2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

目标检测模型及其优化方法综述

蒋弘毅 王永娟 康锦煜

蒋弘毅, 王永娟, 康锦煜. 目标检测模型及其优化方法综述. 自动化学报, 2021, 47(6): 1232−1255 doi: 10.16383/j.aas.c190756
引用本文: 蒋弘毅, 王永娟, 康锦煜. 目标检测模型及其优化方法综述. 自动化学报, 2021, 47(6): 1232−1255 doi: 10.16383/j.aas.c190756
Jiang Hong-Yi, Wang Yong-Juan, Kang Jin-Yu. A survey of object detection models and its optimization methods. Acta Automatica Sinica, 2021, 47(6): 1232−1255 doi: 10.16383/j.aas.c190756
Citation: Jiang Hong-Yi, Wang Yong-Juan, Kang Jin-Yu. A survey of object detection models and its optimization methods. Acta Automatica Sinica, 2021, 47(6): 1232−1255 doi: 10.16383/j.aas.c190756

目标检测模型及其优化方法综述

doi: 10.16383/j.aas.c190756
基金项目: 军委创新项目 (18-163-11-ZT-005-032-01)资助
详细信息
    作者简介:

    蒋弘毅:南京理工大学机械工程学院硕士研究生. 主要研究方向为图像处理与目标检测. E-mail: jianghongyi_1996@163.com

    王永娟:南京理工大学机械工程学院教授. 主要研究方向复杂与智能机械系统设计. 本文通信作者. E-mail: 13951643935@139.com

    康锦煜:南京理工大学机械工程学院硕士研究生. 主要研究方向为穿戴式智能单兵系统设计. E-mail: njust@3dgarms.com

A Survey of Object Detection Models and Its Optimization Methods

Funds: Supported by Innovation Project of CMC (18-163-11-ZT-005-032-01)
More Information
    Author Bio:

    JIANG Hong-Yi Master student at the College of Mechanical Engineering, Nanjing University of Science and Technology. His research interest covers image processing and object detection

    WANG Yong-Juan Professor at the College of Mechanical Engineering, Nanjing University of Science and Technology. Her main research interest is design of complex and intelligent mechanical systems. Corresponding author of this paper

    KANG Jin-Yu Master student at the College of Mechanical Engineering, Nanjing University of Science and Technology. His main research interest is design of wearable intelligent soldier system

  • 摘要: 近年来, 基于卷积神经网络的目标检测研究发展十分迅速, 各种检测模型的改进方法层出不穷. 本文主要对近几年内目标检测领域中一些具有借鉴价值的研究工作进行了整理归纳. 首先, 对基于卷积神经网络的主要目标检测框架进行了梳理和对比. 其次, 对目标检测框架中主干网络、颈部连接层、锚点等子模块的设计优化方法进行归纳, 给出了各个模块设计优化的基本原则和思路. 接着, 在COCO数据集上对各类目标检测模型进行测试对比, 并根据测试结果分析总结了不同子模块对模型检测性能的影响. 最后, 对目标检测领域未来的研究方向进行了展望.
  • 图  1  主流的目标检测框架

