛斌

彭秀平, 仝其胜, 林洪彬, 冯超, 郑武. 一种面向散乱点云语义分割的深度残差−特征金字塔网络框架. 自动化学报, 2021, 47(12): 2831−2840 doi: 10.16383/j.aas.c190063
引用本文: 范衠,  朱贵杰,  李文姬,  游煜根,  李晓明,  林培涵,  辛斌.  进化计算在复杂机电系统设计自动化中的应用综述.  自动化学报,  2021,  47(7): 1495−1515 doi: 10.16383/j.aas.c190767
Peng Xiu-Ping, Tong Qi-Sheng, Lin Hong-Bin, Feng Chao, Zheng Wu. A deep residual — feature pyramid network framework for scattered point cloud semantic segmentation. Acta Automatica Sinica, 2021, 47(12): 2831−2840 doi: 10.16383/j.aas.c190063
Citation: Fan Zhun,  Zhu Gui-Jie,  Li Wen-Ji,  You Yu-Gen,  Li Xiao-Ming,  Lin Pei-Han,  Xin Bin.  Applications of evolutionary computation in the design automation of complex mechatronic system: A survey.  Acta Automatica Sinica,  2021,  47(7): 1495−1515 doi: 10.16383/j.aas.c190767

进化计算在复杂机电系统设计自动化中的应用综述

doi: 10.16383/j.aas.c190767
基金项目: 国家自然科学基金委优秀青年科学基金(61822304), 广东省科技计划项目(180917144960530), 广东省教委科研项目(2017KZDXM032), 广东省国际科技合作平台项目(2019A050519008)资助
详细信息
    作者简介:

    范衠:博士, 汕头大学工学院教授. 2004年获得美国密歇根州立大学博士学位. 主要研究方向为机电系统设计自动化, 机器人, 进化计算.E-mail: zfan@stu.edu.cn

    朱贵杰:汕头大学工学院博士研究生. 主要研究方向为机电系统设计自动化与智能机器人系统.E-mail: 16gjzhu@stu.edu.cn

    李文姬:汕头大学工学院博士研究生. 主要研究方向为约束多目标进化计算.E-mail: wenji_li@126.com

    游煜根:2019年获得汕头大学工学院硕士学位. 主要研究方向为多目标进化优化, 机器人优化设计与控制.E-mail: 12ygyou@stu.edu.cn

    李晓明:汕头大学工学院硕士研究生. 主要研究方向为智能机器人系统优化控制.E-mail: 19xmli@stu.edu.cn

    林培涵:汕头大学工学院硕士研究生. 主要研究方向为智能机器人系统的分析与设计.E-mail: 19phlin@stu.edu.cn

    辛斌:博士, 北京理工大学自动化学院教授. 2012年获得北京理工大学自动化学院博士学位. 主要研究方向为计算智能, 多机器人系统. 本文通信作者.E-mail: brucebin@bit.edu.cn

Applications of Evolutionary Computation in the Design Automation of Complex Mechatronic System: A Survey

Funds: Supported by National Outstanding Youth Talents Support Program (61822304), Science and Technology Planning Project of Guangdong Province of China (180917144960530), Project of Educational Commission of Guangdong Province of China (2017KZDXM032), International Technology Cooperation Platform Project of Guangdong Province of China (2019A050519008)
More Information
    Author Bio:

    FAN Zhun Ph.D., professor at the College of Engineering, Shantou University, China. He received his Ph. D. degree from electrical engineering, Michigan State University, USA, in 2004. His research interest covers mechatronics design automation, robotics, and evolutionary computation

    ZHU Gui-Jie Ph.D. candidate at the College of Engineering, Shantou University. His research interest covers mechatronics design automation and intelligent robot system

    LI Wen-Ji Ph.D. candidate at the College of Engineering, Shantou University. His main research interest is constrained multi-objective evolutionary computation

    YOU Yu-Gen He received his master degree from the College of Engineering, Shantou University in 2019. His research interest covers multi-objective evolutionary optimization, optimal design and control of robot

    LI Xiao-Ming Master student at the College of Engineering, Shantou University. His main research interest is optimization control of intelligent robot system

    LIN Pei-Han Master student at the College of Engineering, Shantou University. His research interest covers analysis and design of intelligent robot system

    XIN Bin Ph.D., professor at the School of Automation, Beijing Institute of Technology. He received his Ph. D. degree from School of Automation, Beijing Institute of Technology in 2012. His research interest covers computational intelligence and multi-robot system. Corresponding author of this paper

  • 摘要:

    复杂机电系统设计自动化是知识自动化的一个重要分支, 在机器人系统设计、高档数控机床设计、智能装备系统设计等方面具有重要的研究意义和应用价值. 本文对进化计算在复杂机电系统设计自动化中的应用进行了综述. 首先, 介绍了几种常用进化计算方法及其优点; 其次, 对进化计算在电子系统、微机电系统和复杂机电系统三个领域的设计自动化进行了较为系统且全面的总结. 然后, 以一类典型的复杂机电系统—机器人系统的设计自动化为代表, 对进化计算在机器人系统设计自动化的研究发展进行了讨论. 最后, 针对进化计算在复杂机电系统设计自动化中存在的共性关键问题进行了讨论与展望.

  • 三维点云数据理解在计算机视觉和模式识别领域是一项非常重要的任务, 该任务包括物体分类, 目标检测和语义分割等. 其中, 语义分割任务最具有挑战性, 传统的方法大多是在对点云数据进行必要特征提取的基础上, 应用支持向量机(Support vector machine, SVM)一类的分类算法, 通过训练一组特征分类器来完成散乱点云数据的语义分割任务[1]. 显然, 这类方法的性能很大程度上依赖点云特征的设计、特征提取的精度以及特征分类器的性能. 虽然国内外学者提出了几十种点云特征和大量的分类算法, 但是依然没有一种或几种特征能完全适用于所有语义分割场景, 算法适用性、精度和可靠性都得不到保障.

    近年来, 随着深度学习技术的发展, 涌现出许多端对端的学习算法, 这种端对端的学习方式不依赖于手工设计的特征, 只需给定输入数据和对应的数据标签, 将其输入神经网络, 即可通过反向传播算法自动学习一组可以抽象高级特征的权重矩阵, 最后再由全连接层(Fully connected layer, FC)对高级特征进行分类, 从而完成分割任务. 现有的基于深度学习的点云分割研究方法大体可分为如下两类:

    一类是基于散乱点云数据结构规则化的深度学习方法, 这类方法通常是先通过体素化处理或八叉树、KD树等树形结构, 将无序和不规则的散乱点云处理成规则的结构化数据, 再将结构化数据输入三维卷积神经网络(Convolutional neural network, CNN)进行训练. 基于体素化方法[2-3]的提出首次将深度学习技术应用于三维点云数据理解任务, 通过将三维点云体素化为规则的结构化数据, 解决了其无序性和不规则性问题. 但是, 使用体素占用表示三维点云带来了量化误差问题, 为了减小这种误差必须使用更高的体素分辨率表示, 高分辨率的体素表示又会在训练神经网络过程中带来大内存占用问题. 因此, 受限于目前计算机硬件的发展水平, 基于体素化的散乱点云深度学习方法往往难以完成诸如大规模室内三维场景一类的复杂、需要细粒度的三维场景的语义分割和场景理解任务. 基于八叉树[4-5]和KD树[6]结构方法的提出解决了直接体素化点云所带来的大内存占用问题, 但是这种树形结构对三维点云旋转和噪声敏感, 从而导致卷积内核的可训练权重矩阵学习困难, 算法的鲁棒性往往不够理想.

    另一类是基于参数化卷积设计的深度学习方法, 这类方法以原始三维点云作为输入, 通过设计一种能够有效抽象高层次特征的参数化卷积, 再使用堆叠卷积架构来完成点云分割任务. PointNet[7]是这类方法的代表, 其首先使用共享参数的多层感知机(Multi-layer perception, MLP)将三维点云坐标映射到高维空间, 再通过全局最大池化(Global max pooling, GMP)得到点云全局特征, 解决了点云的无序性问题; 此外, 文献[7]还提出了一种T-net网络, 通过学习采样点变换矩阵和特征变换矩阵解决了散乱点云的旋转一致性问题, 但是由于缺乏点云局部特征信息局限了其在点云分割任务中的性能. 随后PointNet++[8]提出一种分层网络, 通过在每一图层递归使用采样、分组、PointNet网络来抽象低层次特征和高层次特征, 再经过特征反向传播得到融合特征, 最终使用全连接层预测点语义标签, 解决了文献[7]方法对点云局部特征信息提取不足的问题. RSNet[9]通过将无序点云特征映射为有序点云特征, 再结合循环神经网络(Recurrent neural network, RNN)来提取更丰富的语义信息, 从而进行语义标签预测. PointCNN[10]则定义了一种卷积, 通过学习特征变换矩阵将无序点云特征变换成潜在的有序特征, 再使用堆叠卷积架构来完成点云分割任务.

    总体而言, 基于参数化卷积设计的深度学习为散乱三维点云场景的理解提供了具有广阔前景的新方案. 然而, 目前该领域的研究尚处于萌芽阶段, 许多切实问题尚待解决, 如: 由于卷积方式的局限性, 用于二维图像处理的主流深度神经网络构架(如: U-Net[11], ResNet[12], Inception V2/V3[13], DenseNet[14]等)无法直接用于三维散乱点云数据的处理; 由于针对点云特征提取设计的参数化卷积的局限性, 现有的方法普遍存在特征抽象能力不足、无法将用于二维图像处理的一些主流神经网络框架适用于三维点云分割任务等问题.

    基于此, 本文设计了一种立方体卷积运算, 不仅可以通过二维卷积实现三维表示点的高层特征的抽取, 还可以解决当前参数化卷积设计通用性差的问题; 其次, 将定义的立方体卷积计算和残差网络相结合, 构建面向散乱点云语义分割的深度残差特征学习网络框架; 进一步, 将深度残差网络与特征金字塔网络相结合, 以实现三维表示点高层特征多尺度学习和语义分割.

    本文方法以原始三维点云作为输入, 首先, 将定义的立方体卷积运算和残差网络(ResNet)相结合, 构建面向散乱点云语义分割的深度残差特征学习网络框架; 其次, 将深度残差网络与特征金字塔网络(Feature pyramid network, FPN)[15]相结合, 以实现三维表示点高层特征多尺度学习; 最后, 通过全连接层对融合特征进行分类得到语义标签输出, 整体分割网络框架如图1所示.

