2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

证据推理理论及其应用

周志杰 唐帅文 胡昌华 曹友 王杰

原豪男, 郭戈. 交通信息物理系统中的车辆协同运行优化调度. 自动化学报, 2019, 45(1): 143-152. doi: 10.16383/j.aas.c180354
引用本文: 周志杰, 唐帅文, 胡昌华, 曹友, 王杰. 证据推理理论及其应用. 自动化学报, 2021, 47(5): 970−984 doi: 10.16383/j.aas.c190676
YUAN Hao-Nan, GUO Ge. Vehicle Cooperative Optimization Scheduling in Transportation Cyber Physical Systems. ACTA AUTOMATICA SINICA, 2019, 45(1): 143-152. doi: 10.16383/j.aas.c180354
Citation: Zhou Zhi-Jie, Tang Shuai-Wen, Hu Chang-Hua, Cao You, Wang Jie. Evidential reasoning theory and its applications. Acta Automatica Sinica, 2021, 47(5): 970−984 doi: 10.16383/j.aas.c190676

证据推理理论及其应用

doi: 10.16383/j.aas.c190676
基金项目: 国家自然科学基金(61773388, 61751304, 61833016, 61702142), 海南省重点研发计划(ZDYF2019007)资助
详细信息
    作者简介:

    周志杰:火箭军工程大学教授. 2010年获得清华大学博士学位. 主要研究方向为证据推理, 置信规则库, 故障诊断, 安全性评估.E-mail: zhouzj04@tsinghua.org.cn

    唐帅文:火箭军工程大学博士研究生. 2017年获得火箭军工程大学学士学位. 主要研究方向为证据推理, 故障诊断, 安全性评估.E-mail: tsw631845201@163.com

    胡昌华:火箭军工程大学教授, 长江学者. 1996年获得西北工业大学博士学位. 主要研究方向为故障诊断, 寿命预测. 本文通信作者.E-mail: hch66603@163.com

    曹友:火箭军工程大学博士研究生. 2017年获得哈尔滨理工大学学士学位. 主要研究方向为证据推理, 置信规则库, 安全性评估.E-mail: cy936756268@163.com

    王杰:火箭军工程大学博士研究生. 2018年获得合肥工业大学学士学位. 主要研究方向为证据推理, 故障诊断, 安全性评估.E-mail: wj2802877478@163.com

Evidential Reasoning Theory and Its Applications

Funds: Supported by National Natural Science Foundation of China (61773388, 61751304, 61833016, 61702142) and Key Research and Development Plan of Hainan Province (ZDYF2019007)
More Information
    Author Bio:

    ZHOU Zhi-Jie Professor at Rocket Force University of Engineering. He received his Ph.D. degree from Tsinghua University in 2010. His research interest covers evidential reasoning, belief rule base, fault diagnosis, and safety assessment

    TANG Shuai-Wen Ph.D. candidate at Rocket Force University of Engineering. He received his bachelor degree from Rocket Force University of Engineering in 2017. His research interest covers evidential reasoning, fault diagnosis, and safety assessment

    HU Chang-Hua Professor at Rocket Force University of Engineering, Cheung Kong Scholar. He received his Ph.D. degree from Northwestern Polytechnical University in 1996. His research interest covers fault diagnosis and life prediction. Corresponding author of this paper

    CAO You Ph.D. candidate at Rocket Force University of Engineering. He received his bachelor degree from Harbin University of Science and Technology in 2017. His research interest covers evidential reasoning, belief rule base, and safety assessment

    WANG Jie Ph.D. candidate at Rocket Force University of Engineering. He received his bachelor degree from Hefei University of Technology in 2018. His research interest covers evidential reasoning, fault diagnosis, and safety assessment

  • 摘要:

    证据理论既能够灵活处理不确定信息, 包括随机性、模糊性、不准确性和不一致性, 又能够有效融合定量信息和定性知识. 目前, 证据理论已广泛应用于评估与决策等多个领域中, 包括多属性决策分析、信息融合、模式识别和专家系统等. 本文从D-S证据理论出发, 针对Dempster组合规则存在的“反直觉”问题和组合爆炸, 主要围绕置信分布理论系统地梳理了证据理论的发展过程, 总结分析了国内外典型文献, 最后从实际应用对证据理论进行了简要的评述和展望.

