Combining Global and Local Variation for Image Quality Assessment
-
摘要: 图像所包含的信息是通过灰度值在空域的变化呈现的. 梯度是度量变化的基本工具, 这使得梯度成为了目前大多数图像质量评价算法的重要组成部分. 但是梯度只能度量局部变化, 而当人类视觉系统(Human visual system, HVS)感知一幅图像时, 既能感知到局部变化, 也能感知到全局变化. 基于HVS的这一特性, 本文提出了一种结合全局与局部变化的图像质量评价算法(Global and local variation similarity, GLV-SIM). 该算法利用Grünwald-Letnikov分数阶导数来度量图像的全局变化, 利用梯度模来度量图像的局部变化. 然后结合二者计算参考图像和退化图像之间的相似度谱(Similarity map), 进而得到图像的客观评分. 在TID2013、TID2008、CSIQ与LIVE四个数据库上的仿真实验表明, 较之单一度量局部变化的方法, 本文算法能更准确地模拟HVS对图像质量的感知过程, 给出的客观评分与主观评分具有较好的一致性.
-
关键词:
- 图像质量评价 /
- 全局与局部 /
- Grünwald-Letnikov分数阶导数 /
- 梯度模
Abstract: The information contained in an image is presented by the changes of gray value in spatial domain. Gradient is the basic tool to measure changes, which makes gradient become an important ingredient of most image quality assessment algorithms. However, gradient can only measure local changes, while when human visual system (HVS) perceives an image, it can perceive both local and global changes. Based on this characteristic of HVS, this paper proposes an image quality assessment algorithm by combining global and local variations similarity (GLV-SIM). The algorithm uses Grünwald-Letnikov fractional derivative to measure the global changes and uses gradient magnitude to measure the local changes of the image. Synthesizing the two aspect changes, similarity map between reference image and distorted image is calculated, and then objective score of the image is obtained. Simulation experiments on four databases TID2013, TID2008, CSIQ and LIVE show that, comparing with the algorithm only considering local changes, the proposed algorithm can more accurately simulate the perception process of HVS on image quality and can obtain better consistency between objective scores and subjective scores. -
评价方法 图3(b) 图3(c) 图3(d) 图3(e) 图3(f) MOS 5.0000 3.8387 4.1875 4.7667 6.2903 PSNR 30.5304 30.5784 26.1303 27.4808 27.3498 VSNR 29.7301 21.1480 20.5342 30.7072 20.2681 IFC 4.7389 3.4351 4.9319 2.9956 11.3746 SSIM 0.9250 0.8461 0.9459 0.9475 0.9568 MS-SSIM 0.9606 0.9159 0.9738 0.9727 0.9821 IW-SSIM 0.9684 0.9075 0.9645 0.9704 0.9661 GSIM 0.9958 0.9888 0.9953 0.9966 0.9979 FSIM 0.9831 0.9462 0.9538 0.9699 0.9707 GLV-SIM 0.9959 0.9845 0.9927 0.9957 0.9961 表 3 不同IQA算法在TID2013和TID2008数据库的实验结果比较
Table 3 Comparison the performance results of different IQA algorithms on TID2013 and TID2008 databases
数据库 性能指标 PSNR VSNR IFC SSIM MS-SSIM IW-SSIM GSIM FSIM GLV-SIM TID 2013 SROCC 0.6396 0.6812 0.5389 0.7417 0.7859 0.7779 0.7946 0.8015 0.8068 KROCC 0.4698 0.5084 0.3939 0.5588 0.6047 0.5977 0.6255 0.6289 0.6381 PLCC 0.7017 0.7402 0.5538 0.7895 0.8329 0.8319 0.8464 0.8589 0.8580 RMSE 0.8832 0.8392 1.0322 0.7608 0.6861 0.6880 0.6603 0.6349 0.6368 TID 2008 SROCC 0.5531 0.7046 0.5675 0.7749 0.8542 0.8559 0.8504 0.8805 0.8814 KROCC 0.4027 0.5340 0.4236 0.5768 0.6568 0.6636 0.6596 0.6946 0.6956 PLCC 0.5734 0.6820 0.7340 0.7732 0.8451 0.8579 0.8422 0.8738 0.8648 RMSE 1.0994 0.9815 0.9113 0.8511 0.7173 0.6895 0.7235 0.6525 0.6739 表 4 不同IQA算法在CSIQ和LIVE数据库的实验结果比较
