Simulation and Analysis of Mechanical Antenna Low Frequency Communication System Based on Electret Material
-
摘要: 在海洋信息网络体系日益重要的现在, 水下航行器越来越得到世界各国的重视, 无论是在民用还是在军用上, 都扮演着重要的角色. 与水下航行器的通信主要采用的是能以较小的损耗深入海水的低频通信技术, 而目前已有的低频通信系统发射台规模庞大, 天线占地广、天线暴露、目标明显、战时生存能力差, 极易被摧毁且难于短期修复, 且所需功耗巨大. 鉴于此, 本文提出了一种基于复合聚合物驻极体纳米材料的机械天线式低频通信方法, 从理论上研究了其产生的低频通信信号及计算公式, 定量分析了其在正常工作时的功率损耗和在不同介质中的衰减, 且在有限元分析软件中建立了相关模型进行仿真研究, 并通过理论解析模型和多物理场有限元模型的双重仿真结果的一致性, 以及仿真计算结果与机械天线样机的实测结果的对比, 验证了所提方法的可行性.Abstract: Nowadays, the marine information network system is becoming more and more important. Underwater vehicles are getting more and more attention from all over the world, which plays an important role in civil and military applications. Communication with underwater vehicles mainly uses low-frequency communication technology to penetrate seawater with less loss. At present, the low-frequency communication system has several disadvantages such as large scale, wide antenna coverage, exposed and obvious target, poor survivability in wartime, which is easy to be destroyed and difficult to repair in a short time, and requires huge power consumption. In view of this, a mechanical antenna low-frequency communication method is proposed based on composite polymer electret nanomaterials, analysis of the low-frequency communication signal and its calculation formula is made in theory, and the power loss and attenuation in different media are analyzed quantitatively. Finally, the relevant model is established in the finite element analysis software to carry out the simulation. The feasibility of the proposed method is verified by the consistency of the simulation results of the theoretical analysis model and the multi physical field finite element model, and the comparison between the simulation results and the measured results of the mechanical antenna prototype.
-
肺癌是世界范围内发病率和死亡率最高的疾病之一, 占所有癌症病发症的18 %左右[1].美国癌症社区统计显示, 80 %到85 %的肺癌为非小细胞肺癌[2].在该亚型中, 大多数病人会发生淋巴结转移, 在手术中需对转移的淋巴结进行清扫, 现阶段通常以穿刺活检的方式确定淋巴结的转移情况.因此, 以非侵入性的方式确定淋巴结的转移情况对临床治疗具有一定的指导意义[3-5].然而, 基本的诊断方法在无创淋巴结转移的预测上存在很大挑战.
影像组学是针对医学影像的兴起的热门方法, 指通过定量医学影像来描述肿瘤的异质性, 构造大量纹理图像特征, 对临床问题进行分析决策[6-7].利用先进机器学习方法实现的影像组学已经大大提高了肿瘤良恶性的预测准确性[8].研究表明, 通过客观定量的描述影像信息, 并结合临床经验, 对肿瘤进行术前预测及预后分析, 将对临床产生更好的指导价值[9].
本文采用影像组学的方法来解决非小细胞肺癌淋巴结转移预测的问题.通过利用套索逻辑斯特回归(Lasso logistics regression, LLR)[10]模型得出基本的非小细胞肺癌淋巴结的转移预测概率, 并把组学模型的预测概率作为独立的生物标志物, 与患者的临床特征一起构建多元Logistics预测模型并绘制个性化诺模图, 在临床决策中的起重要参考作用.
1. 材料和方法
1.1 病人数据
我们收集了广东省人民医院2007年5月至2014年6月期间的717例肺癌病例.这些病人在签署知情同意书后, 自愿提供自己的信息作为研究使用.为了充分利用收集到的数据对非小细胞肺癌淋巴结转移预测, 即对$N1-N3$与$N0$进行有效区分, 我们对收集的数据设置了三个入组标准: 1)年龄大于等于18周岁, 此时的肺部已经发育完全, 消除一定的干扰因素; 2)病理诊断为非小细胞肺癌无其他疾病干扰, 并有完整的CT (Computed tomography)增强图像及个人基本信息; 3)有可利用的术前病理组织活检分级用于确定N分期.经筛选, 共564例病例符合进行肺癌淋巴结转移预测研究的要求(如图 1).