    Fig.  1  Main object detection framework

    图  2  CornerNet框架流程

    Fig.  2  Overall pipeline of CornerNet

    图  3  典型目标检测算法速度−准确率对比

    Fig.  3  Speed-accuracy comparison of typical object detection algorithms

    图  4  残差网络的跳连结构

    Fig.  4  Shortcut structure of ResNet

    图  5  基数为32的ResNeXt块

    Fig.  5  ResNeXt block with 32 cardinality

    图  6  特征通道融合的Inception模块

    Fig.  6  The schema of SE-Inception module

    图  7  非局部网络块

    Fig.  7  Block of non-local network

    图  8  FPN中的金字塔结构

    Fig.  8  Pyramid structure in FPN

    图  9  PANet中的自底向上金字塔结构

    Fig.  9  Bottom-up pyramid structure in PANet

    图  10  M2Det中的多层级特征金字塔网络结构

    Fig.  10  Multi-level feature pyramid network in M2Det

    图  11  双向特征金字塔结构

    Fig.  11  Framework of Bi-FPN

    图  12  沙漏式结构的特征融合

    Fig.  12  Feature fusion based on hourglass structure

    图  13  HRNet的整体网络结构

    Fig.  13  Overall network structure of HRNet

    图  14  Faster R-CNN中的锚点示意图

    Fig.  14  Schematic diagram of anchors in faster R-CNN

    图  15  基于特征指导的锚点生成模型

    Fig.  15  Anchor generation model based on feature guiding

    图  16  FoveaBox模型中的标签分配

    Fig.  16  Label assign in FoveaBox

    图  17  FSAF模型的在线特征选择

    Fig.  17  Online feature selection in FSFA

    图  18  软分配的层权重预测

    Fig.  18  Weights prediction for soft-selected features

    图  19  级联多阶段目标检测模型

    Fig.  19  Cascade stages of object detection model

    图  20  区域特征池化过程

    Fig.  20  Pipeline of RoI pooling

    图  21  目标特征与候选框不对齐

    Fig.  21  Misalignment between feature and box

    图  22  DCRv2模型的检测流程

    Fig.  22  Overall pipeline of DCRv2

    图  23  ION网络的总体框架

    Fig.  23  Pipeline of ION

    图  24  SMN网络的记忆迭代过程

    Fig.  24  Memory iterations of SMN

    图  25  SIN网络的检测流程

    Fig.  25  Pipeline of SIN

    图  26  SNIP模型的多尺度训练与预测

    Fig.  26  Multi-scale training and inference of SNIP

    图  27  TridentNet模型的多尺度预测

    Fig.  27  Multi-scale inference of TridentNet

    图  28  不同梯度模长的样本数量

    Fig.  28  Number of samples with different gradient norm

    图  29  NAS搜索收敛后的FPN架构

    Fig.  29  NAS-FPN framework after convergence

    图  30  RepMet模型的训练与推理流程

    Fig.  30  Training and inference pipeline of RepMet

    图  31  基于注意力机制RPN与多关系头部的少样本检测

    Fig.  31  Attention-RPN and multi-relation head based few-shot detection

    图  32  基于Faster R-CNN的域适应分支