    图 1  深度残差−特征金字塔网络框架
    Fig. 1  Depth residual − feature pyramid network framework

    残差网络自2015年提出以来, 一经出世, 便在ImageNet竞赛中斩获图像分类、检测、定位三项的冠军. 随后许多基于残差网络的研究在图像分割领域也取得了巨大的成功[16-20]. 然而, 残差网络是专门为二维图像类的规则化数据设计的深度网格结构, 在处理类似散乱三维点云等非规则、无序化散乱数据时遇到困难; 另一方面, 现有的基于深度学习的用于点云特征提取的参数化卷积设计普遍存在卷积计算通用性差、无法拓展至现有二维图像处理的深度学习框架的问题. 为此, 本文在深入研究现有二维图像卷积计算的基础上, 基于局部点云结构规则化思想, 提出一种新的适用于散乱三维点云的立方体卷积计算模型, 旨在通过二维卷积运算实现散乱三维点云数据高层次特征的抽象; 同时, 该立方体卷积计算模型具有良好网络框架适用能力, 使现有大多数二维图像处理深度神经网络可用于散乱三维点云分割中.

    本文提出的立方体卷积计算模型设计思路如下:

    考虑一幅二维图像, 集合表示为$ S = \{ s_{x,y} \in {\bf R}^3 | $$ x = 0, 1, 2, \cdots, h ;y = 0, 1, 2, \cdots , w\} $. 对于任意像素点$s_{x,y} \;( 1 \leq x \leq h - 1 ; 1 \leq y \leq w - 1)$, 当大小为$ 3 \times 3 $的卷积核作用于该点时, 将其局部感受野表示为集合$N_{x,y} = \{ s_{a,b} \in {\bf R}^3 | a = x - 1, x, x+1; b = y - 1, y, $$ y + 1 \},$ 将学习权重矩阵表示为

    $$ W = \begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3}\\ w_{2,1} & w_{2,2} & w_{2,3}\\ w_{3,1} & w_{3,2} & w_{3,3} \end{bmatrix} $$ (1)

    其中, $ w \in {\bf R}^3 . $ 在二维图像分割任务中, 卷积神经网络可通过端对端的方式学习得到权重矩阵$ W, $ 实现图像高层次特征抽取, 其最重要的原因之一在于: 在固定视角下, 感受野所包围的像素点是关于给定表示像素点的欧氏距离邻近点, 且权重值和像素点具有位置对应关系, 如图2所示. 然而, 由于散乱三维点云具有无序性和不规则性, 同一点云模型可用多种不同的集合表示, 当直接把二维卷积神经网络应用到三维点云上时, 并不能保证感受野所包含的点与表示点是这种欧氏距离邻近关系, 也无法保证权重值和点是位置对应的.

    图 2  二维卷积
    Fig. 2  The 2D convolution

    为此, 基于局部点云结构规则化的思想, 本文提出一种适用于三维点云特征提取的立方体卷积运算, 具体过程描述如下: 设三维点云表示为集合$ P = \{ p_i \in {\bf R}^3 | i = 0, 1, 2, \cdots, n - 1 \} $, $ n $为点的个数, 其对应的特征集合为$ F = \{ f_i \in {\bf R}^c | i = 0, 1, 2, \cdots, $$ n-1 \} $, $ c $为点的特征维度. 对于表示点$ p_i $, 定义一个边长为$ s $的立方体. 以$ p_i $中心, 将立方体按网格划分为27个子立方体, 每个子立方体以固定顺序进行索引, 如图3所示.

    图 3  立方体卷积
    Fig. 3  The cube convolution

    首先, 定义点云局部特征集合$V = \{ v_i \in {\bf R}^{27 \times c} | $$ i = 0, 1, 2, \cdots, n - 1 \}, $ 其中, $ v_i = \{ v_{i,j} \in {\bf R}^c | j = 0, $$ 1, 2, \cdots, 26 \} $. 对于第$ j $个子立方体, 选取离子立方体中心欧氏距离最近的一个点作为表示点$ p_i $的一个邻近点, $ v_{i,j} $设置为该邻近点的特征. 当集合$ F $等于$ P $(即输入点云的特征为其三维坐标)时, $ v_{i,j} $设置为该邻近点相对表示点的相对坐标值, 如果子立方体内没有点, 则设置为$ 0 $. 遍历所有表示点得到特征集合$ V $, 然后, 再通过二维卷积对特征集合$ V $进行卷积来抽象输入三维点云的高层特征. 那么卷积输出即可表示为: $ F' =Conv$$ (V,1 \times 27, c') $, 其中$ V $为卷积输入, $ 1 \times 27 $为卷积核和移动步长大小, $ c' $为输出特征通道数. 对于表示点的邻近点选取, 另一可行方案是: 首先计算子立方体内包围点到其中心的距离, 再对包围点的特征进行反距离加权平均得到的值, 但是随着网络层数的加深以及特征维度的升高将会带来计算量的大幅增加. 因此, 为平衡性能本文选取距离子立方体中心最近的一个点作为表示点的一个邻近点这一近似方案.

    本文提出的立方体卷积运算主要有两个关键点: 立方体网格划分和子立方体固定索引排序. 我们给出分析如下: 在二维图像理解领域中, 许多主流网络框架(如U-Net[11]、ResNet[12]、Inception V2/V3[13]和DenseNet[14]等)都是采用大小为3×3的卷积核来提取特征. 文献 [13] 中指出大卷积核可以通过小卷积核的叠加获得相同大小的感受野, 并且小卷积核的叠加引入了二次非线性, 其实验结果证明了精确率会得到提升. 其次, 相比大卷积核, 小卷积核具有更小的参数量. 鉴于此, 本文采用将空间划分为网格的方式来感知表示点的局部三维空间结构, 从而可以以较小的参数量获得较高的精确率; 另外, 由于三维点云具有无序性, 直接使用二维卷积进行卷积运算会导致神经网络在训练过程中无法学习到有效的权重矩阵来抽象高层特征. 因此, 本文也是基于常用于二维图像理解任务中的二维卷积特点, 通过将子立方体以固定索引进行排序的方式来保证在固定坐标系下二维卷积核的可学习权重矩阵和无序点云有一一对应的关系, 以此通过二维卷积有效地抽象三维点云的高层特征, 使得用于二维图像处理的主流神经网络框架可以适用于三维点云理解任务中.

    在二维图像中, 最大池化是对邻域内特征点取最大值运算, 可以学习某种不变性(旋转、平移、尺度缩放等). 为了使残差网络完全适用于三维点云分割任务从而可以学习三维点云的旋转、平移、尺度缩放不变等特性, 本文提出一种基于局部点云结构规则化思想的立方体最大池化方法, 具体过程描述如下:

    给定三维点云集合$ P = \{ p_i \in {\bf R}^3 | i = 0, 1, 2, \cdots, $$ n - 1 \}, $ $ n $为点的个数, 以及对应的特征集合$F = $$ \{ f_i \in {\bf R}^c | i = 0, 1,$$ 2, \cdots,n-1 \} , $ $ c $为点的特征维度. 首先用文献[7]中迭代最远点采样算法得到采样点集合$ P' = \{ p_l' \in {\bf R}^3 | $$ l = 0, 1, 2, \cdots, m - 1 \} , $ $ m $为采样点的个数, 定义点云局部特征集合$V = \{ v_l \in $$ {\bf R}^{27 \times c} | l = 0, 1, 2, \cdots, m - 1 \}$, 其中$v_l = \{ v_{l,j} \in {\bf R}^c | j = $$ 0, 1, 2, \cdots, 26 \}$. 对于采样点$ p_l' $, 使用本文提出的立方体卷积运算中邻近点搜索方法在$ P $中搜索其邻近点, 得到邻近点特征集合$ v_l $. 遍历所有采样点得到特征集合$ V .$ 然后, 再通过二维最大池化对特征$ V $进行最大池化处理. 最大池化输出即可表示为$F' = {\rm{max}}(V,1 \times 27),$ 其中, $ V $为最大池化输入, $ 1 \times 27 $为卷积核和移动步长大小.

    与本文提出的立方体卷积运算相似, 立方体最大池化的关键点也在于$3 \times 3 \times 3 \;$ 网格划分, 所获取的邻近点对表示点的局部点云几何结构表示完整性将直接影响最大池化的输出. 因此, 我们同样基于局部点云结构规则化的思想, 通过将局部空间划分为网格来获取表示点更加合理的邻近点, 以此再通过常用于二维图像处理的最大池化操作对输入特征进行最大池化处理.

    残差网络由文献[12]提出, 其核心思想是一种特殊的残差结构. 这种结构通过将神经网络中特征映射近似问题转化为残差学习问题, 不仅解决了随着神经网络层数的加深出现的梯度退化问题, 而且能够以更少的模型参数实现更高的准确率. 为了将这种结构适用于三维点云分割任务, 本文提出一种三维点云特征残差学习结构, 如图4所示.

    图 4  三维点云特征残差学习结构
    Fig. 4  The residual learning structure for 3D point cloud feature

    本文提出的三维点云特征残差学习结构和文献[12]提出的残差结构都由三层卷积和一次跳跃连接组成, 第1层和第3层同为卷积核大小为$1 \times 1 \;$的二维卷积. 不同之处在于: 对于二维图像, 当输入输出维度不匹配时, 文献[12]通过第1层卷积核大小为 $ 1 \times 1 $、移动步长为 $ 2 \times 2 $的卷积层进行下采样. 针对三维点云, 我们则先使用文献[7]中迭代最远点采样算法进行下采样, 再通过卷积核大小为$ 1 \times 1 $、移动步长为$ 1 \times 1 $的卷积层进行卷积; 另外, 在文献[12]中第2层为卷积核大小为$ 3 \times 3 $、移动步长为$ 1 \times 1 $的卷积层, 我们将其替换为本文提出的立方体卷积运算层.

    在文献[19]中, 特征金字塔网络的组成结构是首先使用最邻近上采样法把高层特征做2倍上采样, 然后与对应的前一层特征相加融合. 考虑到特征金字塔网络是为具有规则像素网格结构排列的二维图像设计的, 而三维点云数据具有不规则性, 当表示点的局部点云分布密度不均时, 最邻近点的特征并不能够准确近似表示点的特征. 因此, 我们采用文献[8]中的基于K邻近的反距离加权插值法进行特征上采样, 如图5所示. 反距离加权插值可表示为

    图 5  三维点云特征金字塔网络
    Fig. 5  The feature pyramid network for 3D point cloud
    $$ f^{(j)}(x) = \frac {\sum\limits^{k}_{i = 1}w_i(x)f^{(j)}_i}{\sum\limits^k_{i = 1}w_i(x)} $$ (2)

    其中, $w_i(x) = \frac 1{d^p(x,x_i)},$ $j = 1, \cdots, C,$ $ C $为待插值点的特征维度, $ d(x,x_i) $表示待插值点$ x $和其邻近点$ x_i $的平方欧氏距离, $ f^{(j)}(x) $$ f^{(j)}_i $分别表示点$ x $$ x_i $的特征向量, 与文献[8]相同$ p $设置为2, $ k $设置为3.

    本文实验环境为Intel(R) Core(TM) i7-7800X CPU @ 3.50 GHz, 16 GB$ \times $4内存, NVIDIA GTX1080Ti$ \times $2 GPU, 系统为Ubuntu 16.04.

    实验数据集为S3DIS数据集[21]和ScanNet数据集[22].