为了得到有价值的结果, 考虑到数据的分配问题, 为了保证客观性, 防止挑数据的现象出现, 在数据分配上, 训练集与测试集将按照时间进行划分, 并以2013年1月为划分点.得到训练集: 400例, 其中, 243例正样本$N1-N3$, 157例负样本$N0$; 测试集: 164例, 其中, 93例正样本, 71例负样本.
1.2 病灶分割
在进行特征提取工作前, 首先要对肿瘤病灶进行分割.医学图像分割的金标准是需要有经验的医生进行手动勾画的结果.但手动分割无法保证每次的分割结果完全一致, 且耗时耗力, 尤其是在数据量很大的情况下.因此, 手动分割不是最理想的做法.在本文中, 使用的自动图像分割算法为基于雪橇的自动区域生长分割算法[11], 该算法首先选定最大切片层的种子点, 这时一般情况下最大切片为中间层的切片, 然后估计肿瘤的大小即直径, 作为一个输入参数, 再自动进行区域生长得到每个切片的肿瘤如图 2(a1), (b1), 之后我们进行雪橇滑动到邻接的上下两个切面, 进行分割, 这样重复上述的区域生长即滑动切片, 最终分割得到多个切片的的肿瘤区域, 我们将肿瘤切面层进行组合, 得到三维肿瘤如图 2(a2), (b2).
1.3 特征的提取与筛选
利用影像组学处理方法, 从分割得到的肿瘤区域中总共提取出386个特征.这些特征可分为四组:三维形状特征, 表面纹理特征, Gabor特征和小波特征[12-13].形状特征通过肿瘤体积、表面积、体积面积比等特征描述肿瘤在空间和平面上的信息.纹理特征通过统计三维不同方向上像素的规律, 通过不同的分布规律来表示肿瘤的异质性. Gabor特征指根据特定方向, 特定尺度筛选出来的纹理信息.
小波特征是指原图像经过小波变换滤波器后的纹理特征.在模式识别范畴中, 高维特征会增加计算复杂度, 此外, 高维的特征往往存在冗余性, 容易造成模型过拟合.因此, 本位通过特征筛选方法首先对所有特征进行降维处理.
本文采用$L$1正则化Lasso进行特征筛选, 对于简单线性回归模型定义为:
$$ \begin{equation} f(x)=\sum\limits_{j=1}^p {w^jx^j} =w^\mathrm{T}x \end{equation} $$ (1) 其中, $x$表示样本, $w$表示要拟合的参数, $p$表示特征的维数.
要进行参数$w$学习, 应用二次损失来表示目标函数, 即:
$$ \begin{equation} J(w)=\frac{1}{n}\sum\limits_{i=1}^n{(y_i-f(x_i)})^2= \frac{1}{n}\vert\vert\ {{y}-Xw\vert\vert}^2 \end{equation} $$ (2) 其中, $X$是数据矩阵, $X=(x_1 , \cdots, x_n)^\mathrm{T}\in {\bf R}^{n\times p}$, ${y}$是由标签组成的列向量, ${y}=(y_1, \cdots, y_n )^\mathrm{T}$.
式(2)的解析解为:
$$ \begin{equation} \hat{w}=(X^\mathrm{T}X)^{-1}X^\mathrm{T}{y} \end{equation} $$ (3) 然而, 若$p\gg n$, 即特征维数远远大于数据个数, 矩阵$X^\mathrm{T}X$将不是满秩的, 此时无解.