    Fig.  32  Domain adaptive branch based on faster R-CNN

    表  1  各检测模型的性能对比

    Table  1  Performance comparison of different object detection models

    模型主干网络APAP50AP75APSAPMAPL
    Faster R-CNN VGG-16 21.9 42.7
    Faster R-CNN R-101* 29.1 48.4 30.7 12.9 35.5 50.9
    Faster R-CNN R-101-CBAM 30.8 50.5 32.6
    Faster R-CNN++ R-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
    Faster R-CNN++ HR-W32 39.5 61.0 43.1 23.6 42.9 51.0
    Faster-DCR V2 R-101 34.3 57.7 35.8 13.8 36.7 51.1
    OHEM VGG-16 22.6 42.5 22.2 5.0 23.7 37.9
    SIN VGG-16 23.2 44.5 22.0 7.3 24.5 36.3
    ION VGG-16 23.6 43.2 22.6 6.4 24.1 38.3
    Mask R-CNN R-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
    Mask R-CNN HR-32 40.7 61.8 44.7 25.2 44.4 51.8
    Mask R-CNN R-101-FPN+GC 40.8 62.1 45.5 24.4 43.7 51.9
    SN-Mask R-CNN R-101-FPN 40.4 58.7 42.5
    IN-Mask R-CNN R-101-FPN 40.6 59.4 43.6 24.3 43.9 52.6
    R-FCN R-101 29.9 51.9 10.8 32.8 45.0
    CoupleNet R-101 34.4 54.8 37.2 13.4 38.1 50.8
    Cascade R-CNN R-101 42.8 62.1 46.3 23.7 45.5 55.2
    Libra R-CNN R-101-FPN 41.1 62.1 44.7 23.4 43.7 52.5
    Grid R-CNN[100] X-101* 43.2 63.0 46.6 25.1 46.5 55.2
    Light-Head R-CNN R-101 38.2 60.9 41.0 20.9 42.2 52.8
    M2Det800 VGG-16 41.0 59.7 45.0 22.1 46.5 53.8
    SSD512 VGG-16 28.8 48.5 30.3 10.9 31.8 43.5
    GHM SSD X-101 41.6 62.8 44.2 22.3 45.1 55.3
    YOLOV3 D-53* 33.0 57.9 34.4 18.3 35.4 41.9
    YOLOV3 D-53 34.3 36.2
    RetinaNet X-101-FPN 39.0 59.4 41.7 22.6 43.4 50.9
    GA-RetinaNet X-101-FPN 40.3 60.9 43.5 23.5 44.9 53.5
    RefineDet512++ R-101-FPN 41.8 62.9 45.7 25.6 45.1 55.3
    FCOS X-101-FPN 42.1 62.1 45.2 25.6 44.9 52.0
    FoveaBox X-101-FPN 42.1 61.9 45.2 24.9 46.8 55.6
    FSFA X-101-FPN 42.9 63.8 46.3 26.6 46.2 52.7
    CornerNet HG-104* 40.5 56.5 43.1 19.4 42.7 53.9
    ExtremeNet HG-104 40.2 55.5 43.2 20.4 43.2 53.1
    CenterNet HG-104 42.1 61.1 45.9 24.1 45.5 52.8
    RepPoints R-101 41.0 62.9 44.3 23.6 44.1 51.7
    SNIP++ R-101 43.1 65.3 48.1 26.1 45.9 55.2
    SNIPER++ R-101 46.1 67.0 51.6 29.6 48.9 58.1
    TridentNet R-101 42.7 63.6 46.5 23.9 46.6 56.6
    *注: R-ResNet, X-ResNeXt, HR-HRNet, D-DarkNet, HG-Hourglass. ++表示使用了多尺度、水平翻转等策略
    下载: 导出CSV

    表  2  部分检测模型的速度、显存消耗、参数量与计算量对比(基于Titan Xp)

    Table  2  Speed, VRAM consumption, parameters and computation comparison of some object detection models (on Titan Xp)