    S3DIS数据集总共包含271个由Matterport扫描仪从真实室内场景扫描得到的场景数据, 包含在6个文件夹中. 本文采用与S3DIS官方相同的K折交叉验证策略进行数据集划分. 采用与文献[10]相同的训练方法, 将原始场景沿着x轴和y轴分成大小为1.5 m$ \times $1.5 m的小块, 使用点的位置和颜色信息用于训练和测试, 并在训练期间将块点云沿Z轴随机旋转一定角度进行数据增强处理.

    ScanNet数据集总共包含1 513个从真实室内环境扫描并重建得到的场景数据. 本文按照ScanNet官方划分标准将数据集分为训练集和测试集两部分. 采用和S3DIS数据集相同的训练方法. 另外, 由于其他方法没有使用颜色信息用于训练, 因此, 为了公平比较, 本文也不使用颜色信息.

    为了验证本文提出的立方体卷积运算的有效性和本文方法的可行性, 我们基于文献[19]提出的用于二维图像分割的残差网络−特征金字塔网络结合本文提出的立方体卷积运算构建一种面向散乱点云语义分割的残差网络−特征金字塔网络框架(下文中以ResNet-FPN_C表示), 网络结构参数设计如表1所示. 所有程序由开源框架TensorFlow及其Python接口实现, 采用ADAM (Adaptive moment estimation)方法进行训练.

    表 1  参数设计
    Table 1  The parameter design
    卷积核大小 立方体边长 (m) 输出点个数 输出特征通道数
    立方体卷积 $1\times27,64$ 0.1 8 192 64
    立方体最大池化 $1\times27,64$ 0.1 2 048 64
    残差块1 $\left[\begin{aligned} 1\times1,64\;\\ 1\times27,64\\ 1\times1,256 \end{aligned}\right]\times3$ 0.2 2 048 256
    残差块2 $\left[\begin{aligned} 1\times1,12\;8\\ 1\times27,128\\ 1\times1,512\; \end{aligned}\right]\times4$ 0.4 512 512
    残差块3 $\left[ \begin{aligned}1\times1,256\;\\ 1\times27,256\\ 1\times1,1024\end{aligned}\right]\times6$ 0.8 128 1 024
    卷积层1 $1\times1,256$ 128 256
    卷积层2 $1\times1,256$ 512 256
    卷积层3 $1\times1,256$ 2 048 256
    卷积层4 $1\times1,256$ 8 192 256
    全连接层 8 192 20
    下载: 导出CSV 
    | 显示表格

    本文采用总体精确率($ oAcc $)、类别平均精确率($ mAcc $)和类别平均交并比($ mIoU $)评价指标对试验结果进行评估, 并与其他方法进行对比. 假设共有$ k $个类别, 定义$ p_{ii} $表示类别$ i $的预测标签等于真实标签的个数, $ p_{ij} $表示类别$ i $的标签预测为类别$ j $的个数. 则$ oAcc $可表示为

    $$ oAcc = \frac {\sum\limits^{k-1}_{i = 0}p_{ii}}{\sum\limits^{k-1}_{i = 0}\sum\limits^{k-1}_{j = 0}p_{ij}} $$ (3)

    $ mAcc $表示为

    $$ mAcc = \frac{1}{k}\sum\limits_{i = 0}^{k - 1} {\frac{{{p_{ii}}}}{{\sum\limits_{j = 0}^{k - 1} {{p_{ij}}} }}} $$ (4)

    $ mIoU $表示为

    $$ mIoU = \frac{1}{k}\sum\limits_{i = 0}^{k - 1} {\frac{{{p_{ii}}}}{{\sum\limits_{j = 0}^{k - 1} {{p_{ij}}} + \sum\limits_{j = 0}^{k - 1} {{p_{ji}}} - {P_{ii}}}}} $$ (5)

    另外, 由于ScanNet[22]提供的全卷积神经网络基线方法以体素化数据作为输入, 其预测标签是基于体素统计的, 因此我们采用与文献[8]相同的方法将点预测标签转化为体素预测标签来统计预测结果的$ oAcc $$ mAcc $$ mIoU $指标.

    为验证本文方法的有效性, 我们在S3DIS数据集和ScanNet数据集上进行了测试. 同时, 为进一步证明本文提出的立方体卷积运算的通用性, 我们基于文献[11]提出的用于医学图像分割的U-Net网络搭建了适用于三维点云语义分割的U-Net网络框架(下文中以U-Net_C表示).

    我们统计了在S3DIS数据集上的6折交叉验证结果, 如表2所示, 本文ResNet-FPN_C方法和U-Net_C方法在$ oAcc $$ mAcc $$ mIoU $评价指标上均优于其他方法. 各类别$ IoU $统计结果如表3所示, 其中, 本文ResNet-FPN_C方法有7个优于其他方法, U-Net_C方法有8个优于其他方法.

    表 2  S3DIS数据集分割结果比较 (%)
    Table 2  Segmentation result comparisons on the S3DIS dataset (%)
    评价指标 PointNet[7] RSNet[9] PointCNN[10] ResNet-FPN_C (本文) U-Net_C (本文)
    oAcc 78.5 88.14 89.6 88.53
    mAcc 66.2 66.45 75.61 76.83 76.98
    mIoU 47.6 56.47 65.39 67.05 67.37
    下载: 导出CSV 
    | 显示表格
    表 3  S3DIS数据集各类别IoU分割结果比较 (%)
    Table 3  Comparison of IoU for all categories on the S3DIS dataset (%)
    类别 PointNet[7] RSNet[9] PointCNN[10] ResNet-FPN_C (本文) U-Net_C (本文)
    ceiling 88.0 92.48 94.78 91.99 91.46
    floor 88.7 92.83 97.30 94.99 94.12
    wall 69.3 78.56 75.82 77.04 79.00
    beam 42.4 32.75 63.25 50.29 51.92
    column 23.1 34.37 51.71 39.40 40.35
    window 47.5 51.62 58.38 65.57 65.63
    door 51.6 68.11 57.18 72.38 72.60
    table 54.1 60.13 71.63 72.20 71.57
    chair 42.0 59.72 69.12 77.10 77.56
    sofa 9.6 50.22 39.08 54.87 55.89
    bookcase 38.2 16.42 61.15 59.24 59.10
    board 29.4 44.85 52.19 53.44 54.54
    clutter 35.2 52.03 58.59 63.11 62.11
    下载: 导出CSV 
    | 显示表格

    另外, 我们在ScanNet数据集上也进行了测试, 结果如表4所示, 从中可以看出, 本文ResNet-FPN_C方法和U-Net_C方法在$ oAcc $$ mAcc $$ mIoU $评价指标上均优于其他方法. 各类别的$ IoU $统计结果如表5所示, 其中, 本文ResNet-FPN_C方法有8个优于其他方法, U-Net_C方法有10个优于其他方法.

    表 4  ScanNet数据集分割结果比较 (%)
    Table 4  Segmentation result comparisons on the ScanNet dataset (%)
    评价指标 ScanNet[22] PointNet[7] PointNet++[8] RSNet[9] PointCNN[10] ResNet-FPN_C (本文) U-Net_C (本文)
    $oAcc$ 73.0 73.90 84.50 85.1 85.5 85.3
    $mAcc$ 19.90 43.77 48.37 57.9 63.1 62.8
    $mIoU$ 14.69 34.26 39.35 43.7 45.0 46.5
    下载: 导出CSV 
    | 显示表格
    表 5  ScanNet数据集各类别IoU分割结果比较 (%)
    Table 5  Comparison of IoU for all categories on the ScanNet dataset (%)
    类别 PointNet[7] PointNet++[8] RSNet[9] PointCNN[10] ResNet-FPN_C (本文) U-Net_C (本文)
    wall 69.44 77.48 79.23 74.5 77.1 77.8
    floor 88.59 92.50 94.10 90.7 90.6 90.8
    chair 35.93 64.55 64.99 68.8 76.4 76.6
    table 32.78 46.60 51.04 55.3 52.5 50.8
    desk 2.63 12.69 34.53 28.8 29.1 25.8
    bed 17.96 51.32 55.95 56.1 57.0 57.4
    bookshelf 3.18 52.93 53.02 38.9 42.7 42.3
    sofa 32.79 52.27 55.41 60.1 61.5 60.9
    sink 0.00 30.23 34.84 41.9 41.8 41.7
    bathtub 0.17 42.72 49.38 73.5 61.0 68.6
    toilet 0.00 31.37 54.16 73.4 69.8 73.2
    curtain 0.00 32.97 6.78 36.1 35.4 41.9
    counter 5.09 20.04 22.72 22.5 20.0 19.7
    door 0.00 2.02 3.00 7.5 26.0 28.4
    window 0.00 3.56 8.75 11.0 15.9 18.8
    shower curtain 0.00 27.43 29.92 40.6 38.1 42.6
    refrigerator 0.00 18.51 37.90 43.4 47.3 52.3
    picture 0.00 0.00 0.95 1.3 5.8 8.6
    cabinet 4.99 23.81 31.29 26.4 27.5 27.5
    other furniture 0.13 2.20 18.98 23.6 25.8 24.5
    下载: 导出CSV 
    | 显示表格

    由于ScanNet数据集是由便携设备从真实室内场景扫描重建得到的, 其重建场景中存在大量缺失、未标注、杂乱信息, 且相比S3DIS数据集包含更多标注类别, 因此其语义分割任务更具挑战性. 从S3DIS数据集和ScanNet数据集测试结果可以看出, 本文方法相比其他方法在难以识别的小物体(如picture)和复杂结构物体(如chair、sofa)类别上具有更好的分割性能. 值得注意的是door和window这两种类别, 它们在空间位置和几何结构上和wall很相近, 相比于其他类别这两种类别的分割难度更大, 而本文方法较其他方法有较大的分割精度提升. 我们分析如下: PointCNN方法采用的是基于KNN (K-nearest neighbor)的邻近点搜索算法, 由于这种算法对点云分布密度比较敏感, 当点云分布密度不均时, 所获取的邻近点可能全部来自表示点的同一个方向, 此时邻近点不能准确反映表示点的局部特征, 且由于其卷积设计的局限性对局部空间几何结构的微小变化也不够敏感; PointNet++提出的MSG (Muti-scale grouping)和MRG (Muti-resolution grouping)方法虽然能够更加合理地获取邻近点, 但是由于采用的是PointNet中共享参数的多层感知机结合全局最大池化的特征提取方法, 而全局最大池化会丢失信息. 因此, 同样不能准确抽象表示点的高层特征; RSNet则是先将点云数据分别沿着x, y, z方向进行切片, 再将切片后的点云所对应的特征输入循环神经网络提取特征. 其试验结果表明这种方法对平面结构物体(如wall、floor、desk等)有较高的分割精度, 但是将点云切片会严重丢失点的空间邻域关系, 从而导致循环神经网络很难学习非平面复杂结构物体的特征. 而本文提出的立方体卷积运算通过将局部空间划分为$ 3 \times 3 \times 3 $网格来获取表示点的邻近点, 能对点云分布密度不均具有更好的鲁棒性, 且能感知空间几何结构的微小变化. 另外, 通过对所获取的邻近点进行排序可以使得二维卷积能够感知视角信息, 从而准确地抽象表示点的高层特征. 因此, 相比其他方法本文方法具有更好分割性能.