通过Lasso正则化, 得到目标函数:
$$ \begin{equation} J_L(w)=\frac{1}{n} \vert\vert{y}-Xw\vert\vert^2+\lambda\vert\vert w\vert\vert _1 \end{equation} $$ (4) 目标函数最小化等价为:
$$ \begin{equation} \mathop {\min }\limits_w \frac{1}{n} \vert\vert{y}-Xw\vert\vert^2, \, \, \, \, \, \, \, \mathrm{s.t.}\, \, \vert \vert w\vert \vert _1 \le C \end{equation} $$ (5) 为了使部分特征排除, 本文采用$L$1正则方法进行压缩.二维情况下, 在$\mbox{(}w^1, w^2)$平面上可画出目标函数的等高线, 取值范围则为平面上半径为$C$的$L$1范数圆, 等高线与$L$1范数圆的交点为最优解. $L$1范数圆和每个坐标轴相交的地方都有"角''出现, 因此在角的位置将产生稀疏性.而在维数更高的情况下, 等高线与L1范数球的交点除角点之外还可能产生在很多边的轮廓线上, 同样也会产生稀疏性.对于式(5), 本位采用近似梯度下降(Proximal gradient descent)[14]算法进行参数$w$的迭代求解, 所构造的最小化函数为$Jl=\{g(w)+R(w)\}$.在每次迭代中, $Jl(w)$的近似计算方法如下:
$$ \begin{align} J_L (w^t+d)&\approx \tilde {J}_{w^t} (d)=g(w^t)+\nabla g(w^t)^\mathrm{T}d\, +\nonumber\\ &\frac{1} {2d^\mathrm{T}(\frac{I }{ \alpha })d}+R(w^t+d)=\nonumber\\ &g(w^t)+\nabla g(w^t)^\mathrm{T}d+\frac{{d^\mathrm{T}d} } {2\alpha } +\nonumber\\ &R(w^t+d) \end{align} $$ (6) 更新迭代$w^{(t+1)}\leftarrow w^t+\mathrm{argmin}_d \tilde {J}_{(w^t)} (d)$, 由于$R(w)$整体不可导, 因而利用子可导引理得:
$$ \begin{align} w^{(t+1)}&=w^t+\mathop {\mathrm{argmin}} \nabla g(w^t)d^\mathrm{T}d\, +\nonumber\\ &\frac{d^\mathrm{T}d}{2\alpha }+\lambda \vert \vert w^t+d\vert \vert _1=\nonumber\\ &\mathrm{argmin}\frac{1 }{ 2}\vert \vert u-(w^t-\alpha \nabla g(w^t))\vert \vert ^2+\nonumber\\ &\lambda \alpha \vert \vert u\vert \vert _1 \end{align} $$ (7) 其中, $S$是软阈值算子, 定义如下:
$$ \begin{equation} S(a, z)=\left\{\begin{array}{ll} a-z, &a>z \\ a+z, &a<-z \\ 0, &a\in [-z, z] \\ \end{array}\right. \end{equation} $$ (8) 整个迭代求解过程为:
输入.数据$X\in {\bf R}^{n\times p}, {y}\in {\bf R}^n$, 初始化$w^{(0)}$.
输出.参数$w^\ast ={\rm argmin}_w\textstyle{1 \over n}\vert \vert Xw-{y}\vert \vert ^2+\\ \lambda \vert\vert w\vert \vert _1 $.
1) 初始化循环次数$t = 0$;
2) 计算梯度$\nabla g=X^\mathrm{T}(Xw-{y})$;
3) 选择一个步长大小$\alpha ^t$;
4) 更新$w\leftarrow S(w-\alpha ^tg, \alpha ^t\lambda )$;
5) 判断是否收敛或者达到最大迭代次数, 未收敛$t\leftarrow t+1$, 并循环2)$\sim$5)步.
通过上述迭代计算, 最终得到最优参数, 而参数大小位于软区间中的, 将被置为零, 即被稀疏掉.
1.4 建立淋巴结转移影像组学标签与预测模型
本文使用LLR对组学特征进行降维并建模, 并使用10折交叉验证, 提高模型的泛化能力, 流程如图 3所示.