    模型主干网络训练速度 (s/iter)显存消耗 (GB)推理速度 (fps)参数量运算次数
    Faster R-CNN++ R-101-FPN 0.465 5.7 11.9 60.52×106 283.14×109
    Faster R-CNN++ HR-W32 0.593 5.9 8.5 45.0×106 245.3×109
    Mask R-CNN R-101-FPN 0.571 5.8 9.4 62.81×106 351.65×109
    Mask R-CNN x-101-FPN 0.759 7.1 8.3 63.17×106 355.4×109
    Mask R-CNN R-101-FPN+GC 0.731 7.0 8.6 82.13×106 352.8×109
    R-FCN R-101 0.400 5.6 14.6
    Cascade R-CNN R-101-FPN 0.584 6.0 10.3 87.8×106 310.78×109
    Cascade R-CNN X-101-FPN 0.770 8.4 8.9 88.16×106 314.53×109
    Libra R-CNN R-101-FPN 0.495 6.0 10.4 60.79×106 284.19×109
    Grid R-CNN X-101-FPN 1.214 6.7 10.0 82.95×106 409.19×109
    M2Det800 VGG-16 11.8
    SSD512 VGG-16 0.412 7.6 20.7 36.04×106 386.02×109
    GHM RetinaNet X-101-FPN 0.818 7.0 7.6 56.74×106 319.14×109
    RetinaNet X-101-FPN 0.632 6.7 9.3 56.37×106 319.04×109
    GA-RetinaNet X-101-FPN 0.870 6.7 7.5 56.01×106 283.13×109
    FCOS R-101-FPN 0.558 9.4 11.6 50.96×106 276.53×109
    CornerNet HG$-104^*$ 4.9
    ExtremeNet HG-104 3.1
    CenterNet HG-104 11.91 8.5
    RepPoints R-101 0.558 5.6 10.9 55.62×106 266.23×109
    SNIP++ R-101 < 1.0
    SNIPER++ R-101 4.8
    TridentNet R-101 0.985 6.6 2.1
    *注: R-ResNet, X-ResNeXt, HR-HRNet, D-DarkNet, HG-Hourglass. ++表示使用了多尺度、水平翻转等策略
    下载: 导出CSV
  • [1] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91−110 doi: 10.1023/B:VISI.0000029664.99615.94
    [2] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Kauai, HI, USA: IEEE, 2001. I−511−I−518
    [3] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Diego, CA, USA: IEEE, 2005. 886−893
    [4] Girshick R, Donahue J, Darrell T, Malik J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 38(1): 142−158
    [5] Girshick R. Fast R-CNN. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1440−1448
    [6] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137−1149
    [7] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y, et al. SSD: Single shot MultiBox detector. In: Proceedings of the 2016 European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer, 2016. 21−37
    [8] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 779−788
    [9] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 6517−6525
    [10] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv: 1804.02767, 2018
    [11] Law H, Deng J. CornerNet: Detecting objects as paired keypoints. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 765−781
    [12] Zhou X Y, Zhuo J C, Krähenbühl P. Bottom-up object detection by grouping extreme and center points. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 850−859
    [13] Zhou X Y, Wang D Q, Krähenbühl P. Objects as points. arXiv: 1904.07850, 2019
    [14] Yang Z, Liu S H, Hu H, Wang L W, Lin S. RepPoints: Point set representation for object detection. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 9656−9665
    [15] Zhang S F, Wen L Y, Bian X, Lei Z, Li S Z. Single-shot refinement neural network for object detection. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 4203−4212
    [16] Chi C, Zhang S F, Xing J L, Lei Z, Li S Z, Zou X D. Selective refinement network for high performance face detection. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI). Honolulu, Hawaii, USA: AAAI, 2019. 8231−8238
    [17] Li Z M, Peng C, Yu G, Zhang X Y, Deng Y D, Sun J. Light-head R-CNN: In defense of two-stage object detector. arXiv: 1711.07264, 2017
    [18] Simonyan K, Zisseman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014
    [19] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 770−778
    [20] Xie S N, Girshick R, Dollár P, Tu Z W, He K M. Aggregated residual transformations for deep neural networks. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 5987−5995
    [21] Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. 1−9
    [22] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 7132−7141
    [23] Wang X L, Girshick R, Gupta A, He K M. Non-local neural networks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 7794−7803
    [24] Cao Y, Xu J R, Lin S, Wei F Y, Hu H. GCNet: Non-local networks meet squeeze-excitation networks and beyond. arXiv: 1904.11492, 2019
    [25] Woo S, Park J, Lee J Y, So Kweon I. CBAM: Convolutional block attention module. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 3−19
    [26] Lin T Y, Dollár P, Girshick R, He K M, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 936−944
    [27] Pan J M, Chen K, Shi J P, Feng H J, Ouyang W N, Lin D H. Libra R-CNN: Towards balanced learning for object detection. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 821−830