Table 4 Comparison the performance results of different IQA algorithms on CSIQ and LIVE databases
数据库 性能指标 PSNR VSNR IFC SSIM MS-SSIM IW-SSIM GSIM FSIM GLV-SIM CSIQ SROCC 0.8058 0.8106 0.7671 0.8756 0.9133 0.9213 0.9108 0.9242 0.9264 KROCC 0.6084 0.6247 0.5897 0.6907 0.7393 0.7529 0.7374 0.7567 0.7605 PLCC 0.8000 0.8002 0.8384 0.8613 0.8991 0.9144 0.8964 0.9120 0.9082 RMSE 0.1575 0.1575 0.1431 0.1334 0.1149 0.1063 0.1164 0.1007 0.1099 LIVE SROCC 0.8756 0.9274 0.9259 0.9479 0.9513 0.9567 0.9561 0.9634 0.9521 KROCC 0.6865 0.7616 0.7579 0.7963 0.8045 0.8175 0.8150 0.8337 0.8179 PLCC 0.8723 0.9231 0.9268 0.9449 0.9489 0.9522 0.9512 0.9597 0.9368 RMSE 13.359 10.505 10.264 8.9445 8.6188 8.3473 8.4327 7.6780 8.0864 表 5 不同IQA算法在TID2008数据库单一失真评价性能(SROCC)比较
Table 5 Comparison SROCC for individual distortion of different IQA algorithms on TID2008 database
数据库 失真类型 PSNR VSNR IFC SSIM MS-SSIM IW-SSIM GSIM FSIM GLV-SIM TID 2008 AWN 0.9073 0.7728 0.5806 0.8107 0.8094 0.7869 0.8573 0.8566 0.9125 ANMC 0.8994 0.7793 0.5460 0.8029 0.8064 0.7920 0.8095 0.8527 0.8979 SCN 0.9175 0.7665 0.5958 0.8144 0.8195 0.7714 0.8902 0.8483 0.9167 MN 0.8520 0.7295 0.6732 0.7795 0.8156 0.8087 0.7403 0.8021 0.8087 HFN 0.9273 0.8811 0.7318 0.8729 0.8685 0.8662 0.8932 0.9093 0.9175 IMN 0.8725 0.6470 0.5345 0.6732 0.6868 0.6465 0.7721 0.7452 0.7864 QN 0.8702 0.8271 0.5857 0.8531 0.8537 0.8177 0.8750 0.8564 0.8865 GB 0.8704 0.9330 0.8559 0.9544 0.9607 0.9636 0.9585 0.9472 0.9587 DEN 0.9422 0.9286 0.7973 0.9530 0.9571 0.9473 0.9723 0.9603 0.9666 JPEG 0.8723 0.9174 0.8180 0.9252 0.9348 0.9184 0.9391 0.9279 0.9534 JP2K 0.8131 0.9515 0.9437 0.9625 0.9736 0.9738 0.9755 0.9773 0.9751 JGTE 0.7525 0.8056 0.7909 0.8678 0.8736 0.8588 0.8832 0.8708 0.8793 J2TE 0.8312 0.7909 0.7301 0.8577 0.8522 0.8203 0.8925 0.8544 0.9021 NEPN 0.5812 0.5716 0.8418 0.7107 0.7336 0.7724 0.7372 0.7491 0.7271 BLOCK 0.6194 0.1926 0.6770 0.8462 0.7617 0.7623 0.8865 0.8492 0.8960 MS 0.6966 0.3715 0.4250 0.7231 0.7374 0.7067 0.7174 0.6698 0.6994 CTC 0.5867 0.4239 0.2713 0.5246 0.6398 0.6301 0.6736 0.6481 0.6689 -
[1] Mohammadi P, Ebrahimi-Moghadam A, Shirani S. Subjective and objective quality assessment of image: a survey. Majlesi Journal of Electrical Engineering, 2015, 9(1): 419−423 [2] Yang X C, Sun Q S, Wang T S. Image quality assessment improvement via local gray-scale fluctuation measurement. Multimedia Tools and Applications, 2018, 77(18): 24185−24202 doi: 10.1007/s11042-018-5740-z [3] 高敏娟, 党宏社, 魏立力, 张选德. 基于非局部梯度的图像质量评价算法. 电子与信息学报, 2019, 41(5): 1122−1129 doi: 10.11999/JEIT180597Gao Min-Juan, Dang Hong-She, Wei Li-Li, Zhang Xuan-De. Image quality assessment algorithm based on non-local gradient. Journal of Electronics and Information Technology, 2019, 41(5): 1122−1129 doi: 10.11999/JEIT180597 [4] 许丽娜, 肖奇, 何鲁晓. 