2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于驻极体材料的机械天线式低频通信系统仿真研究

崔勇 王琛 宋晓

崔勇, 王琛, 宋晓. 基于驻极体材料的机械天线式低频通信系统仿真研究. 自动化学报, 2021, 47(6): 1335−1342 doi: 10.16383/j.aas.c190678
引用本文: 崔勇, 王琛, 宋晓. 基于驻极体材料的机械天线式低频通信系统仿真研究. 自动化学报, 2021, 47(6): 1335−1342 doi: 10.16383/j.aas.c190678
Cui Yong, Wang Chen, Song Xiao. Simulation and analysis of mechanical antenna low frequency communication system based on electret material. Acta Automatica Sinica, 2021, 47(6): 1335−1342 doi: 10.16383/j.aas.c190678
Citation: Cui Yong, Wang Chen, Song Xiao. Simulation and analysis of mechanical antenna low frequency communication system based on electret material. Acta Automatica Sinica, 2021, 47(6): 1335−1342 doi: 10.16383/j.aas.c190678

基于驻极体材料的机械天线式低频通信系统仿真研究

doi: 10.16383/j.aas.c190678
基金项目: “十三五” 军委装备发展预研领域基金(61405180302), 国家自然科学基金(51707006), 北京市自然科学基金(4192033)资助
详细信息
    作者简介:

    崔勇:北京航空航天大学自动化与电气工程学院副教授. 主要研究方向为电磁场和微纳传感.E-mail: cuiyong@buaa.edu.cn

    王琛:北京航空航天大学自动化与电气工程学院硕士研究生. 主要研究方向电磁场测量和仿真建模.E-mail: sy1703208@buaa.edu.cn

    宋晓:北京航空航天大学自动化学院副教授. 主要研究方向为深度学习, 知识图谱, 建模与仿真技术. 本文通信作者.E-mail: songxiao@buaa.edu.cn

  • 中图分类号: TN822+.1

Simulation and Analysis of Mechanical Antenna Low Frequency Communication System Based on Electret Material

Funds: “13th FIve Year Plan” Military Commission Equipment Development Pre-Research Field Fund (61405180302), National Natural Science Foundation of China (51707006), Beijing Natural Science Foundation (4192033)
More Information
    Author Bio:

    CUI Yong Associate professor at the School of Automation and Electrical Engineering, Beihang University. His research interest covers electromagnetic field and micro nano sensor

    WANG Chen Master student at the School of Automation and Electrical Engineering, Beihang University. His research interest covers electromagnetic field and model simulation

    SONG Xiao Associate professor at the School of Automation and Electrical Engineering, Beihang University. His research interest covers deep learning, knowledge graph, modeling and simulation. Corresponding author of this paper

  • 摘要: 在海洋信息网络体系日益重要的现在, 水下航行器越来越得到世界各国的重视, 无论是在民用还是在军用上, 都扮演着重要的角色. 与水下航行器的通信主要采用的是能以较小的损耗深入海水的低频通信技术, 而目前已有的低频通信系统发射台规模庞大, 天线占地广、天线暴露、目标明显、战时生存能力差, 极易被摧毁且难于短期修复, 且所需功耗巨大. 鉴于此, 本文提出了一种基于复合聚合物驻极体纳米材料的机械天线式低频通信方法, 从理论上研究了其产生的低频通信信号及计算公式, 定量分析了其在正常工作时的功率损耗和在不同介质中的衰减, 且在有限元分析软件中建立了相关模型进行仿真研究, 并通过理论解析模型和多物理场有限元模型的双重仿真结果的一致性, 以及仿真计算结果与机械天线样机的实测结果的对比, 验证了所提方法的可行性.
  • 图  1  驻极体式机械天线结构示意图

    Fig.  1  Schematic diagram of electret mechanical antenna structure

    图  2  磁场计算示意图

    Fig.  2  Schematic diagram of magnetic field calculation

    图  3  海水中不同频率电磁波传播示意图

    Fig.  3  Schematic diagram of electromagnetic wave propagation at different frequencies in seawater

    图  4  各参数对克服摩擦阻力所消耗功率的影响

    Fig.  4  The influence of various parameters on the power consumption to overcome friction resistance

    图  5  机械天线三维模型网格剖分图

    Fig.  5  Mesh generation of three-dimensional model of mechanical antenna

    图  6  有限元模型与理论解析模型的结果对比图

    Fig.  6  Comparisons of results between finite element model and theoretical analytical model

    图  7  机械天线不同介质传播效果图

    Fig.  7  The propagation of different media of mechanical antenna

    图  8  两种机械天线仿真结果比较图

    Fig.  8  Comparison of simulation results of two kinds of mechanical antennas

    图  9  样机测试平台整体思路图

    Fig.  9  Overall idea of prototype test platform

    图  10  实测数据与仿真结果比较图

    Fig.  10  Comparison diagram of measured data and simulation results

  • [1] 闫敬, 张立, 罗小元, 濮彬, 关新平. 异步时钟下基于信息物理融合的水下潜器协同定位算法. 自动化学报, 2019, 45(4): 739−748

    Yan Jing, Zhang Li, Luo Xiao-Yuan, Pu Bin, Guan Xin-Ping. Cooperative positioning algorithm of underwater vehicle based on information physical fusion under asynchronous clock. Acta Automatica Sinica, 2019, 45(4): 739−748
    [2] 赵涛, 刘明雍, 周良荣. 自主水下航行器的研究现状与挑战. 火力与指挥控制, 2010, 35(6): 1−6 doi: 10.3969/j.issn.1002-0640.2010.06.001