  • 公路货物运输是原材料和产品有效运送和及时供应的关键供应链组成部分, 占地面货物运输的60%[1], 对社会经济发展至关重要.随着经济的持续发展, 货运市场呈现多元化趋势, 新市场不断涌现, 客户群不断增长.同时, 行业内的竞争日趋激烈, 燃料价格及运输成本不断走高, 温室气体排放限制更为严格, 使得公路货运面临严峻的挑战.许多企业开始在保证运输业务高质量的同时, 寻求降低运输成本的方法.例如, 道路基础设施运营商探讨通过道路可变限速、匝道合并、可选路线推荐等措施来提高交通系统的安全与效率[2], 而货物运输运营商则侧重研究运行优化方法、算法及规划软件[3], 包括油耗建模及基于不同油耗模型的交通规划[4].

    近年来, 基于信息和通信技术的交通信息物理系统(Transportation cyber physical systems, TCPS)为解决上述问题提供了有效的方案.该系统集成的环保型车辆通常配备先进的信息处理和通讯设备, 可实现车辆与车辆、车辆与设备通信[5].同时, 云计算和服务框架为TCPS提供了强大的计算及存储能力, 并可与第三方工具和服务无缝集成, 使得车辆的实时协调和自动控制成为可能.利用TCPS的部分功能, 即可实现车辆的小间距跟随行驶控制(称为车队技术或道路火车技术), 在提高道路容量、降低燃料消耗、提高交通效率和安全性等[6]方面有巨大的潜力, 受到研究人员、汽车制造业和交通运输部门的广泛关注.文献[7]研究了具有公共路段的车辆合并算法, 并对实际车队行驶进行验证和评估.文献[8]提出一种基于本地控制器的快速车队合并启发式算法.文献[9]提出一种基于最短路径和燃油最优的集中式车辆协调调度和控制方法.文献[10]采用数据挖掘技术研究了不同车队的经济性.

    TCPS的核心并不在于车辆的协同编队问题, 而在于通过交通载运工具、交通参与者、基础设施等交通要素的信息感知, 利用高效可靠的信息传输和计算处理能力, 形成有效、完备的控制信息, 实现对交通运输系统的实时高效优化控制.简而言之, TCPS的主要规划手段为大范围的交通优化调度.尽管目前对所有车辆进行调度尚不现实, 但如果拥有庞大规模车辆的运输公司能大范围合理调度和优化车辆任务路径和速度, 使尽可能多的车辆在公共路段组成小间距车队行驶, 则可大大降低运行成本和油耗.研究人员已对该问题进行了研究, 文献[9]提出了一种大规模车辆的协调方案, 此方案首先确定车辆的最短路径, 然后在最短路径的基础上确定车队的组成.文献[11]同样基于固定路径, 通过实施追赶策略完成车辆的最优分配.但实际中, 由于交通状况、道路特征等因素使得最短路径的能耗并非最优, 即路径最短可能并非最佳行驶路径[12].受文献[12]以``绿色路径"的启发, 本文从不同角度研究车辆的优化调度问题.考虑到路径的改变可能促成更多车辆的合并, 对同一区域位置和路径相近的多辆货车, 可微调部分或全部车辆的速度与路径, 使其在某些公共路段组成车队行驶, 从而节约燃料.这样调度车辆合并的过程中, 车辆的加速、减速和改变路径意味着不同的油耗或成本, 加速会因空气阻力增大而导致油耗增加, 而减速与改变路线可能导致延误问题.因此, 如果涉及的车辆数量较大, 则计算每辆车的最优行驶计划将非常困难.

    大规模车辆调度的关键问题是如何有效划分车队集合, 即如何从大范围车辆中选择出领队车辆及相应的跟随车辆.受聚类算法的中心点划分思想启发[13], 本文采用聚类算法将大范围车辆划分为车辆集合, 大大降低了车辆调度优化问题的难度[14].具体思想是以车辆合并行驶的最大燃料节约率为量度依据, 通过聚类分析将大范围的车辆划分为多个车队集合, 并筛选出领队车辆.

    本文的贡献在于基于TCPS提供的车辆及交通信息, 考虑车辆速度与油耗的关系、车队行驶节约燃油以及速度与路径选择对到达时间的影响, 提出一种基于油耗优化的大规模运输车辆调度方法. 1)在保证不延误的前提下协同规划新的行驶路径, 使最初没有公共路段的车辆拥有部分共同路段, 以油耗优化为依据, 调度它们到指定的共同路段合并列队行驶; 2)同时改变车辆路径和速度, 使车辆尽快合并列队行驶; 3)采用全局优化合并策略, 调度所有车辆同时合并列队行驶, 避免成对合并时节油率相近车辆需等待合并的问题.