    同时我们也做了耗时统计实验, 所有方法均在相同实验环境下以在1080Ti单GPU上所发挥的最大性能统计. 如表6所示, 当输入点云个数为8192时, 本文ResNet-FPN_C 方法单batch平均训练时间和前向传播时间分别为0.060 s和0.042 s, 略慢于其他方法. 虽然U-Net_C方法在mIoU 指标上可以取得更好的结果, 但是其速度也明显降低. 因此, 本文提出的ResNet-FPN网络具有更为平衡的运行效率和分割精度. 由于本文提出的立方体卷积运算具有简单、通用性强等特点, 可以将用于二维图像处理的一些主流神经网络适用于三维点云分割任务, 因此后续我们将尝试更多主流的神经网络框架或针对三维点云分割任务对网络结构进行改进来提高精确率和减少耗时. 另外值得一提的是, 由于PointCNN方法中参数化卷积设计的局限性, 限制了其输入点的个数, 而本文方法当输入点个数4倍于PointCNN方法时, 在训练时间和前向传播时间方面依然取得了不错的表现. 验证了本文方法的有效性和可行性.

    表 6  耗时比较
    Table 6  Comparison of running time
    PointNet[7] PointCNN[10] ResNet-FPN_C (本文) U-Net_C (本文)
    输入点个数 8 192 2 048 8 192 8 192
    单batch训练时间 (s) 0.035 0.047 0.060 0.140
    单batch前向传播时间 (s) 0.023 0.016 0.042 0.068
    下载: 导出CSV 
    | 显示表格

    本文分析了二维卷积的特点和现有参数化卷积设计的局限性, 提出了一种通用立方体卷积运算, 以通过二维卷积实现三维表示点的高层特征的抽取; 基于此, 提出了一种面向散乱点云语义分割的深度残差−特征金字塔网络, 将用于二维图像处理的神经网络框架适用到了三维点云分割任务中. 实验结果表明, 本文提出的立方体卷积运算具有良好的适用性, 且本文提出的深度残差−特征金字塔网络框架在分割精度方面优于现存同类方法. 在后续工作中, 作者将结合特征可视化分析, 进一步发现本文方法的不足并做出改进. 此外, 结合本文提出的立方体卷积运算, 将更多主流的二维卷积神经网络框架用于三维点云分割任务也是我们下一步的工作.

  • 图  1  智能设计与制造平台中各部分间的关系图

    Fig.  1  The relationship between the components of the intelligent design and manufacturing platform

    图  2  具有非凸Pareto前沿的优化问题的示意图

    Fig.  2  A non-convex Pareto front of a multi-objective optimization problem

    图  3  进化计算的基本流程框架

    Fig.  3  Basic flow framework of evolutionary computation

    图  4  不同系统的设计自动化之间的关系

    Fig.  4  The relationships of design automation of different systems

    图  5  不同应用领域的谐振器键合图表示

    Fig.  5  One bond graph represents resonators in different application domains

    图  6  基因型-表现型的映射实例

    Fig.  6  An instance of genotype-phenotype mapping

    图  7  机电系统的进化设计框架

    Fig.  7  The framework of evolutionary synthesis of mechatronic systems

    图  8  结构可优化抗扰控制器的设计框架[107]

    Fig.  8  The framework of disturbance rejection controllers with optimized structures[107]

    表  1  不同设计方法的对比[80]

    Table  1  Comparison of various design approaches[80]

    特性设计方法
    BGGAGPBG/GABG/GP
    多能域
    拓扑搜索
    进化过程
    自动综合
    最优化设计
    有效评估
    下载: 导出CSV

    表  2  机电系统设计自动化中设计方法的总结

    Table  2  A survey of design methods for MDA

    序号设计方法参考文献
    1非线性规划算法Yin等[116]
    2遗传算法Zhang等[40], 解光军等[44], Nabavi等[54-56], Li等[83], Yousfi等[89], 陈启鹏等[95]
    3进化策略算法Kim[34], Mallick等[46]
    4文化基因算法Arab等[86]
    5差分进化算法Zheng等[47], Ak等[49], Rodíguez-Molina等[84], Ochoa等[88], Zheng等[96-97]
    6改进差分进化算法Fan等[18], 展娇杨[107]
    7粒子群算法Poddar等[38], Ye等[83], 王福斌等[93]
    8人工蜂群算法Caraveo等[85], Zhang等[94]
    9基因编程Koza等[16, 98-101], Vasicek等[36]
    10键合图+遗传算法Tay等[78]
    11遗传算法+粒子群算法Lapa等[103]
    12遗传算法+模拟退火算法Shokouhifar等[37], Li等[90]
    13差分进化算法+粒子群算法Moharam等[91]
    14键合图+基因编程Dupuis等[43], Seo等[79], Fan等[60, 81-82], Wang等[20, 111]
    15遗传算法+基于梯度的局部优化算法Zhang[66]
    16遗传算法+基因编程Fan等[60], Bruijnen等[102]
    17混合键合图+基因编程Dupuis等[43, 115]
    18多目标进化算法Fan等[10], Wen等 [57], Farnsworth等[61], Jamwal等[117]
    19基于替代模型辅助的进化算法Liu等[39, 63-64], Akinsolu等[52], Wang等[118]
    下载: 导出CSV
  • [1] 国家制造强国建设战略咨询委员会. 《中国制造2025》重点领域技术创新绿皮书―技术路线图. 北京: 电子工业出版社, 2016.

    National Manufacturing Power Building Strategy Advisory Committee. Chinese Manufacturing 2025 Green Paper on Key Areas and Technological Innovation: Technology Roadmap. Beijing: Electronic Industry Press, 2016.
    [2] Coelingh E, de Vries T J A, van Amerongen J. Automated performance assessment of mechatronic motion systems during the conceptual design stage. In: Proceedings of the 3rd International Conference on Advanced Mechatronics. Okayama, Japan: Japan Society of Mechanical Engineering, 1998. 472−477
    [3] 陶飞, 刘蔚然, 刘检华, 刘晓军, 刘强, 屈挺, 等. 数字孪生及其应用探索. 计算机集成制造系统, 2018, 24(1): 1−18

    Tao Fei, Liu Wei-Ran, Liu Jian-Hua, Liu Xiao-Jun, Liu Qing, Qu Ting, et al. Digital twin and its potential application exploration. Computer Integrated Manufacturing Systems, 2018, 24(1): 1−18
    [4] 杨林瑶, 陈思远, 王晓, 张俊, 王成红. 数字孪生与平行系统: 发展现状、对比及展望. 自动化学报, 2019, 45(11): 2001−2031

    Yang Lin-Yao, Chen Si-Yuan, Wang Xiao, Zhang Jun, Wang Cheng-Hong. Digital twins and parallel systems: State of the art, comparisons and prospect. Acta Automatica Sinica, 2019, 45(11): 2001−2031
    [5] Tao F, Sui F Y, Liu A, Qi Q L, Zhang M, Song B Y, et al. Digital twin-driven product design framework. International Journal of Production Research, 2019, 57(12): 3935−3953 doi: 10.1080/00207543.2018.1443229
    [6] Zheng N N, Liu Z Y, Ren P J, Ma Y Q, Chen S T, Yu S Y, et al. Hybrid-augmented intelligence: Collaboration and cognition. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 153−179
    [7] Li L, Zheng N N, Wang F Y. On the crossroad of artificial intelligence: A revisit to Alan Turing and Norbert wiener. IEEE Transactions on Cybernetics, 2019, 49(10): 3618−3626 doi: 10.1109/TCYB.2018.2884315
    [8] 桂卫华, 陈晓方, 阳春华, 谢永芳. 知识自动化及工业应用. 中国科学: 信息科学, 2016, 46(8): 1016−1034 doi: 10.1360/N112016-00065

    Gui Wei-Hua, Chen Xiao-Fang, Yang Chun-Hua, Xie Yong-Fang. Knowledge automation and its industrial application. Scientia Sinica: Informationis, 2016, 46(8): 1016−1034 doi: 10.1360/N112016-00065
    [9] Zhang Q F, Zhou A M, Zhao S Z, Suganthan P N, Liu W D, Tiwari S. Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, Technical Report, CES-487, 2008.
    [10] Fan Z, You Y G, Cai X Y, Zheng H D, Zhu G J, Li W J, et al. Analysis and multi-objective optimization of a kind of teaching manipulator. Swarm and Evolutionary Computation, 2019, 50: 100554 doi: 10.1016/j.swevo.2019.06.011
    [11] 梁静, 刘睿, 瞿博阳, 岳彩通. 进化算法在大规模优化问题中的应用综述. 郑州大学学报(工学版), 2018, 39(3): 15−21

    Liang Jing, Liu Rui, Qu Bo-Yang, Yue Cai-Tong. A survey of evolutionary algorithms for large scale optimization problem. Journal of Zhengzhou University (Engineering Science), 2018, 39(3): 15−21
    [12] 吴秀丽, 张志强. 求解柔性作业车间调度问题的细菌算法对比及改进. 郑州大学学报(工学版), 2018, 39(3): 34−39

    Wu Xiu-Li, Zhang Zhi-Qiang. The comparison and improvement of bacterial algorithms for flexible job scheduling problem. Journal of Zhengzhou University (Engineering Science), 2018, 39(3): 34−39
    [13] 王大志, 刘士新, 郭希旺. 求解总拖期时间最小化流水车间调度问题的多智能体进化算法. 自动化学报, 2014, 40(3): 548−555

    Wang Da-Zhi, Liu Shi-Xin, Guo Xi-Wang. A multi-agent evolutionary algorithm for solving total tardiness permutation flow-shop scheduling problem. Acta Automatica Sinica, 2014, 40(3): 548−555
    [14] 肖俊明, 周谦, 瞿博阳, 韦学辉. 多目标进化算法及其在电力环境经济调度中的应用综述. 郑州大学学报(工学版), 2016, 37(2): 1−9

    Xiao Jun-Ming, Zhou Qian, Qu Bo-Yang, Wei Xue-Hui. Multi-objective evolutionary algorithm and its application in electric power environment economic dispatch. Journal of Zhengzhou University (Engineering Science), 2016, 37(2): 1−9
    [15] Gamarra C, Guerrero J M. Computational optimization techniques applied to microgrids planning: A review. Renewable and Sustainable Energy Reviews, 2015, 48: 413−424 doi: 10.1016/j.rser.2015.04.025
    [16] Koza J R, Bennett F H, Andre D, Keane M A, Dunlap F. Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary Computation, 1997, 1(2): 109−128 doi: 10.1109/4235.687879
    [17] Laskar N M, Guha K, Chatterjee I, Chanda S, Baishnab K L, Paul P K. HWPSO: A new hybrid whale-particle swarm optimization algorithm and its application in electronic design optimization problems. Applied Intelligence, 2019, 49(1): 265−291 doi: 10.1007/s10489-018-1247-6
    [18] Fan Z, Liu J C, Sorensen T, Wang P. Improved differential evolution based on stochastic ranking for robust layout synthesis of MEMS components. IEEE Transactions on Industrial Electronics, 2009, 56(4): 937−948 doi: 10.1109/TIE.2008.2006935
    [19] Wu Z H, Xu Q S. Design and optimization of a new 3-DOF energy harvester with single piezoelectric stack. In: Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Hong Kong, China: IEEE, 2019. 424−429
    [20] Wang J C, Fan Z, Terpenny J P, Goodman E D. Knowledge interaction with genetic programming in mechatronic systems design using bond graphs. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2005, 35(2): 172−182 doi: 10.1109/TSMCC.2004.841915
    [21] Cheong K H, Koh J M. A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization. Ultramicroscopy, 2019, 202: 100−106 doi: 10.1016/j.ultramic.2019.03.004
    [22] Wang X B, Yang Z X, Yan X A. Novel particle swarm optimization-based variational mode decomposition method for the fault diagnosis of complex rotating machinery. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 68−79 doi: 10.1109/TMECH.2017.2787686
    [23] Peimankar A, Weddell S J, Jalal T, Lapthorn A C. Evolutionary multi-objective fault diagnosis of power transformers. Swarm and Evolutionary Computation, 2017, 36: 62−75 doi: 10.1016/j.swevo.2017.03.005
    [24] 阎平凡, 张长水. 人工神经网络与模拟进化计算. 第2版. 北京: 清华大学出版社, 2005.