    [28] Liu S, Qi L, Qin H F, Shi J P, Jia J Y. Path aggregation network for instance segmentation. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 8759−8768
    [29] Zhao Q J, Sheng T, Wang Y T, Tang Z, Chen Y, Cai L, et al. M2det: A single-shot object detector based on multi-level feature pyramid network. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI). Honolulu, Hawaii, USA: AAAI, 2019. 9259−9266
    [30] Tan M X, Pang R M, Le Q V. EfficientDet: Scalable and efficient object detection. arXiv: 1911.09070, 2020
    [31] Newell A, Yang K Y, Deng J. Stacked hourglass networks for human pose estimation. In: Proceedings of the 2016 European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer, Cham, 2016. 483−499
    [32] Sun K, Xiao B, Liu D, Wang J D. Deep high-resolution representation learning for human pose estimation. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 5686−5696
    [33] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv: 1511.07122, 2016
    [34] Zhu C C, Tao R, Luu K, Savvides M. Seeing small faces from robust anchor' s perspective. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 5127−5136
    [35] Xie L L, Liu Y L, Jin L W, Xie Z C. DeRPN: Taking a further step toward more general object detection. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI). Honolulu, Hawaii, USA: AAAI, 2019. 9046−9053
    [36] Zhong Y Y, Wang J F, Peng J, Zhang L. Anchor box optimization for object detection. arXiv: 1812.00469, 2020
    [37] Wang J Q, Chen K, Yang S, Loy C C, Lin D H. Region proposal by guided anchoring. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 2960−2969
    [38] Dai J F, Qi H Z, Xiong Y W, Zhang G D, Hu H, Wei Y C. Deformable convolutional networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 764−773
    [39] Zhu X Z, Hu H, Lin S, Dai J F. Deformable ConvNets V2: More deformable, better results. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 9300−9308
    [40] Tian Z, Shen C H, Chen H, He T. FCOS: Fully convolutional one-stage object detection. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 9626−9635
    [41] Kong T, Sun F C, Liu H P, Jiang Y N, Li L, Shi J B. FoveaBox: Beyond anchor-based object detector. arXiv: 1904.03797, 2020
    [42] Zhu C C, He Y H, Savvides M. Feature selective anchor-free module for single-shot object detection. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 840−849
    [43] Zhu C C, Chen F Y, Shen Z Q, Savvides M. Soft anchor-point object detection. arXiv: 1911.12448, 2020
    [44] Bodla N, Singh B, Chellappa R, Davis L S. Soft-NMS-improving object detection with one line of code. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICVV). Venice, Italy: IEEE, 2017. 5562−5570
    [45] He Y H, Zhang X Y, Savvides M, Kitani K. Softer-NMS: Rethinking bounding box regression for accurate object detection. arXiv: 1809.08545, 2019
    [46] Jiang B R, Luo R X, Mao J Y, Xiao T T, Jiang Y N. Acquisition of localization confidence for accurate object detection. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 816−832
    [47] Liu Y, Liu L Q, Rezatofighi H, Do T T, Shi Q F, Reid I. Learning pairwise relationship for multi-object detection in crowded scenes. arXiv: 1901.03796, 2019
    [48] Rezatofighi H, Tsoi N, Gwak J Y, Sadeghian A, Reid L, Savarese S. Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 658−666
    [49] Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 6154−6162
    [50] Shrivastava A, Gupta A, Girshick R. Training region-based object detectors with online hard example mining. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 761−769
    [51] Yu H, Zhang Z N, Qin Z, Wu H, Li D S, Zhao J, et al. Loss Rank Mining: A general hard example mining method for real-time detectors. In: Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil: IEEE, 2018. 1−8
    [52] He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020, 42(2): 386−397
    [53] Dai J F, Li Y, He K M, Sun J. R-FCN: Object detection via region-based fully convolutional networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS). Barcelona, Spain: Curran Associates Inc., 2016. 379−387
    [54] Zhu Y S, Zhao C Y, Wang J Q, Zhao X, Wu Y, Lu H Q. CoupleNet: Coupling global structure with local parts for object detection. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 4146−4154
    [55] Zhai Y, Fu J J, Lu Y, Li H Q. Feature selective networks for object detection. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 4139−4147