    本文结构如下:第1节为问题描述; 第2节从速度、时间、位置等角度分析车辆的合并可行性, 通过本文算法及聚类分析规划出车队集合, 并针对每个集合中的车辆调度方案实现进一步的优化; 第3节为信息传输异常及突发交通状况等问题的解决方案; 第4节为仿真分析; 第5节为结论和展望.

    设目标路网中存在一个有限运输任务的集合, 每个运输任务绑定一辆重型货车.车辆$i$的运输任务$A_{i}=(P_{i}^{s}, P_{i}^{d}, t_{i}^{s}, t_{i}^{d})$, 包括车辆的起点$P_{i}^{s}$、终点$P_{i}^{d}$、出发时间$t_{i}^{s}$、到达时间$t_{i}^{d}$, 车辆当前位置$P_{i}$ $=$ $(e_{i}(t)$, $x_{i}(t))$, $e_{i}(t)$表示车辆所处道路段, $x_{i}(t)$为车辆在该路段行驶的距离.函数$L(e_{i})$表示路网模型与实际道路长度的映射关系.用$R=({N}, {E})$描述路网, $ N$为所有节点的集合, $E$为所有边的集合, 分别表示道路交叉口和连接两交叉口的路段.

    实际路网中几乎所有的车辆都是单独行驶, 缺少车辆间的协作, 本文以车队行驶能有效减少跟随车辆的油耗为基础, 通过改变车辆的路径与速度使原本单独行驶的车辆有机会合并成车队, 且较单独行驶能够节约能耗.车辆的换路合并如图 1.车辆在合并过程中包含单独行驶($t_{i}^{s}, t_{i}^{m}$)、合并($t_{i}^{m}, t_{i}^{p}$)、车队行驶($t_{i}^{p}, t_{i}^{sp}$)和分离行驶($t_{i}^{sp}, t_{i}^{d}$)四个阶段, 每个阶段的对应速度如图 1所示.值得注意的是, 并非所有合并车辆都包含四个运输阶段.例如, 部分车辆从出发地就与其他车辆组成车队行驶, 不存在单独行驶与合并阶段; 也并不是所有车辆的合并都需要改变路径, 图 1仅是对本文调度策略的一个说明.

    图 1  车辆换路合并示意图
    Fig. 1  The schematic diagram of vehicle merging

    车队行驶时, 忽略车队中的车间距及车辆的物理尺寸, 认为车队中所有车辆都有相同的位置和速度, 每个车队包括一辆领队车及一辆或多辆跟随车, 且只有跟随车辆能够节约能耗.

    以速度的一阶多项式对车辆单位距离的油耗进行建模, 并认为此种建模方式在速度区间$[v_{\min}$, $v_{\max}]$内与实际油耗相近, 满足本文的研究需求.根据文献[15], 可将油耗模型描述为

    $ \begin{align} f(v, \theta(p))=&\ \theta(p)(F_{1p}v+F_{0p})\, + \nonumber\\ &\ (1-\theta(p))(F_{1}v+F_{0}) \end{align} $

    (1)

    其中, $v$表示车辆速度, $F_{1}$, $F_{0}$, $F_{1p}$, $F_{0p}$为常数, $\theta(p)$为二值函数, $\theta(p)=0$表示车辆单独行驶或作为车队中的领队车辆, $\theta(p)=1$表示车队中的跟随车辆.

    所以车辆$i$从起点到终点的总油耗为

    $ \begin{align} F_{i}(v, \theta(p))=\sum\limits_{n=1}^{N_{i}^{d}}\int_{0}^{L(e[n])}f(v_{i}[m], \theta(p)){{\rm{d}}}x \end{align} $

    (2)

    其中, $v_{i}[m]$表示车辆$i$的速度序列且每辆车的$m$值不同, $N_{i}^{d}$表示车辆$i$从起点到终点的路段数.所有车辆完成合并后的总油耗为

    $ \begin{align} F_{\mathit{\boldsymbol{total}}}=\sum\limits_{i\in N_{c}}F_{i}(v, \theta(p)) \end{align} $

    (3)

    本文的目标是在保证所有车辆准时到达终点的前提下, 规划出最省油的运输方案.每辆车的运输方案主要包括车辆从起点到终点的路径及速度.