将本文使用的影像组学模型的预测概率(Radscore)作为独立的生物标志物, 并与临床指标中显著的特征结合构建多元Logistics模型, 绘制个性化预测的诺模图, 最后通过校正曲线来观察预测模型的偏移情况.
2. 结果
2.1 数据单因素分析结果
我们分别在训练集和验证集上计算各个临床指标与淋巴结转移的单因素P值, 计算方式为卡方检验, 结果见表 1, 发现吸烟与否和EGFR (Epidermal growth factor receptor)基因突变状态与淋巴结转移显著相关.
表 1 训练集和测试集病人的基本情况Table 1 Basic information of patients in the training set and test set基本项 训练集($N=400$) $P$值 测试集($N=164$) $P$值 性别 男 144 (36 %) 0.896 78 (47.6 %) 0.585 女 256 (64 %) 86 (52.4 %) 吸烟 是 126 (31.5 %) 0.030* 45 (27.4 %) 0.081 否 274 (68.5 %) 119 (72.6 %) EGFR 缺失 36 (9 %) 4 (2.4 %) 突变 138 (34.5 %) $ < $0.001* 67 (40.9 %) 0.112 正常 226 (56.5 %) 93 (56.7 %) 2.2 淋巴结转移影像组学标签
影像组学得分是每个病人最后通过模型预测后的输出值, 随着特征数的动态变化, 模型输出的AUC (Area under curve)值也随之变化, 如图 4所示, 使用R语言的Glmnet库可获得模型的参数$\lambda $的变化图.图中直观显示了参数$\lambda $的变化对模型性能的影响, 这次实验中模型选择了3个变量.如图 5所示, 横坐标表示$\lambda $的变化, 纵坐标表示变量的系数变化, 当$\lambda $逐渐变大时, 变量的系数逐渐减少为零, 表示变量选择的过程, 当$\lambda $越大表示模型的压缩程度越大.
通过套索回归方法, 自动的将变量压缩为3个, 其性能从图 4中也可发现, 模型的AUC值为最佳, 最终的特征如表 2所示. $V0$为截距项; $V179$为横向小波分解90度共生矩阵Contrast特征; $V230$为横向小波分解90度共生矩阵Entropy特征.
表 2 Lasso选择得到的参数Table 2 Parameters selected by LassoLasso选择的参数 含义 数值 $P$值 $V0$ 截距项 2.079115 $V179$ 横向小波分解90度共生矩阵Contrast特征(Contrast_2_90) 0.0000087 < 0.001*** $V230$ 横向小波分解90度共生矩阵Entropy特征(Entropy_3_180) $-$3.573315 < 0.001*** $V591$ 表面积与体积的比例(Surface to volume ratio) $-$1.411426 < 0.001*** $V591$为表面积与体积的比例; 将三个组学特征与$N$分期进行单因素分析, 其$P$值都是小于0.05, 表示与淋巴结转移有显著相关性.根据Lasso选择后的三个变量建立Logistics模型并计算出Rad-score, 详见式(9).并且同时建立SVM (Support vector machine)模型.
NB (Naive Bayesian)模型, 进行训练与预测, LLR模型训练集AUC为0.710, 测试集为0.712, 表现较优; 如表 3所示.将实验中使用的三个机器学习模型的结果进行对比, 可以发现, LLR的实验结果是最好的.
表 3 不同方法对比结果Table 3 Comparison results of different methods方法 训练集(AUC) 测试集(AUC) 召回率 LLR 0.710 0.712 0.75 SVM 0.698 0.654 0.75 NB 0.718 0.681 0.74 $$ \begin{equation} \begin{aligned} &\text{Rad-score}=2.328373+{\rm Contrast}\_2\_90\times\\ &\qquad 0.0000106 -{\rm entropy}\_3\_180\times 3.838207 +\\ &\qquad\text{Maximum 3D diameter}\times 0.0000002 -\\ &\qquad\text{Surface to volume ratio}\times 1.897416 \\ \end{aligned} \end{equation} $$ (9) 2.3 诺模图个性化预测模型
为了体现诺模图的临床意义, 融合Rad-score, 吸烟情况和EGFR基因因素等有意义的变量进行分析, 绘制出个性化预测的诺模图, 如图 7所示.为了给每个病人在最后得到一个得分, 需要将其对应变量的得分进行相加, 然后在概率线找到对应得分的概率, 从而实现非小细胞肺癌淋巴结转移的个性化预测.我们通过一致性指数(Concordance index, $C$-index)对模型进行了衡量, 其对应的$C$-index为0.724.