考虑人类视觉特征的融合图像评价方法. 武汉大学学报(信息科学版), 2019, 44(4): 546−554Xu Li-Na, Xiao Qi, He Lu-Xiao. Fused image quality asssessment based on human visual characterisyics. Geomatics and Information Science of Wuhan University, 2019, 44(4): 546−554 [5] 曹清洁, 史再峰, 张嘉平, 李杭原, 高静, 姚素英. 分区域多标准的全参考图像质量评价算法. 天津大学学报(自然科学与工程技术版), 2019, 52(6): 625−630Cao Qing-Jie, Shi Zai-Feng, Zhang Jia-Ping, Li Hang-Yuan, Gao Jing, Yao Su-Ying. Sub-regional and multiple criteria full-reference image quality assessment. Journal of Tianjin University (Science and Technology), 2019, 52(6): 625−630 [6] Wang Z, Bovik A C. Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 2009, 26(1): 98−117 doi: 10.1109/MSP.2008.930649 [7] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 2008, 44(13): 800−801 doi: 10.1049/el:20080522 [8] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on image processing, 2004, 13(4): 600−612 doi: 10.1109/TIP.2003.819861 [9] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment. In: Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2003. 1398−1402 [10] Wang Z, Li Q. Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 2011, 20(5): 1185−1198 doi: 10.1109/TIP.2010.2092435 [11] Li C F, Bovik A C. Three-component weighted structural similarity index. In: Proceedings of the 2009 SPIE Conference on Image Quality and System Performance, San Jose, California, USA, 2009. 7242: 72420Q−72420Q-9 [12] 刘大瑾, 叶建兵, 刘家骏. SSIM框架下基于SVD的灰度图像质量评价算法研究. 南京师大学报(自然科学版), 2017, 40(1): 73−78Liu Da-Jin, Ye Jian-Bing, Liu Jia-Jun. SVD-based gray-scale image quality assessmentalgorithms in the SSIM perspective. Journal of Nanjing Normal University (Natural Science Edition), 2017, 40(1): 73−78 [13] 闫乐乐, 李辉, 邱聚能, 梁平. 基于区域对比度和SSIM的图像质量评价方法. 应用光学, 2015, 36(1): 58−63 doi: 10.5768/JAO201536.0102002Yan Le-Le, Li Hui, Qiu Ju-Neng, Liang Ping. Image qualty assessment method based on regional contrast and structural similarity. Journal of Applied Optics, 2015, 36(1): 58−63 doi: 10.5768/JAO201536.0102002 [14] Jin X, Jiang G Y, Chen F, Yu M, Shao F, Peng Z J, et al. Adaptive image quality assessment method based on structural similarity. Journal of Optoelectronics. Laser, 2014, 25(2): 378−385 [15] 田浩南, 李素梅. 基于边缘的SSIM图像质量客观评价方法. 光子学报, 2013, 42(1): 110−114 doi: 10.3788/gzxb20134201.0110Tian Hao-Nan, Li Su-Mei. Objective evaluation method for image quality based on edge structural similarity. Acta Photonica Sinca, 2013, 42(1): 110−114 doi: 10.3788/gzxb20134201.0110 [16] Zhang L, Zhang L, Mou X Q, Zhang D. FSIM: a feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 2011, 20(8): 2378−2386 doi: 10.1109/TIP.2011.2109730 [17] Liu A M, Lin W S, Narwaria M. Image quality assessment based on gradient similarity. IEEE Transactions on Image Processing, 2012, 21(4): 1500−1512 doi: 10.1109/TIP.2011.2175935 [18] Zhang