    Yan Ping-Fan, Zhang Chang-Shui. Artificial Neural Networks and Evolutionary Computing (Second edition). Beijing: Tsinghua University Press, 2005.
    [25] Fogel D B. The advantages of evolutionary computation. Biocomputing and Emergent Computation: Proceedings of BCEC97. Singapore: World Scientific, 1997. 1−11
    [26] Mitchell M. An Introduction to Genetic Algorithms. Cambridge, Mass.: MIT Press, 1998.
    [27] Koza J R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, Mass.: MIT Press, 1992.
    [28] Kinnear K E Jr. Advances in Genetic Programming. Cambridge, Mass.: MIT Press, 1994.
    [29] Beyer H G, Schwefel H P. Evolution strategies ― a comprehensive introduction. Natural Computing, 2002, 1(1): 3−52 doi: 10.1023/A:1015059928466
    [30] Wang D S, Tan D P, Liu L. Particle swarm optimization algorithm: An overview. Soft Computing, 2018, 22(2): 387−408 doi: 10.1007/s00500-016-2474-6
    [31] Storn R, Price K. Differential evolution ― a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341−359 doi: 10.1023/A:1008202821328
    [32] Dorigo M, Stutzle T. Ant colony optimization: Overview and recent advances. Handbook of Metaheuristics. Boston: Springer, 2019. 311−351
    [33] Wang L T, Chang Y W, Cheng K T. Electronic Design Automation: Synthesis, Verification, and Test. San Francisco, CA, United States: Morgan Kaufmann, 2009.
    [34] Kim K J, Cho S B. Automated synthesis of multiple analog circuits using evolutionary computation for redundancy-based fault-tolerance. Applied Soft Computing, 2012, 12(4): 1309−1321 doi: 10.1016/j.asoc.2011.12.002
    [35] Anjomshoa M, Mahani A, Sadeghifard S. A new automated design and optimization method of CMOS logic circuits based on modified imperialistic competitive algorithm. Applied Soft Computing, 2014, 21: 423−432 doi: 10.1016/j.asoc.2014.04.011
    [36] Vasicek Z, Sekanina L. Evolutionary approach to approximate digital circuits design. IEEE Transactions on Evolutionary Computation, 2015, 19(3): 432−444 doi: 10.1109/TEVC.2014.2336175
    [37] Shokouhifar M, Jalali A. An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing. Expert Systems with Applications, 2015, 42(3): 1189−1201 doi: 10.1016/j.eswa.2014.09.030
    [38] Poddar S, Narkhede P, Kumar V, Kumar A. PSO aided adaptive complementary filter for attitude estimation. Journal of Intelligent & Robotic Systems, 2017, 87(3-4): 531−543
    [39] Liu B, Yang H, Lancaster M J. Global optimization of microwave filters based on a surrogate model-assisted evolutionary algorithm. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(6): 1976−1985 doi: 10.1109/TMTT.2017.2661739
    [40] Zhang J, Chung H S H, Lo W L, Hui S Y, Wu A K M. Implementation of a decoupled optimization technique for design of switching regulators using genetic algorithms. IEEE Transactions on Power Electronics, 2001, 16(6): 752−763 doi: 10.1109/63.974373
    [41] Castejón F, Carmona E J. Automatic design of analog electronic circuits using grammatical evolution. Applied Soft Computing, 2018, 62: 1003−1018 doi: 10.1016/j.asoc.2017.09.036
    [42] Rojec Z, Burmen A, Fajfar I. Analog circuit topology synthesis by means of evolutionary computation. Engineering Applications of Artificial Intelligence, 2019, 80: 48−65 doi: 10.1016/j.engappai.2019.01.012
    [43] Dupuis J F, Fan Z, Goodman E D. Evolutionary design of both topologies and parameters of a hybrid dynamical system. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 391−405 doi: 10.1109/TEVC.2011.2159724
    [44] 解光军, 肖晗. 基于遗传算法的运算放大器建模与自动设计. 电子测量与仪器学报, 2009, 23(1): 91−95

    Xie Guang-Jun, Xiao Han. Modeling and auto-design of operational amplifier based on genetic algorithm. Journal of Electronic Measurement and Instrument, 2009, 23(1): 91−95
    [45] 朱继祥, 李元香. 一种分解演化的电路自动设计方法. 计算机系统应用, 2010, 19(8): 52−56 doi: 10.3969/j.issn.1003-3254.2010.08.012

    Zhu Ji-Xiang, Li Yuan-Xiang. Automated circuit design methodology using decomposition evolution. Computer Systems & Applications, 2010, 19(8): 52−56 doi: 10.3969/j.issn.1003-3254.2010.08.012
    [46] Mallick S, Kar R, Mandal D, Ghoshal S P. Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 309−331 doi: 10.1007/s13042-014-0324-3
    [47] Zheng L M, Zhang S X, Zheng S Y, Pan Y M. Differential evolution algorithm with two-step subpopulation strategy and its application in microwave circuit designs. IEEE Transactions on Industrial Informatics, 2016, 12(3): 911−923 doi: 10.1109/TII.2016.2535347
    [48] Mattiussi C, Floreano D. Analog genetic encoding for the evolution of circuits and networks. IEEE Transactions on Evolutionary Computation, 2007, 11(5): 596−607 doi: 10.1109/TEVC.2006.886801
    [49] Ak C, Yildiz A. A novel closed-form expression obtained by using differential evolution algorithm to calculate pull-in voltage of MEMS cantilever. Journal of Microelectromechanical Systems, 2018, 27(3): 392−397 doi: 10.1109/JMEMS.2018.2812924
    [50] Rahmani M. MEMS gyroscope control using a novel compound robust control. ISA Transactions, 2018, 72: 37−43 doi: 10.1016/j.isatra.2017.11.009
    [51] Zega V, Frangi A, Guercilena A, Gattere G. Analysis of frequency stability and thermoelastic effects for slotted tuning fork MEMS resonators. Sensors, 2018, 18(7): 2157 doi: 10.3390/s18072157
    [52] Akinsolu M O, Liu B, Grout V, Lazaridis P I, Mognaschi M E, Barba P D. A parallel surrogate model assisted evolutionary algorithm for electromagnetic design optimization. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 3(2): 93−105 doi: 10.1109/TETCI.2018.2864747
    [53] Solouk M R, Shojaeefard M H, Dahmardeh M. Parametric topology optimization of a MEMS gyroscope for automotive applications. Mechanical Systems and Signal Processing, 2019, 128: 389−404 doi: 10.1016/j.ymssp.2019.03.049
    [54] Nabavi S, Zhang L H. Design and optimization of piezoelectric MEMS vibration energy harvesters based on genetic algorithm. IEEE Sensors Journal, 2017, 17(22): 7372−7382 doi: 10.1109/JSEN.2017.2756921
    [55] Nabavi S, Zhang L H. Frequency tuning and efficiency improvement of piezoelectric MEMS vibration energy harvesters. Journal of Microelectromechanical Systems, 2019, 28(1): 77−87 doi: 10.1109/JMEMS.2018.2878657
    [56] Nabavi S, Zhang L H. Nonlinear multi-mode wideband piezoelectric MEMS vibration energy harvester. IEEE Sensors Journal, 2019, 19(13): 4837−4848 doi: 10.1109/JSEN.2019.2904025
    [57] Wen S H, Xu Q S. Design of a novel piezoelectric energy harvester based on integrated multistage force amplification frame. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1228−1237 doi: 10.1109/TMECH.2019.2906999
    [58] Fedder G K, Jing Q. A hierarchical circuit-level design methodology for microelectromechanical systems. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1999, 46(10): 1309−1315 doi: 10.1109/82.799682
    [59] Mukherjee T, Fedder G K. Hierarchical mixed-domain circuit simulation, synthesis and extraction methodology for MEMS. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 1999, 21(3): 233−249 doi: 10.1023/A:1008122921631
    [60] Fan Z, Wang J C, Achiche S, Goodman E, Rosenberg R. Structured synthesis of MEMS using evolutionary approaches. Applied Soft Computing, 2008, 8(1): 579−589 doi: 10.1016/j.asoc.2007.04.001
    [61] Farnsworth M, Tiwari A, Zhu M L. Multi-level and multi-objective design optimisation of a MEMS bandpass filter. Applied Soft Computing, 2017, 52: 642−656 doi: 10.1016/j.asoc.2016.10.007
    [62] Di Barba P, Dughiero F, Mognaschi M E, Savini A, Wiak S. Biogeography-inspired multiobjective optimization and MEMS design. IEEE Transactions on Magnetics, 2016, 52(3): 7201504
    [63] Liu B, Nikolaeva A. Efficient global optimization of MEMS based on surrogate model assisted evolutionary algorithm. In: Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). Dresden, Germany: IEEE, 2016. 555−558
    [64] Liu B, Grout V, Nikolaeva A. Efficient global optimization of actuator based on a surrogate model assisted hybrid algorithm. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5712−5721 doi: 10.1109/TIE.2017.2782203
    [65] Kamalian R. Evolutionary Synthesis of MEMS [Ph. D. dissertation], University of California, USA, 2004
    [66] Zhang Y. MEMS Design Synthesis Based on Hybrid Evolutionary Computation [Ph. D. dissertation], University of California, USA, 2006
    [67] Wang P, Lu Q B, Fan Z. Evolutionary design optimization of MEMS: A review of its history and state-of-the-art. Cluster Computing, 2019, 22(4): 9105−9111
    [68] Youcef-Toumi K. Modeling, design, and control integration: A necessary step in mechatronics. IEEE/ASME Transactions on Mechatronics, 1996, 1(1): 29−38 doi: 10.1109/3516.491407
    [69] Chakrabarti A, Bligh T P. An approach to functional synthesis of solutions in mechanical conceptual design. Part I: Introduction and knowledge representation. Research in Engineering Design, 1994, 6(3): 127−141 doi: 10.1007/BF01607275
    [70] Campbell M I. The A-Design Invention Machine: A Means of Automating and Investigating Conceptual Design [Ph. D. dissertation], Carnegie Mellon University, USA, 2000
    [71] 钟掘. 复杂机电系统耦合设计理论与方法. 北京: 机械工业出版社, 2007.