    [56] Chen Y T, Han C X, Wang N Y, Zhang Z X. Revisiting feature alignment for one-stage object detection. arXiv: 1908.01570, 2019
    [57] Cheng B W, Wei Y C, Shi H H, Feris R, Xiong J J, Huang T. Revisiting RCNN: On awakening the classification power of faster RCNN. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV). Munich, Germany: Springer. 2018. 473−490
    [58] Cheng B W, Wei Y C, Feris R, Xiong J J, Hwu W M, Huang T, et al. Decoupled classification refinement: Hard false positive suppression for object detection. arXiv: 1810.04002, 2020
    [59] Bell S, Zitnick C L, Bala K, Girshick R. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 2874−2883
    [60] Ouyang W L, Luo P, Zeng X Y, Qiu S, Tian Y L, Li H S, et al. DeepID-Net: Multi-stage and deformable deep convolutional neural networks for object detection. arXiv: 1409.3505, 2014
    [61] Chen X L, Gupta A. Spatial memory for context reasoning in object detection. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 4106−4116
    [62] Liu Y, Wang R P, Shan S G, Chen X L. Structure inference net: Object detection using scene-level context and instance-level relationships. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 6985−6994
    [63] Hu H, Gu J Y, Zhang Z, Dai J F, Wei Y C. Relation networks for object detection. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 3588−3597
    [64] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS). Long Beach, California, USA: Curran Associates Inc., 2017. 6000−6010
    [65] Gidaris S, Komodakis N. Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1134−1142
    [66] Zeng X Y, Ouyang W L, Yang B, Yan J J, Wang X G. Gated bi-directional CNN for object detection. In: Proceedings of the 2016 European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer, 2016. 354−369
    [67] Luo W J, Li Y J, Urtasun R, Zemek R. Understanding the effective receptive field in deep convolutional neural networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS). Barcelona, Spain: Curran Associates Inc., 2016. 4905−4913
    [68] Lin T Y, Goyal P, Girshick R, He K M, Dollár P. Focal loss for dense object detection. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2999−3007
    [69] Cai Z W, Fan Q F, Feris R S, Vasconcelos N. A unified multi-scale deep convolutional neural network for fast object detection. In: Proceedings of the 2016 European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer, 2016. 354−370
    [70] Yang F, Choi W, Lin Y Q. Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 2129−2137
    [71] Singh B, Davis L S. An analysis of scale invariance in object detection - SNIP. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 3578−3587
    [72] Singh B, Najibi M, Davis L S. SNIPER: Efficient multi-scale training. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS). Montreal, Canada: Curran Associates Inc., 2018. 9333−9343
    [73] Najibi M, Singh B, Davis L S. AutoFocus: Efficient multi-scale inference. arXiv: 1812.01600, 2018
    [74] Li Y H, Chen Y T, Wang N Y, Zhang Z X. Scale-aware trident networks for object detection. arXiv: 1901.01892, 2019
    [75] Chen L C, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. arXiv: 1706.05587, 2017
    [76] Chen K, Li J G, Lin W Y, See J, Wang J, Duan L Y, et al. Towards accurate one-stage object detection with AP-Loss. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 5114−5122
    [77] Li B Y, Liu Y, Wang X G. Gradient harmonized single-stage detector. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI). Honolulu, Hawaii, USA: AAAI, 2019. 8577−8584
    [78] Wang X L, Xiao T T, Jiang Y N, Shao S, Sun J, Shen C H. Repulsion loss: Detecting pedestrians in a crowd. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 7774−7783
    [79] Yu J H, Jiang Y N, Wang Z Y, Cao Z M, Huang T. UnitBox: An advanced object detection network. In: Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam, The Netherlands: ACM, 2016. 516−520
    [80] Tychsen-Smith L, Petersson L. Improving object localization with fitness NMS and bounded IoU loss. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 6877−6885
    [81] Ma J Q, Shao W Y, Ye H, Wang L, Wang H, Zheng Y B, et al. Arbitrary-oriented scene text detection via rotation proposals. IEEE Transactions on Multimedia, 2018, 20(11): 3111−3122 doi: 10.1109/TMM.2018.2818020
    [82] Liao M H, Shi B G, Bai X. TextBoxes++: A single-shot oriented scene text detector. IEEE Transactions on Image Processing, 2018, 27(8): 3676−3690 doi: 10.1109/TIP.2018.2825107