    定义1(运输方案). 车辆运输方案$P=(e, v, t)$, 包括路径$e$、速度序列$v$、时间序列$t$.路径$e$由路网中$N_{e}$条边的序列组成, $e=(e[1], e[2], \cdots, e[N_{e}])$, , 速度序列.原则上车辆速度在任意时刻都可发生改变, 本文假设速度仅在交通调度或拥堵时发生改变, 其他情况均保持匀速行驶.所以$N_{v}\leq N_{e}$.根据速度变化定义时间序列$t=(t[1], t[2], \cdots, $ $t[N_{v}+1])$, 即速度$v[k]$在$(t[k], t[k+1])$保持不变.

    目前, 信息和通信技术被广泛应用于交通运输系统中, 将传感器、控制单元和自动化技术与微芯片相结合, 使它们能够通过无线技术相互通信.因此, 现代交通运输系统的特点是运输物理空间(车辆动力学)和运输网络空间(传感器网络和通信网络)之间的紧密耦合.本文考虑如图 2所示的调度系统, 该系统由物理和网络两个平面组成.物理平面描述了交通环境约束下的车辆移动性, 而网络平面描述交通物理系统和通信网络的信息.车辆通过先进的传感及通讯技术实时共享车辆的运输信息, 然后通过中央处理器计算出每辆车的运输计划并发送回车辆.当有信息更新时(例如车辆偏离计划运输方案, 运输任务的结束或新任务的产生), 重复上述规划过程.

    图 2  车辆调度系统
    Fig. 2  Vehicle scheduling system

    交通信息物理系统是最复杂的控制系统之一, 为车辆调度及合并问题提供有效的理论方法和解决方案.为了分析的易处理性, 本文仅考虑在这个贡献中没有时间延迟的确定性情况(因网络传输延时对远距离车辆调度影响忽略不计), 且控制决定可以立即执行.车辆在网络平面的运输方案的规划分为以下几个阶段:

    1) 收集每辆车可选择的前$N$条最短路径;

    2) 对所有目标车辆的合并可行性进行分析;

    3) 初步规划出车辆的运输方案, 并筛选出领队车辆;

    4) 加入速度优化, 规划出车辆的运输方案$P$.

    由于阶段1的路径规划问题已经有了相当成熟的算法[16], 所以本文不针对路径选择问题进行过多阐述, 只需规划出满足条件$\sum_{n=1}^{N_{i}^{d}}L(e[n])/v_{i{\max}}$ $\leq$ $t_{i}^{d}$ $-$ $t_{i}^{s}$的$N$条最短路径即可.

    车队的形成对于实现车辆调度至关重要, 如何有效地将分散在道路中的车辆组成车队是本文研究的关键问题, 在调度前需要比较各路预测旅行时间及能耗的差异, 当变更路径后效用增值超过一定阈值时, 改变预选路径(最短路径)及速度.为此, 需要判断车辆$i$和$j$是否满足换路合并的条件, 即从时间、空间、能耗的角度分析车辆调度后能否满足运输任务的需求.

    $ \begin{align} &t_{i}^{s}+\frac{\sum\limits_{n=1}^{N_{i}^{D_{i}}}L(e[n])}{v_{i{\max}}}<t_{i}^{d}\nonumber\\& t_{j}^{s}+\frac{\sum\limits_{n=1}^{N_{j}^{D_{j}}}L(e[n])}{v_{j{\max}}}<t_{j}^{d} \end{align} $

    (4)

    $ \begin{align} &\small{\left|\frac{\sum\limits_{n=1}^{N_{i}^{m}}L(e[n])}{(1\!-\gamma)v_{i{\max}}\!+\gamma v_{i{\min}}}-\frac{\sum\limits_{n=1}^{N_{j}^{m}}L(e[n])}{(1\!-\gamma)v_{j{\min}}\!+\gamma v_{j{\max}}}\right|<} \nonumber\\ &\qquad\quad |t_{i}^{s}-t_{j}^{s}|, e[N_{i}^{m}]\in(e[t_{m}], e[t_{sp}]) \end{align} $

    (5)

    $ \begin{align} J_{\rm{coordination}}^{*}+c_{th}<J_{\rm{nominal}} \end{align} $

    (6)