本文中使用校正曲线来验证诺模图的预测效果, 如图 8所示, 由校正曲线可以看出, 预测结果基本上没有偏离真实标签的结果, 表现良好, 因此, 该模型具有可靠的预测性能[15].
3. 结论
在构建非小细胞肺癌淋巴结转移的预测模型中, 使用LLR筛选组学特征并构建组学标签, 并与显著的临床特征构建多元Logistics模型, 绘制个性化预测的诺模图.其中LLR模型在训练集上的AUC值为0.710, 在测试集上的AUC值为0.712, 利用多元Logistics模型绘制个性化预测的诺模图, 得到模型表现能力$C$-index为0.724 (95 % CI: 0.678 $\sim$ 0.770), 并且在校正曲线上表现良好, 所以个性化预测的诺模图在临床决策上可起重要参考意义.[16].
-
-
[1] 闫敬, 张立, 罗小元, 濮彬, 关新平. 异步时钟下基于信息物理融合的水下潜器协同定位算法. 自动化学报, 2019, 45(4): 739−748Yan Jing, Zhang Li, Luo Xiao-Yuan, Pu Bin, Guan Xin-Ping. Cooperative positioning algorithm of underwater vehicle based on information physical fusion under asynchronous clock. Acta Automatica Sinica, 2019, 45(4): 739−748 [2] 赵涛, 刘明雍, 周良荣. 自主水下航行器的研究现状与挑战. 火力与指挥控制, 2010, 35(6): 1−6 doi: 10.3969/j.issn.1002-0640.2010.06.001Zhao Tao, Liu Ming-Yong, Zhou Liang-Rong. Research status and challenges of autonomous underwater vehicles. Fire Control and Command Control, 2010, 35(6): 1−6 doi: 10.3969/j.issn.1002-0640.2010.06.001 [3] 陶雯, 陈鼎鼎, 何宁宁. 国外海军潜艇通信技术与装备发展. 通信技术, 2015, 48(4): 375−381 doi: 10.3969/j.issn.1002-0802.2015.04.001Tao Wen, Chen Ding-Ding, He Ning-Ning. Development of communication technology and equipment for naval submarines abroad. Communication Technology, 2015, 48(4): 375−381 doi: 10.3969/j.issn.1002-0802.2015.04.001 [4] 陆建勋. 抗干扰高频通信系统若干问题的探讨. 现代军事通信, 2002, 10(1): 28−30Lu Jian-Xun. Discussions on some problems of anti-jamming high frequency communication system. Modern Military Communication, 2002, 10(1): 28−30 [5] Feng L Y, Leung K W. Dual-frequency folded-parallel-plate antenna with large frequency ratio. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 340−345 doi: 10.1109/TAP.2015.2500607 [6] Kemp M A, Franzi M, Haase A, et al. A high Q piezoelectric resonator as a portable VLF transmitter. Nature communications, 2019, 10(1): 1715 doi: 10.1038/s41467-019-09680-2 [7] 丁春全, 宋海洋. 机械天线运动电荷和磁偶极子辐射研究. 舰船电子工程, 2019, 39(2): 171−175 doi: 10.3969/j.issn.1672-9730.2019.02.042Ding Chun-Quan, Song Hai-Yang. Research on the motion charge and magnetic dipole radiation of mechanical antenna. Ship Electronics Engineering, 2019, 39(2): 171−175 doi: 10.3969/j.issn.1672-9730.2019.02.042 [8] Prasad M N S, Huang Y, Wang Y E. Going beyond Chu harrington limit: ULF radiation with a spinning magnet array. In: Proceedings of XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Montreal, Canada: IEEE, 2017. 1−3 [9] Prasad M N S, Selvin S, Tok R U, et al. Directly modulated spinning magnet arrays for ULF communications. In: Proceedings of the 2018 IEEE Radio and Wireless Symposium (RWS). Anaheim, USA: IEEE, 2018. 