    Zhong Jue. Coupling Design Theory and Method of Complex Electromechanical System. Beijing: China Machine Press, 2007.
    [72] Damic V, Montgomery J. Mechatronics by Bond Graphs: An Object-Oriented Approach to Modelling and Simulation (Second Edition). Berlin, Heidelberg: Springer, 2015.
    [73] Kumar P, Bensekrane I, Conrard B, Toguyeni A, Merzouki R. Functionability analysis of redundant mechatronic systems in bond graph framework. IEEE/ASME Transactions on Mechatronics, 2019, 24(6): 2465−2476 doi: 10.1109/TMECH.2019.2951945
    [74] Zhang L J, Guo F, Li Y Q, Lu W J. Global dynamic modeling of electro-hydraulic 3-UPS/S parallel stabilized platform by bond graph. Chinese Journal of Mechanical Engineering, 2016, 29(6): 1176−1185 doi: 10.3901/CJME.2016.0623.078
    [75] Lafarge B, Grondel S, Delebarre C, Cattan E. A validated simulation of energy harvesting with piezoelectric cantilever beams on a vehicle suspension using Bond Graph approach. Mechatronics, 2018, 53: 202−214 doi: 10.1016/j.mechatronics.2018.06.004
    [76] Mohammadi V, Ghaemi S, Kharrati H. PSO tuned FLC for full autopilot control of quadrotor to tackle wind disturbance using bond graph approach. Applied Soft Computing, 2018, 65: 184−195 doi: 10.1016/j.asoc.2018.01.015
    [77] 朱贵杰. 基于键合图方法的风力发电系统建模研究[硕士学位论文], 汕头大学, 中国, 2014

    Zhu Gui-Jie. Research on Modeling of Wind Power Generation System Based on Bond Graph Method [Master thesis], Shantou University, China, 2014
    [78] Tay E H, Flowers W, Barrus J. Automated generation and analysis of dynamic system designs. Research in Engineering Design, 1998, 10(1): 15−29 doi: 10.1007/BF01580267
    [79] Seo K, Fan Z, Hu J J, Goodman E D, Rosenberg R C. Toward a unified and automated design methodology for multi-domain dynamic systems using bond graphs and genetic programming. Mechatronics, 2003, 13(8-9): 851−885 doi: 10.1016/S0957-4158(03)00006-0
    [80] Fan Z. Mechatronic Design Automation: Emerging Research and Recent Advances. Hauppauge, NY: Nova Science Publishers, 2010.
    [81] Fan Z, Seo K, Hu J J, Goodman E D, Rosenberg R C. A novel evolutionary engineering design approach for mixed-domain systems. Engineering Optimization, 2004, 36(2): 127−147 doi: 10.1080/03052150410001647957
    [82] Fan Z, Wang J C, Goodman E. Exploring open-ended design space of mechatronic systems. International Journal of Advanced Robotic Systems, 2004, 1(4): 295−302
    [83] Ye Y, Yin C B, Gong Y, Zhou J J. Position control of nonlinear hydraulic system using an improved PSO based PID controller. Mechanical Systems and Signal Processing, 2017, 83: 241−259 doi: 10.1016/j.ymssp.2016.06.010
    [84] Rodiguez-Molina A, Villarreal-Cervantes M G, Aldape-Perez M. Adaptive control for the four-bar linkage mechanism based on differential evolution. In: Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC). Rio de Janeiro, Brazil: IEEE, 2018. 1−7
    [85] Caraveo C, Valdez F, Castillo O. Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Applied Soft Computing, 2016, 43: 131−142 doi: 10.1016/j.asoc.2016.02.033
    [86] Arab A, Alfi A. An adaptive gradient descent-based local search in memetic algorithm applied to optimal controller design. Information Sciences, 2015, 299: 117−142 doi: 10.1016/j.ins.2014.11.051
    [87] Mehedi I M, Al-Saggaf U M, Mansouri R, Bettayeb M. Two degrees of freedom fractional controller design: Application to the ball and beam system. Measurement, 2019, 135: 13−22 doi: 10.1016/j.measurement.2018.11.021
    [88] Ochoa P, Castillo O, Soria J. Optimization of fuzzy controller design using a differential evolution algorithm with dynamic parameter adaptation based on Type-1 and Interval Type-2 fuzzy systems. Soft Computing, 2020, 24(1): 193−214 doi: 10.1007/s00500-019-04156-3
    [89] Yousfi L, Bouchemha A, Bechouat M, Boukrouche A. Vector control of induction machine using PI controller optimized by genetic algorithms. In: Proceedings of the 16th International Power Electronics and Motion Control Conference and Exposition. Antalya, Turkey: IEEE, 2014. 1272−1277
    [90] Li L, Zhang Y H, Yang C, Jiao X H, Zhang L P, Song J. Hybrid genetic algorithm-based optimization of powertrain and control parameters of plug-in hybrid electric bus. Journal of the Franklin Institute, 2015, 352(3): 776−801 doi: 10.1016/j.jfranklin.2014.10.016
    [91] Moharam A, El-Hosseini M A, Ali H A. Design of optimal PID controller using hybrid differential evolution and particle swarm optimization with an aging leader and challengers. Applied Soft Computing, 2016, 38: 727−737 doi: 10.1016/j.asoc.2015.10.041
    [92] 徐国政, 宋爱国, 李会军. 基于进化模糊神经网络的上肢康复机器人自适应阻抗控制. 系统仿真学报, 2010, 22(8): 1880−1884, 1889

    Xu Guo-Zheng, Song Ai-Guo, Li Hui-Jun. Adaptive impedance control for upper-limb rehabilitation robot based on evolutionary fuzzy neural network. Journal of System Simulation, 2010, 22(8): 1880−1884, 1889
    [93] 王福斌, 刘杰, 陈至坤, 焦春旺. 基于小生境粒子群优化的挖掘机器人自抗扰视觉伺服控制. 机械工程学报, 2012, 48(1): 32−38 doi: 10.3901/JME.2012.01.032

    Wang Fu-Bin, Liu Jie, Chen Zhi-Kun, Jiao Chun-Wang. Auto disturbances refection visual servoing control for excavator robot based on niching particle swarm optimization. Journal of Mechanical Engineering, 2012, 48(1): 32−38 doi: 10.3901/JME.2012.01.032
    [94] 张冬丽, 唐英干, 关新平. 用改进的人工蜂群算法设计AVR系统最优分数阶PID控制器. 自动化学报, 2014, 40(5): 973−979 doi: 10.1016/S1874-1029(14)60010-0

    Zhang D L, Tang Y G, Guan X P. Optimum design of fractional order PID controller for an AVR system using an improved artificial bee colony algorithm. Acta Automatica Sinica, 2014, 40(5): 973−979 doi: 10.1016/S1874-1029(14)60010-0
    [95] 陈启鹏, 李志华, 彭伟. 纯电动汽车车身稳定控制器多目标优化研究. 机电工程, 2018, 35(7): 728−734 doi: 10.3969/j.issn.1001-4551.2018.07.014

    Chen Qi-Peng, Li Zhi-Hua, Peng Wei. Multi objective optimization of stability controller for electric vehicle. Journal of Mechanical & Electrical Engineering, 2018, 35(7): 728−734 doi: 10.3969/j.issn.1001-4551.2018.07.014
    [96] Zheng W J, Pi Y G. Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm. ISA Transactions, 2016, 63: 387−393 doi: 10.1016/j.isatra.2015.11.029
    [97] Zheng W J, Luo Y, Wang X H, Pi Y G, Chen Y Q. Fractional order PIλDμ controller design for satisfying time and frequency domain specifications simultaneously. ISA Transactions, 2017, 68: 212−222 doi: 10.1016/j.isatra.2017.02.016
    [98] Koza J R, Keane M A, Yu J, Mydlowec W, Bennett F H. Automatic synthesis of both the control law and parameters for a controller for a three-lag plant with five-second delay using genetic programming and simulation techniques. In: Proceedings of the 2000 American Control Conference. Chicago, USA: IEEE, 2000. 453−459
    [99] Koza J R, Keane M A, Yu J, Bennett III F H, Mydlowec W. Automatic creation of human-competitive programs and controllers by means of genetic programming. Genetic Programming and Evolvable Machines, 2000, 1(1−2): 121−164
    [100] Keane M A, Yu J, Koza J R. Automatic synthesis of both the topology and tuning of a common parameterized controller for two families of plants using genetic programming. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation. San Francisco, USA: Morgan Kaufmann Publishers, 2000. 496−504
    [101] Keane M A, Koza J R, Streeter M J. Automatic synthesis using genetic programming of an improved general-purpose controller for industrially representative plants. In: Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware. Alexandria, USA: IEEE, 2002. 113−122
    [102] Bruijnen D, Soute I, van de Molengraft R, Steinbuch M. Exploration of automatic controller synthesis for motion systems using genetic programming. IFAC Proceedings Volumes, 2004, 37(14): 229−234 doi: 10.1016/S1474-6670(17)31109-6
    [103] Lapa K, Cpalka K. Flexible fuzzy PID controller (FFPIDC) and a nature-inspired method for its construction. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1078−1088 doi: 10.1109/TII.2017.2771953
    [104] Lapa K, Cpalka K, Paszkowski J. Hybrid multi-population based approach for controllers structure and parameters selection. In: Proceedings of the 18th International Conference on Artificial Intelligence and Soft Computing. Zakopane, Poland: Springer, 2019. 456−468
    [105] Sun Z L, Xin B, Chen J. Optimal design of controllers based on libraries and differential evolution. In: Proceedings of the 2015 34th Chinese Control Conference (CCC). Hangzhou, China: IEEE, 2015. 5599−5604
    [106] Zhan J Y, Xin B, Chen J. Evolutionary design of controllers with optimized structure and its application in a Maglev ball control system. In: Proceedings of the 36th Chinese Control Conference (CCC). Dalian, China: IEEE, 2017. 2545−2550
    [107] 展娇杨. 结构可优化抗扰控制器的智能优化设计[硕士学位论文], 北京理工大学, 中国, 2019