    其中, $N_{i}^{D_{i}}$和$N_{j}^{D_{j}}$表示车辆$i$和$j$从出发地到目的地的总路段数, 上标$D_{i}$和$D_{j}$表示可选择路径集, $N_{i}^{m}$和$N_{j}^{m}$表示车辆从出发地到相遇路段的路段数, $e[t_{m}]$和$e[t_{sp}]$分别表示公共路段的起止路段, $\gamma$为二值函数, 当车辆$i$到公共路段的距离大于车辆$j$时, $\gamma=0$, 否则, $\gamma=1$和$J_{\rm{coordination}}^{*}$和$J_{\rm{nominal}}$分别表示车辆单独行驶与换路合并行驶的最佳能耗, $c_{th}$为合并阈值, 表示改变路径或速度后增加的其他成本.为简化设计, 本文考虑$c_{th}=0$.式(4)为合并路径可行性, 表示车辆在准时到达的前提下的可选择路径集; 式(5)为时间可行性, 表示车辆能够在公共路段处完成合并行驶; 式(6)为油耗可行性, 表示采用合并行驶方案较单独行驶能够节约油耗, 其中JnominalJcoordination*表示如下:

    $ \begin{array}{l} {J_{{\bf{nominal}}}} = \left( {\sum\limits_{n = N_i^{{\rm{now}}}}^{N_i^{{d_{\min }}}} L (e[n]) - x_i^{{\rm{now}}}} \right) \times \\ \left( {{F_1}\frac{{\sum\limits_{n = N_i^{{\rm{now}}}}^{N_i^{{d_{\min }}}} L (e[n])}}{{t_i^d - t_i^s}} - \frac{{x_i^{{\rm{now}}}}}{{t_i^d - t_i^s}} + {F_0}} \right)\\ \end{array} $

    (7)

    $ \begin{array}{l} J_{{\bf{coordination}}}^* = {v_c}{t_c}({F_i}{v_c} + {F_0}){\mkern 1mu} + \\ \quad \left( {\sum\limits_{n = N_i^{{\rm{now}}}}^{N_i^{sp}} L (e[n]) - x_i^{{\rm{now}}} - {v_c}{t_c}} \right)({F_{1p}}{v_p} + {F_{0p}}){\mkern 1mu} + \quad \\ \left( {\sum\limits_{n = N_i^{sp} + 1}^{N_i^d} L (e[n])} \right)({F_1}{v_a} + {F_0}) \end{array} $

    (8)

    其中, $v_{p}={\sum\nolimits_{n=1}^{N_{j}^{\min}}L(e[n])}/({t_{j}^{d}-t_{j}^{s}})$表示车队行驶的速度. $t_{c}=(\sum\nolimits_{n=N_{j}^{}}^{N_{m}}L(e[n])-\sum\nolimits_{n=N_{i}^{}}^{N_{m}}L(e[n])$ $+$ $x_{i}^{\rm now}-x_{j}^{})/{(v_{c}-v_{p})}$表示后车经过$t_{c}$时间后追上前车组成车队行驶, $N_{i}^{\rm now}$, $N_{i}^{sp}$, $N_{i}^{d{\min}}$, $N_{i}^{dc}$分别为车辆当前时刻、分离时刻、最短路径及调度路径的路段数, $x_{i}^{\rm now}$表示当前时刻车辆$i$在路段$N_{i}^{}$上行驶的距离.车队分离后的速度$v_{a}$取决于追赶速度$v_{c}$, 其函数关系如下:

    $ \begin{align} v_{a}=\frac{\sum\limits_{n=N_{i}^{sp}+1}^{N_{i}^{d_{c}}}L(e[n])v_{0}v_{p}}{ X- Y -Z} \end{align} $

    (9)

    其中,

    $ \begin{align*}&X=v_{p}v_{0}(t_{i}^{d}-t_{i}^{s}-t_{c}) \\&Y=v_{0}\left(\sum\limits_{n=N_{i}^{\rm now}}^{N_{i}^{sp}}L(e[n])-x_{i}^{\rm now}-v_{c}t_{c}\right)\\& Z=v_{p}\left(\sum\limits_{n=1}^{N_{i}^{\rm now}-1}L(e[n]) +x_{i}^{\rm now}\right)\end{align*} $

    所以能耗最优的追赶速度$v_c$表示如下:

    $ \begin{align} v_{c}=\, &\mathop{\arg{\min}}_{v\in[v_{\min}, v_{\max}]}\Bigg[vt(F_{1}v+F_{0})\, + \nonumber\\&\Bigg(\!\sum\limits_{n=N_{i}^{\rm now}}^{N_{i}^{sp}}L(e[n])\!- vt\!-x_{i}^{\rm now}\!\Bigg)(F_{1p}v_{p}\!+F_{0p})\, + \nonumber\\&\left(\sum\limits_{n=N_{i}^{sp}+1}^{N_{i}^{dc}}L(e[n])\right) (F_{1}v_{a}+F_{0})\Bigg] \end{align} $

    (10)

    其中, 时间$t$表示后车追上前车的时间, 与上文中的$t_{c}$意义相同.