    [83] Zhou X Y, Yao C, Wen H, Wang Y Z, Zhou S C, He W R, et al. EAST: An efficient and accurate scene text detector. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 2642−2651
    [84] Huang L C, Yang Y, Deng Y F, Yu Y N. DenseBox: Unifying landmark localization with end to end object detection. arXiv: 1509.04874, 2015
    [85] Deng D, Liu H F, Li X L, Cai D. PixelLink: Detecting scene text via instance segmentation. arXiv: 1801.01315, 2018
    [86] Xie E Z, Zang Y H, Shao S, Yu G, Yao C, Li G Y. Scene text detection with supervised pyramid context network. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI). Honolulu, Hawaii, USA: AAAI, 2019. 9038−9045
    [87] Wang W H, Xie E Z, Li X, Hou W B, Lu T, Yu G, et al. Shape robust text detection with progressive scale expansion network. arXiv: 1903.12473, 2019
    [88] Xia G S, Bai X, Ding J, Zhu Z, Belongie S, Luo J B, et al. DOTA: A large-scale dataset for object detection in aerial image. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 3974−3983
    [89] Li K, Wan G, Cheng G, Meng L Q, Han J W. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296−307 doi: 10.1016/j.isprsjprs.2019.11.023
    [90] Yang F, Fan H, Chu P, Blasch E, Ling H B. Clustered object detection in aerial images. arXiv: 1904.08008, 2019
    [91] Ding J, Xue N, Long Y, Xia G S, Lu Q K. Learning RoI transformer for oriented object detection in aerial images. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 2844−2853
    [92] Qian W, Yang X, Peng S L, Guo Y, Yan J C. Learning modulated loss for rotated object detection. arXiv: 1911.08299, 2019
    [93] Zhu Y X, Wu X Q, Du J. Adaptive period embedding for representing oriented objects in aerial images. arXiv: 1906.09447, 2019
    [94] Zhang S S, Benenson R, Schiele B. CityPersons: A diverse dataset for pedestrian detection. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 4457−4465
    [95] Shao S, Zhao Z J, Li B X, Xiao T T, Yu G, Zhang X Y, et al. CrowdHuman: A benchmark for detecting human in a crowd. arXiv: 1805.00123, 2018
    [96] Pang Y W, Xie J, Khan M H, Anwer R M, Khan F S, Shao L. Mask-guided attention network for occluded pedestrian detection. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 4966−4974
    [97] Zhang S F, Wen L Y, Bian X, Lei Z, Li S Z. Occlusion-aware R-CNN: Detecting pedestrians in a crowd. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 657−674
    [98] Liu T R, Luo W H, Ma L, Huang J J, Stathaki T, Dai T H. Coupled network for robust pedestrian detection with gated multi-layer feature extraction and deformable occlusion handling. arXiv: 1912.08661, 2019
    [99] Liu S T, Huang D, Wang Y H. Adaptive NMS: Refining pedestrian detection in a crowd. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 6452−6461
    [100] Lu X, Li B Y, Yue Y X, Li Q Q, Yan J J. Grid R-CNN. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 7355−7364
    [101] Zoph B, Vasudevan V, Shlens J, Le Q V. Learning transferable architectures for scalable image recognition. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 8697−8710
    [102] Chen Y K, Yang T, Zhang X Y, Meng G F, Xiao X Y, Sun J. DetNAS: Backbone search for object detection. In: Proceedings of the 33rd Conference on Neural Information Processing Systems (NIPS). Vancouver, Canada: Margan Kaufmann Publishers, 2019. 6638−6648
    [103] Ghiasi G, Lin T Y, Le Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 7029−7038
    [104] Wang N, Gao Y, Chen H, Wang P, Tian Z, Shen C H, et al. NAS-FCOS: Fast neural architecture search for object detection. arXiv: 1906.04423, 2020
    [105] Fang J M, Sun Y Z, Peng K J, Zhang Q, Li Y, Liu W Y, et al. Fast neural network adaptation via parameter remapping and architecture search. arXiv: 2001.02525, 2020
    [106] Karlinsky L, Shtok J, Harary S, Schwartz E, Aides A, Feris R, et al. RepMet: Representative-based metric learning for classification and few-shot object detection. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 5192−5201
    [107] Fan Q, Zhuo W, Tang C K, Tai Y W. Few-shot object detection with attention-RPN and multi-relation detector. arXiv: 1908.01998, 2020
    [108] Wang T, Zhang X P, Yuan L, Feng J S. Few-shot adaptive faster R-CNN. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 7166−7175
    [109] Yan X P, Chen Z L, Xu A N, Wang X X, Liang X D, Lin L. Meta R-CNN: Towards general solver for instance-level low-shot learning. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 9576−9585
    [110] Kang B Y, Liu Z, Wang X, Yu F, Feng J S, Darrell T. Few-shot object detection via feature reweighting. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 8419−8428