    Zhan Jiao-Yang. The Intelligent Optimization Design of Disturbance Rejection Controllers with Optimized Structures [Master thesis], Beijing Institute of Technology, China, 2019
    [108] Dotoli M, Fay A, Miskowicz M, Seatzu C. Advanced control in factory automation: A survey. International Journal of Production Research, 2017, 55(5): 1243−1259 doi: 10.1080/00207543.2016.1173259
    [109] Potter M A, De Jong K A. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation, 2000, 8(1): 1−29 doi: 10.1162/106365600568086
    [110] Wiegand R P, Liles W C, De Jong K A. An empirical analysis of collaboration methods in cooperative coevolutionary algorithms. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. San Francisco, USA: Morgan Kaufmann Publishers, 2001. 1235−1242
    [111] Wang J C, Fan Z, Terpenny J P, Goodman E D. Cooperative body–brain coevolutionary synthesis of mechatronic systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2008, 22(3): 219−234 doi: 10.1017/S0890060408000152
    [112] Dupuis J F, Fan Z, Goodman E. Evolved finite state controller for hybrid system. In: Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation. Shanghai, China: ACM, 2009. 105−111
    [113] Dupuis J F, Fan Z. Evolved finite state controller for hybrid system in reduced search space. In: Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore: IEEE, 2009. 833−838
    [114] Dupuis J F, Fan Z. Comparing an evolved finite state controller for hybrid system to a lookahead design. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation. Barcelona, Spain: IEEE, 2010. 1−6
    [115] Dupuis J F, Fan Z, Goodman E. Evolutionary design of discrete controllers for hybrid mechatronic systems. International Journal of Systems Science, 2015, 46(2): 303−316 doi: 10.1080/00207721.2013.783643
    [116] Yin H B, Huang S S, He M C, Li J F. A unified design for lightweight robotic arms based on unified description of structure and drive trains. International Journal of Advanced Robotic Systems, 2017, 14(4): 1−14
    [117] Jamwal P K, Hussain S, Xie S Q. Three-stage design analysis and multicriteria optimization of a parallel ankle rehabilitation robot using genetic algorithm. IEEE Transactions on Automation Science and Engineering, 2015, 12(4): 1433−1446 doi: 10.1109/TASE.2014.2331241
    [118] Wang H D, Doherty J, Jin Y C. Hierarchical surrogate-assisted evolutionary multi-scenario airfoil shape optimization. In: Proceedings of the 2018 IEEE Congress on Evolutionary Computation. Rio de Janeiro, Brazil: IEEE, 2018. 1−8
    [119] Tarkian M. Design Automation for Multidisciplinary Optimization: A High Level CAD Template Approach [Ph. D. dissertation], Linkoping University, Sweden, 2012
    [120] Lipson H, Pollack J B. Automatic design and manufacture of robotic lifeforms. Nature, 2000, 406(6799): 974−978 doi: 10.1038/35023115
    [121] Hiller J, Lipson H. Automatic design and manufacture of soft robots. IEEE Transactions on Robotics, 2012, 28(2): 457−466 doi: 10.1109/TRO.2011.2172702
    [122] Xiao Y, Fan Z, Li W J, Chen S, Zhao L, Xie H H. A manipulator design optimization based on constrained multi-objective evolutionary algorithms. In: Proceedings of the 2016 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII). Wuhan, China: IEEE, 2016. 199−205
    [123] Xu G Y, Ding H F, Feng Z M. Optimal design of hydraulic excavator shovel attachment based on multiobjective evolutionary algorithm. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 808−819 doi: 10.1109/TMECH.2019.2903140
    [124] Hsiao J C, Shivam K, Chou C L, Kam T Y. Shape design optimization of a robot arm using a surrogate-based evolutionary approach. Applied Sciences, 2020, 10(7): 2223 doi: 10.3390/app10072223
    [125] Datta R, Deb K. Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. Dublin, Ireland: ACM, 2011. 1843-1850
    [126] Datta R, Pradhan S, Bhattacharya B. Analysis and design optimization of a robotic gripper using multiobjective genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(1): 16−26 doi: 10.1109/TSMC.2015.2437847
    [127] Pettersson M, Olvander J. Drive train optimization for industrial robots. IEEE Transactions on Robotics, 2009, 25(6): 1419−1424 doi: 10.1109/TRO.2009.2028764
    [128] Rezazadeh S, Hurst J W. On the optimal selection of motors and transmissions for electromechanical and robotic systems. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: IEEE, 2014. 4605−4611
    [129] West C, Montazeri A, Monk S D, Taylor C J. A genetic algorithm approach for parameter optimization of a 7DOF robotic manipulator. In: Proceedings of the 8th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2016. Troyes, France: IFAC, 2016. 1261−1266
    [130] Hassan A, Abomoharam M. Modeling and design optimization of a robot gripper mechanism. Robotics and Computer-Integrated Manufacturing, 2017, 46: 94−103 doi: 10.1016/j.rcim.2016.12.012
    [131] Fan Z, Li W J, Cai X Y, Li H, Wei C M, Zhang Q F, et al. Push and pull search for solving constrained multi-objective optimization problems. Swarm and Evolutionary Computation, 2019, 44: 665−679 doi: 10.1016/j.swevo.2018.08.017
    [132] Sharma R, Rana K P S, Kumar V. Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Systems with Applications, 2014, 41(9): 4274−4289 doi: 10.1016/j.eswa.2013.12.030
    [133] Ali R S, Aldair A A, Almousawi A K. Design an optimal PID controller using artificial bee colony and genetic algorithm for autonomous mobile robot. International Journal of Computer Applications, 2014, 100(16): 8−16 doi: 10.5120/17607-8016
    [134] Taherkhorsandi M, Mahmoodabadi M J, Talebipour M, Castillo-Villar K K. Pareto design of an adaptive robust hybrid of PID and sliding control for a biped robot via genetic algorithm optimization. Nonlinear Dynamics, 2015, 79(1): 251−263 doi: 10.1007/s11071-014-1661-1
    [135] Son N N, Van Kien C, Anh H P H. A novel adaptive feed-forward-PID controller of a SCARA parallel robot using pneumatic artificial muscle actuator based on neural network and modified differential evolution algorithm. Robotics and Autonomous Systems, 2017, 96: 65−80 doi: 10.1016/j.robot.2017.06.012
    [136] Hai X S, Wang Z L, Feng Q, Ren Y, Xu B H, Cui J J, et al. Mobile robot ADRC with an automatic parameter tuning mechanism via modified pigeon-inspired optimization. IEEE/ASME Transactions on Mechatronics, 2019, 24(6): 2616−2626 doi: 10.1109/TMECH.2019.2953239
    [137] Florez C A C, Rosario J M, Amaya D. Control structure for a car-like robot using artificial neural networks and genetic algorithms. Neural Computing and Applications, 2020, 32(20): 15771−15784 doi: 10.1007/s00521-018-3514-1
    [138] Delavari H, Lanusse P, Sabatier J. Fractional order controller design for a flexible link manipulator robot. Asian Journal of Control, 2013, 15(3): 783−795 doi: 10.1002/asjc.677
    [139] Chin C S, Lin W P. Robust genetic algorithm and fuzzy inference mechanism embedded in a sliding-mode controller for an uncertain underwater robot. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 655−666 doi: 10.1109/TMECH.2018.2806389
    [140] Feng H, Yin C B, Weng W W, Ma W, Zhou J J, Jia W H, et al. Robotic excavator trajectory control using an improved GA based PID controller. Mechanical Systems and Signal Processing, 2018, 105: 153−168 doi: 10.1016/j.ymssp.2017.12.014
    [141] Tuvayanond W, Parnichkun M. Position control of a pneumatic surgical robot using PSO based 2-DOF H loop shaping structured controller. Mechatronics, 2017, 43: 40−55 doi: 10.1016/j.mechatronics.2017.03.001
    [142] Cheney N, Bongard J, SunSpiral V, Lipson H. Scalable co-optimization of morphology and control in embodied machines. Journal of the Royal Society Interface, 2018, 15(143): 20170937 doi: 10.1098/rsif.2017.0937
    [143] Endo K, Maeno T, Kitano H. Co-evolution of morphology and walking pattern of biped humanoid robot using evolutionary computation-evolutionary designing method and its evaluation. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 340−345
    [144] Marbach D, Ijspeert A J. Co-evolution of configuration and control for homogenous modular robots. In: Proceedings of the 8th Conference on Intelligent Autonomous Systems (IAS8). Amsterdam, Holland: IOS Press, 2004. 712−719.
    [145] Villarreal-Cervantes M G, Cruz-Villar C A, Alvarez-Gallegos J. Synergetic structure-control design via a hybrid gradient-evolutionary algorithm. Optimization and Engineering, 2015, 16(3): 511−539 doi: 10.1007/s11081-014-9254-x
    [146] Valdez S I, Botello-Aceves S, Becerra H M, Hernandez E E. Comparison between a concurrent and a sequential optimization methodology for serial manipulators using metaheuristics. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3155−3165 doi: 10.1109/TII.2018.2795103
    [147] Prabhu S G R, Seals R C, Kyberd P J, Wetherall J C. A survey on evolutionary-aided design in robotics. Robotica, 2018, 36(12): 1804−1821 doi: 10.1017/S0263574718000747
    [148] Deb K. Constrained multi-objective evolutionary algorithm. Evolutionary and Swarm Intelligence Algorithms. Cham: Springer, 2019. 85−118
    [149] Yang Y K, Liu J C, Tan S B, Wang H H. A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio. Applied Soft Computing, 2019, 80: 42−56 doi: 10.1016/j.asoc.2019.02.041
    [150] Han Z H, Liu F, Xu C Z, Zhang K S, Zhang Q F. Efficient multi-objective evolutionary algorithm for constrained global optimization of expensive functions. In: Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Wellington, New Zealand: IEEE, 2019. 2026−2033
    [151] Yu M Y, Li X, Liang J. A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization. Structural and Multidisciplinary Optimization, 2020, 61(2): 711−729 doi: 10.1007/s00158-019-02391-8
    [152] Sun Y N, Yen G G, Yi Z. Evolving unsupervised deep neural networks for learning meaningful representations. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 89−103 doi: 10.1109/TEVC.2018.2808689
    [153] Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, et al. Evolving deep neural networks. Artificial Intelligence in the Age of Neural Networks and Brain Computing. Amsterdam: Elsevier, 2019. 293−312
    [154] Ibrahim A O, Shamsuddin S M, Abraham A, Qasem S N. Adaptive memetic method of multi-objective genetic evolutionary algorithm for backpropagation neural network. Neural Computing and Applications, 2019, 31(9): 4945−4962 doi: 10.1007/s00521-018-03990-0
    [155] Laredo D, Chen Z Y, Schutze O, Sun J Q. A neural network-evolutionary computational framework for remaining useful life estimation of mechanical systems. Neural Networks, 2019, 116: 178−187 doi: 10.1016/j.neunet.2019.04.016
    [156] Barros R C, Basgalupp M P, de Carvalho A C P L F, Freitas A A. A survey of evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(3): 291−312 doi: 10.1109/TSMCC.2011.2157494
    [157] Takenouchi H, Tokumaru M. Kansei retrieval agent model with fuzzy reasoning. International Journal of Fuzzy Systems, 2017, 19(6): 1803−1811 doi: 10.1007/s40815-017-0360-8
    [158] Jia Y H, Chen W N, Yuan H Q, Gu T L, Zhang H X, Gao Y, et al. An intelligent cloud workflow scheduling system with time estimation and adaptive ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 634−649 doi: 10.1109/TSMC.2018.2881018
    [159] Chen Z G, Zhan Z H, Lin Y, Gong J Y, Gu T L, Zhao F, et al. Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach. IEEE Transactions on Cybernetics, 2019, 49(8): 2912−2926 doi: 10.1109/TCYB.2018.2832640
    [160] Wang Y, Ru Z Y, Wang K Z, Huang P Q. Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing. IEEE Transactions on Cybernetics, 2020, 50(9): 3984−3997 doi: 10.1109/TCYB.2019.2935466
    [161] Wang Z J, Zhan Z H, Yu W J, Lin Y, Zhang J, Gu T L, et al. Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling. IEEE Transactions on Cybernetics, 2020, 50(6): 2715−2729 doi: 10.1109/TCYB.2019.2933499
    [162] Larson P A, Blanas S, Diaconu C, Freedman C, Patel J M, Zwilling M. High-performance concurrency control mechanisms for main-memory databases. arXiv preprint arXiv: 1201.0228, 2011
    [163] Ye X, Liu S H, Yin Y L, Jin Y C. User-oriented many-objective cloud workflow scheduling based on an improved knee point driven evolutionary algorithm. Knowledge-Based Systems, 2017, 135: 113−124 doi: 10.1016/j.knosys.2017.08.006
    [164] Cheng R, Jin Y C, Olhofer M, Sendhoff B. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773−791 doi: 10.1109/TEVC.2016.2519378
    [165] Li K, Chen R Z, Fu G T, Yao X. Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 303−315 doi: 10.1109/TEVC.2018.2855411
    [166] Zhang Z X, He C, Ye J, Xu J B, Pan L Q. Switching ripple suppressor design of the grid-connected inverters: A perspective of many-objective optimization with constraints handling. Swarm and Evolutionary Computation, 2019, 44: 293−303 doi: 10.1016/j.swevo.2018.04.010
    [167] Wang C, Xu R. An angle based evolutionary algorithm with infeasibility information for constrained many-objective optimization. Applied Soft Computing, 2020, 86: 105911 doi: 10.1016/j.asoc.2019.105911
    [168] Shang C, Huang X L, You F Q. Data-driven robust optimization based on kernel learning. Computers & Chemical Engineering, 2017, 106: 464−479
    [169] Bertsimas D, Gupta V, Kallus N. Data-driven robust optimization. Mathematical Programming, 2018, 167(2): 235−292 doi: 10.1007/s10107-017-1125-8
    [170] Ning C, You F Q. Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming. Computers & Chemical Engineering, 2019, 125: 434−448
    [171] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182−197 doi: 10.1109/4235.996017
    [172] Zhang Q F, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712−731 doi: 10.1109/TEVC.2007.892759
    [173] Liu H L, Gu F Q, Zhang Q F. Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 450−455 doi: 10.1109/TEVC.2013.2281533
    [174] Chen J, Li J, Xin B. DMOEA-εC: Decomposition-based multiobjective evolutionary algorithm with the ε-constraint framework. IEEE Transactions on Evolutionary Computation, 2017, 21(5): 714−730
    [175] Cai X Y, Li Y X, Fan Z, Zhang Q F. An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Transactions on Evolutionary Computation, 2015, 19(4): 508−523 doi: 10.1109/TEVC.2014.2350995
    [176] Cai X Y, Mei Z W, Fan Z, Zhang Q F. A constrained decomposition approach with grids for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 564−577 doi: 10.1109/TEVC.2017.2744674
    [177] 栗三一, 王延峰, 乔俊飞, 黄金花. 一种基于区域局部搜索的NSGA Ⅱ算法. 自动化学报, 2020, 46(12): 2617−2627