X D, Feng X C, Wang W W, Xue W F. Edge strength similarity for image quality assessment. IEEE Signal Processing Letters, 2013, 20(4): 319−322 doi: 10.1109/LSP.2013.2244081 [19] Sun W, Liao Q M, Xue J H, Zhou F. SPSIM: a superpixel-based similarity index for full-reference image quality assessment. IEEE Transactions on Image Processing, 2018, 27(9): 4232−4244 doi: 10.1109/TIP.2018.2837341 [20] Ding L, Huang H, Zang Y. Image quality assessment using directional anisotropy structure measurement. IEEE Transactions on Image Processing, 2017, 26(4): 1799−1809 doi: 10.1109/TIP.2017.2665972 [21] Xue W F, Zhang L, Mou X Q, Bovik A C. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Transactions on Image Processing, 2014, 23(2): 684−695 doi: 10.1109/TIP.2013.2293423 [22] Pei S C, Chen L H. Image quality assessment using human visual DOG model fused with random forest. IEEE Transactions on Image Processing, 2015, 24(11): 3282−3292 doi: 10.1109/TIP.2015.2440172 [23] Reisenhofer R, Bosse S, Kutyniok G, Wiegand T. A haar wavelet-based perceptual similarity index for image quality assessment. Signal Processing: Image Communication, 2018, 61: 33−43 doi: 10.1016/j.image.2017.11.001 [24] 薛定宇. 分数阶微积分学与分数阶控制. 北京: 科学出版社, 2018. 31−72Xue Ding-Yu. Fractional Calculus and Fractional-order Control. Beijing: Publishing House of Science, 2018. 31−72 [25] 张桂梅, 孙晓旭, 刘建新, 储珺. 基于分数阶微分的TV-L1光流模型的图像配准方法研究. 自动化学报, 2017, 43(12): 2213−2224Zhang Gui-Mei, Sun Xiao-Xu, Liu Jian-Xin, Chun Jun. Research on TV-L1 optical flow model for image registration based on fractional-order differentiation. Acta Automatica Sinica, 2017, 43(12): 2213−2224 [26] 陈云, 郭宝裕, 马祥园. 基于分数阶微积分正则化的图像处理. 计算数学, 2017, (39): 393−406Chen Yun, Guo Bao-Yu, Ma Xiang-Yuan. Image processing based on regularization with fractional clculus. Mathematica Numerica Sinica, 2017, (39): 393−406 [27] Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, et al. Image database TID2013: peculiarities, results and perspectives. Image Communication, 2015, 30(C): 57−77 [28] Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Astola J, Carli M, et al. TID2008: a database for evaluation of full-reference visual quality assessment metrics [Online], available: http://www.ponomarenko.info/papers/mre, November 1, 2016 [29] Larson E C, Chandler D. Categorical subjective image quality (CSIQ) database [Online], available: http://vision.okstate.edu/csiq, November 1, 2016 [30] Sheikh H R, Wang Z, Bovik A C. Image and video quality assessment research at LIVE. [Online], available: http://live.ece.utexas.edu/rese-arch/quality/, November 1, 2016 [31] Chandler D M, Hemami S S. VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 2007, 16(9): 2284−2298 doi: 10.1109/TIP.2007.901820 [32] Sheikh H R, Bovik A C, Veciana G D. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 2005, 14(12): 2117−2128 doi: 10.1109/TIP.2005.859389