    [111] Inoue N, Furuta R, Yamasaki T, Aizawa K. Cross-domain weakly-supervised object detection through progressive domain adaptation. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 5001−5009
    [112] RoyChowdhury A, Chakrabarty P, Singh A, Jin S Y, Jiang H Z, Cao L L, et al. Automatic adaptation of object detectors to new domains using self-training. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 780−790
    [113] Kim S, Choi J, Kim T, Kim C. Self-training and adversarial background regularization for unsupervised domain adaptive one-stage object detection. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 6091−6100
    [114] Chen Y H, Li W, Sakaridis C, Dai D X, van Gool L. Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 3339−3348
    [115] Saito K, Ushiku Y, Harada T, Saenko K. Strong-Weak distribution alignment for adaptive object detection. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 6949−6958
    [116] Zhu X G, Pang J M, Yang C Y, Shi J P, Lin D H. Adapting object detectors via selective cross-domain alignment. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 687−696
    [117] Zhu J Y, Park T, Isola P, Efros A A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2242−2251
    [118] Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv: 1704.04861, 2017
    [119] Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L C. MobileNetV2: Inverted residuals and linear bottlenecks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 4510−4520
    [120] Howard A, Sandler M, Chen B, Wang W J, Chen L C, Tan M X, et al. Searching for MobileNetV3. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 1314−1324
    [121] Zhang X Y, Zhou X Y, Lin M X, Sun J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 6848−6856
    [122] Ma N N, Zhang X Y, Zheng H T, Sun J. ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 122−138
    [123] Zhang T, Qi G J, Xiao B, Wang J D. Interleaved group convolutions. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 4383−4392
    [124] Qin Z, Li Z M, Zhang Z N, Bao Y P, Yu G, Peng Y X, et al. ThunderNet: Towards real-time generic object detection on mobile devices. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 6717−6726
    [125] Zhang P Y, Zhong Y X, Li X Q. SlimYOLOv3: Narrower, faster and better for real-time UAV applications. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea: IEEE, 2019. 37−45
    [126] Bilen H, Vedaldi A. Weakly supervised deep detection networks. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 2846−2854
    [127] Kantorov V, Oquab M, Cho M, Laptev I. ContextLocNet: Context-aware deep network models for weakly supervised localization. In: Proceedings of the 2016 European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer, 2016. 350−365
    [128] Tang P, Wang X G, Bai S, Shen W, Bai X, Liu W Y, et al. PCL: Proposal cluster learning for weakly supervised object detection. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020, 42(1): 176−191
    [129] Diba A, Sharma V, Pazandeh A, Pirsiavash H, van Gool L. Weakly supervised cascaded convolutional networks. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017. 5131−5139
    [130] Li Y, Liu L Q, Shen C H, van den Hengel A. Image co-localization by mimicking a good detector' s confidence score distribution. In: Proceedings of the 2016 European Conference on Computer Vision (ECCV). Amsterdam, The Netherlands: Springer, 2016. 19−34
    [131] Yang K, Li D S, Dou Y. Towards precise end-to-end weakly supervised object detection network. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE, 2019. 8371−8380
    [132] Wan F, Wei P X, Jiao J B, Han Z J, Ye Q X. Min-entropy latent model for weakly supervised object detection. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 1297−1306
    [133] Zhou B L, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 2921−2929
    [134] Zhang X L, Wei Y C, Feng J S, Yang Y, Huang T. Adversarial complementary learning for weakly supervised object localization. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, Utah, USA: IEEE, 2018. 1325−1334
    [135] Choe J, Shim H. Attention-based dropout layer for weakly supervised object localization. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019. 2214−222
  • 加载中
图(32) / 表(2)
计量
  • 文章访问数:  3077
  • HTML全文浏览量:  3177
  • PDF下载量:  1597
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 录用日期:  2020-02-16
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回