    Li San-Yi, Wang Yan-Feng, Qiao Jun-Fei, Huang Jin-Hua. A regional local search strategy for NSGA II algorithm. Acta Automatica Sinica, 2020, 46(12): 2617−2627
    [178] Cai X Y, Yang Z X, Fan Z, Zhang Q F. Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Transactions on Cybernetics, 2017, 47(9): 2824−2837 doi: 10.1109/TCYB.2016.2586191
    [179] 陈美蓉, 郭一楠, 巩敦卫, 杨振. 一类新型动态多目标鲁棒进化优化方法. 自动化学报, 2017, 43(11): 2014−2032

    Chen Mei-Rong, Guo Yi-Nan, Gong Dun-Wei, Yang Zhen. A novel dynamic multi-objective robust evolutionary optimization method. Acta Automatica Sinica, 2017, 43(11): 2014−2032
    [180] 丁进良, 杨翠娥, 陈立鹏, 柴天佑. 基于参考点预测的动态多目标优化算法. 自动化学报, 2017, 43(2): 313−320

    Ding Jin-Liang, Yang Cui-E, Chen Li-Peng, Chai Tian-You. Dynamic multi-objective optimization algorithm based on reference point prediction. Acta Automatica Sinica, 2017, 43(2): 313−320
    [181] Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311−338 doi: 10.1016/S0045-7825(99)00389-8
    [182] Fan Z, Li W J, Cai X Y, Huang H, Fang Y, You Y G, et al. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions. Soft Computing, 2019, 23(23): 12491−12510 doi: 10.1007/s00500-019-03794-x
    [183] Wang Y, Cai Z X, Zhou Y R, Zeng W. An adaptive tradeoff model for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 80−92 doi: 10.1109/TEVC.2007.902851
    [184] Fan Z, Fang Y, Li W J, Cai X Y, Wei C M, Goodman E. MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems. Applied Soft Computing, 2019, 74: 621−633 doi: 10.1016/j.asoc.2018.10.027
    [185] Fan Z, Li W J, Cai X Y, Li H, Wei C M, Zhang Q F, et al. Difficulty adjustable and scalable constrained multiobjective test problem toolkit. Evolutionary Computation, 2020, 28(3): 339−378 doi: 10.1162/evco_a_00259
    [186] Jin Y C. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation, 2011, 1(2): 61−70 doi: 10.1016/j.swevo.2011.05.001
    [187] Liu B, Zhang Q F, Gielen G G E. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 180−192 doi: 10.1109/TEVC.2013.2248012
    [188] Awad N H, Ali M Z, Mallipeddi R, Suganthan P N. An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization. Information Sciences, 2018, 451-452: 326−347 doi: 10.1016/j.ins.2018.04.024
    [189] Sun C L, Jin Y C, Cheng R, Ding J L, Zeng J C. Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 644−660 doi: 10.1109/TEVC.2017.2675628
    [190] Bandaru S, Ng A H C, Deb K. Data mining methods for knowledge discovery in multi-objective optimization: Part A - Survey. Expert Systems with Applications, 2017, 70: 139−159 doi: 10.1016/j.eswa.2016.10.015
    [191] Bandaru S, Ng A H C, Deb K. Data mining methods for knowledge discovery in multi-objective optimization: Part B - New developments and applications. Expert Systems with Applications, 2017, 70: 119−138 doi: 10.1016/j.eswa.2016.10.016
    [192] Gupta A, Ong Y S, Feng L. Insights on transfer optimization: Because experience is the best teacher. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1): 51−64 doi: 10.1109/TETCI.2017.2769104
    [193] Zhang J Y, Zhou A M, Zhang G X. A classification and Pareto domination based multiobjective evolutionary algorithm. In: Proceedings of the 2015 IEEE Congress on Evolutionary Computation. Sendai, Japan: IEEE, 2015. 2883−2890
    [194] Zhang X Y, Tian Y, Cheng R, Jin Y C. A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 97−112 doi: 10.1109/TEVC.2016.2600642
    [195] Wang H D, Jin Y C, Jansen J O. Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system. IEEE Transactions on Evolutionary Computation, 2016, 20(6): 939−952 doi: 10.1109/TEVC.2016.2555315
    [196] Lu Z C, Whalen I, Boddeti V, Dhebar Y, Deb K, Goodman E, et al. NSGA-Net: Neural architecture search using multi-objective genetic algorithm. In: Proceedings of the 2019 Genetic and Evolutionary Computation Conference. Prague, Czech: ACM, 2019. 419−427
    [197] Suganuma M, Kobayashi M, Shirakawa S, Nagao T. Evolution of deep convolutional neural networks using Cartesian genetic programming. Evolutionary Computation, 2020, 28(1): 141−163 doi: 10.1162/evco_a_00253
    [198] Bottou L. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade. Berlin: Springer-Verlag, 2012. 421−436
    [199] Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2017
    [200] Liang J, Meyerson E, Miikkulainen R. Evolutionary architecture search for deep multitask networks. In: Proceedings of the 2018 Genetic and Evolutionary Computation Conference. Kyoto, Japan: ACM, 2018. 466−473
    [201] Kelly S, Heywood M I. Emergent solutions to high-dimensional multitask reinforcement learning. Evolutionary Computation, 2018, 26(3): 347−380 doi: 10.1162/evco_a_00232
    [202] Ma B, Lei G, Liu C C, Zhu J G, Guo Y G. Robust tolerance design optimization of a PM claw pole motor with soft magnetic composite cores. IEEE Transactions on Magnetics, 2018, 54(3): 8102404
  • 期刊类型引用(8)

    1. 朱安迪,达飞鹏,盖绍彦. 对融合特征敏感的三维点云识别与分割. 西安交通大学学报. 2024(05): 52-63 . 百度学术
    2. 郑广智,彭添强,肖计春,吴高昌,李智,柴天佑. 基于语义信息增强的化纤丝线网络度检测方法. 自动化学报. 2024(10): 1963-1976 . 本站查看
    3. 王国刚,罗香莲. 去伪影空洞残差与双向注意力金字塔增强的图像级联语义分割算法. 测试技术学报. 2024(06): 575-585 . 百度学术
    4. 虞静,黄陆君,唐海龙,黄贵余,陈光平. 面向自动装车的来车检测和规划系统. 应用激光. 2022(01): 91-100 . 百度学术
    5. 张凌明,赵悦,李鹏程,刘洋,高陈强. 基于局部注意力机制的三维牙齿模型分割网络. 电子学报. 2022(03): 681-690 . 百度学术
    6. 钟帆,柏正尧. 采用动态残差图卷积的3D点云超分辨率. 浙江大学学报(工学版). 2022(11): 2251-2259 . 百度学术
    7. 李庆忠,徐相玉. 基于改进YOLOV3-Tiny的海面船舰目标快速检测. 计算机工程. 2021(10): 283-289+297 . 百度学术
    8. 许翔,帅惠,刘青山. 基于卦限卷积神经网络的3D点云分析. 自动化学报. 2021(12): 2791-2800 . 本站查看

    其他类型引用(8)

  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2137
  • HTML全文浏览量:  886
  • PDF下载量:  456
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-11-04
  • 录用日期:  2020-03-25
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2021-07-27

目录

/

返回文章
返回