171−173 [10] Bickford J A. Mechanical Antenna, U. S. Patent 10177452, January 2019 [11] Beihang University. A Low Frequency Communication System for Rotating Electret Mechanical Antenna, China Patent CN109004948A, December 2018 [12] Wuhan Institute of Ship Communication. A Low Frequency Antenna, China Patent CN108346851A, July 2018 [13] Xi'an University of Electronic Science and Technology. Miniaturized LF/VLF transmitting antenna based on acoustic standing wave resonant structure, China Patent CN108736157A, November 2018 [14] Chu Y, Zhong J, Liu H, et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Advanced Functional Materials, 2018, 28(40): 1803413 doi: 10.1002/adfm.201803413 [15] Erhard D P, Lovera D, von Salis-Soglio C, et al. Recent advances in the improvement of polymer electret films. Complex Macromolecular Systems II. Berlin Germang: Springer, 2010.155−207 [16] Pasku V, De Angelis A, Dionigi M, et al. A positioning system based on low-frequency magnetic fields. IEEE Transactions on Industrial Electronics, 2015, 63(4): 2457−2468 [17] Reis S, Castro N, Silva M P, et al. Fabrication and characterization of high-performance polymer-based magnetoelectric DC magnetic field sensors devices. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4928−4934 doi: 10.1109/TIE.2017.2668989 [18] Gautam P R, Kumar S, Verma A, et al. Energy-efficient localization of sensor nodes in wsns using beacons from rotating directional antenna. IEEE Transactions on Industrial Informatics, 2019, 15(11): 5827−5836 doi: 10.1109/TII.2019.2908437 [19] Madanayake A, Choi S, Tarek M, et al. Energy-efficient ULF/VLF transmitters based on mechanically-rotating dipoles. In: Proceedings of the 2017 Moratuwa Engineering Research Conference (MERCon). Sri Lanka: IEEE, 2017. 230−235 [20] 王沫楠. 基于血液供给条件和力学环境的骨折愈合仿真. 自动化学报, 2018, 44(2): 240−250Wang Mo-Nan. Fracture healing simulation based on blood supply conditions and mechanical environment. Acta Automatica Sinica, 2018, 44(2): 240−250 [21] Liang B, Cui Y, Song X, Li L, Wang C. Multi-block electret-based mechanical antenna model for low frequency communication. International Journal of Modeling, Simulation, and Scientific Computing, 2019, 10(5): 1950036 doi: 10.1142/S1793962319500363 [22] 张多佳. 超低频率机械天线机理及调制方法研究 . 西安理工大学,中国, 2019.Zhang Duo-Jia. Research on Mechanism and Modulation Method of Ultra-low Frequency Mechanical Antenna [Master thesis], Xi' an University of Technology, China, 2019. 期刊类型引用(4)
1. 王军,王佳慧,李玉莲,陈世海,吴保磊. 地下空间无人系统研究综述. 智能系统学报. 2024(01): 2-21 . 百度学术
2. 王龙飞,李丽华,修梦雷,侯文达. 机械天线通信技术研究现状. 电讯技术. 2023(04): 605-610 . 百度学术
3. LIU Wenyi,ZHANG Feng,SUN Faxiao,GONG Zhaoqian,LIU Xiaojun,FANG guangyou. Radiation Principle and Spatial Direct Modulation Method of a Low Frequency Antenna Based on Rotating Permanent Magnet. Chinese Journal of Electronics. 2022(04): 674-682 . 必应学术
4. 宋凯欣,闵书刚,高俊奇,张双捷,毛智能,沈莹,储昭强. 磁电机械天线的阻抗特性分析. 物理学报. 2022(24): 373-381 . 百度学术
其他类型引用(17)
-