    Zhao Tao, Liu Ming-Yong, Zhou Liang-Rong. Research status and challenges of autonomous underwater vehicles. Fire Control and Command Control, 2010, 35(6): 1−6 doi: 10.3969/j.issn.1002-0640.2010.06.001
    [3] 陶雯, 陈鼎鼎, 何宁宁. 国外海军潜艇通信技术与装备发展. 通信技术, 2015, 48(4): 375−381 doi: 10.3969/j.issn.1002-0802.2015.04.001

    Tao Wen, Chen Ding-Ding, He Ning-Ning. Development of communication technology and equipment for naval submarines abroad. Communication Technology, 2015, 48(4): 375−381 doi: 10.3969/j.issn.1002-0802.2015.04.001
    [4] 陆建勋. 抗干扰高频通信系统若干问题的探讨. 现代军事通信, 2002, 10(1): 28−30

    Lu Jian-Xun. Discussions on some problems of anti-jamming high frequency communication system. Modern Military Communication, 2002, 10(1): 28−30
    [5] Feng L Y, Leung K W. Dual-frequency folded-parallel-plate antenna with large frequency ratio. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 340−345 doi: 10.1109/TAP.2015.2500607
    [6] Kemp M A, Franzi M, Haase A, et al. A high Q piezoelectric resonator as a portable VLF transmitter. Nature communications, 2019, 10(1): 1715 doi: 10.1038/s41467-019-09680-2
    [7] 丁春全, 宋海洋. 机械天线运动电荷和磁偶极子辐射研究. 舰船电子工程, 2019, 39(2): 171−175 doi: 10.3969/j.issn.1672-9730.2019.02.042

    Ding Chun-Quan, Song Hai-Yang. Research on the motion charge and magnetic dipole radiation of mechanical antenna. Ship Electronics Engineering, 2019, 39(2): 171−175 doi: 10.3969/j.issn.1672-9730.2019.02.042
    [8] Prasad M N S, Huang Y, Wang Y E. Going beyond Chu harrington limit: ULF radiation with a spinning magnet array. In: Proceedings of XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Montreal, Canada: IEEE, 2017. 1−3
    [9] Prasad M N S, Selvin S, Tok R U, et al. Directly modulated spinning magnet arrays for ULF communications. In: Proceedings of the 2018 IEEE Radio and Wireless Symposium (RWS). Anaheim, USA: IEEE, 2018. 171−173
    [10] Bickford J A. Mechanical Antenna, U. S. Patent 10177452, January 2019
    [11] Beihang University. A Low Frequency Communication System for Rotating Electret Mechanical Antenna, China Patent CN109004948A, December 2018
    [12] Wuhan Institute of Ship Communication. A Low Frequency Antenna, China Patent CN108346851A, July 2018
    [13] Xi'an University of Electronic Science and Technology. Miniaturized LF/VLF transmitting antenna based on acoustic standing wave resonant structure, China Patent CN108736157A, November 2018
    [14] Chu Y, Zhong J, Liu H, et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Advanced Functional Materials, 2018, 28(40): 1803413 doi: 10.1002/adfm.201803413
    [15] Erhard D P, Lovera D, von Salis-Soglio C, et al. Recent advances in the improvement of polymer electret films. Complex Macromolecular Systems II. Berlin Germang: Springer, 2010.155−207
    [16] Pasku V, De Angelis A, Dionigi M, et al. A positioning system based on low-frequency magnetic fields. IEEE Transactions on Industrial Electronics, 2015, 63(4): 2457−2468
    [17] Reis S, Castro N, Silva M P, et al. Fabrication and characterization of high-performance polymer-based magnetoelectric DC magnetic field sensors devices. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4928−4934 doi: 10.1109/TIE.2017.2668989
    [18] Gautam P R, Kumar S, Verma A, et al. Energy-efficient localization of sensor nodes in wsns using beacons from rotating directional antenna. IEEE Transactions on Industrial Informatics, 2019, 15(11): 5827−5836 doi: 10.1109/TII.2019.2908437
    [19] Madanayake A, Choi S, Tarek M, et al. Energy-efficient ULF/VLF transmitters based on mechanically-rotating dipoles. In: Proceedings of the 2017 Moratuwa Engineering Research Conference (MERCon). Sri Lanka: IEEE, 2017. 230−235
    [20] 王沫楠. 基于血液供给条件和力学环境的骨折愈合仿真. 自动化学报, 2018, 44(2): 240−250

    Wang Mo-Nan. Fracture healing simulation based on blood supply conditions and mechanical environment. Acta Automatica Sinica, 2018, 44(2): 240−250
    [21] Liang B, Cui Y, Song X, Li L, Wang C. Multi-block electret-based mechanical antenna model for low frequency communication. International Journal of Modeling, Simulation, and Scientific Computing, 2019, 10(5): 1950036 doi: 10.1142/S1793962319500363
    [22] 张多佳. 超低频率机械天线机理及调制方法研究 . 西安理工大学,中国, 2019.

    Zhang Duo-Jia. Research on Mechanism and Modulation Method of Ultra-low Frequency Mechanical Antenna [Master thesis], Xi' an University of Technology, China, 2019.
  • 加载中
图(10)
计量
  • 文章访问数:  4823
  • HTML全文浏览量:  1731
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-25
  • 录用日期:  2019-12-15
  • 网络出版日期:  2020-01-17
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回