    注1. 本文计划通过调度所有车辆的路径与速度来完成编队行驶, 而前文的描述仅考虑调度部分车辆完成车队行驶的问题.由于直接改变所有车辆的路径与速度可能会产生一个领队车辆存在多个候选车辆且不能完成与所有候选车辆的合并问题, 所以本文首先通过局部调度方法实现车辆的初步优化, 然后在局部调度的基础上实现改进优化.

    本节将车辆的默认运输方案与调度方案结合, 从大范围车辆中规划出可合并的车辆集合.每个车辆集合包含一个领队车辆与多个最优跟随车辆, 最优跟随车辆表示该车辆与其所在的车辆集合中的领队车辆合并成车队行驶能够最大限度的节约能耗.其中, 领队车辆保持其默认运输方案, 跟随车辆实施调度方案.

    定义2 (默认运输方案). 车辆按照出发时选定的路径及速度行驶, 在到达目的地之前, 路径及速度不发生改变.

    定义3(调度方案). 车辆通过改变路径与速度在公共路段完成与其他车辆的合并, 组成车队行驶.

    根据式(7)和式(8)的计算结果, 定义两辆车合并行驶的燃料节约率$k$, 循环计算每辆车实施默认运输方案、其他车辆实施调度方案所有车辆间的$k$值, 并将所有的$k$值作为车辆协调图的权重.通常情况下的两辆车, 分别采用调度方案时, 只有一辆车能满足到达时间的限制, 所以, 本文认为任意两节点间的边只有一条, 权重值只有一个.不存在$A$车可以作为$B$车的候选合并车辆、$B$车也可以作为$A$车的候选合并车辆的情况.

    $ \begin{align} k=1-\frac{J_{\rm{coordination}}^{*}}{J_{\rm{nominal}}} \end{align} $

    (11)

    定义4 (车辆协调图). 车辆协调图为有向加权图$G=(N_{c}, \varepsilon_{c}, W_{c})$, $N_{c}$为节点的集合, 每个节点表示一辆运输车辆, $\varepsilon_{c}$为连接两个节点的边的集合, $W_{c}$$=k$为每个边的非负权重.如果车辆之间不能合并成车队行驶或合并后不能节省油耗, 那么这两个节点间不存在边.

    根据上述定义, 首先通过领队车辆选择算法筛选出领队车辆, 简化协调图中的部分边, 然后通过聚类算法规划出车辆的合并集合.算法中$j$表示协调图中直接与$i$相连的车辆集合, $k_{ij}$为车辆$i$和$j$合并行驶的燃料节约率, 其中$i$为领队车辆, $j$为跟随车辆, $\exists k_{(j+1)(j+2)}>_{j(j+1)}$表示存在一种车辆组合$j+1$, $j+2$的燃料节约率大于所有的车辆$j$, $j$ $+$ $1$的组合.车辆$i$与车辆集合$j$, $j+1$, $j+2$的关系如图 3所示.领队车辆集合筛选完成后, 需要确定每个集合中的跟随车辆, 由于领队车辆的确定简化了协调图中部分车辆间的边的关系, 使得候选车辆的选择问题类似于数学中的聚类分析问题, 且已知聚类中心的个数, 所以通过$k$中心点算法来获得每个车队集合中的跟随车辆, 计算车辆$i$应该属于的车队.

    图 3  车辆与车辆集合的关系示意图
    Fig. 3  The schematic diagram of the relationship between vehicles and vehicle sets

    $ \begin{align} P^{(i)}:=\mathop{\arg{\min}}_{n_{l}\in N_{l}}k_{in_{l}} \end{align} $

    (12)

    其中, $P^{(i)}$表示将车辆$i$分配给$N_{l}$个车队中节油率最高的车队, 通过比较候选跟随车辆与不同领队车辆间的最大燃料节约率$k$值, 将跟随车辆划入$k$值最大的领队车量集合中, 以此初步确定车辆的合并方案.

    算法1.领队车辆选择算法

    输入. finitely transport assignments $N_c$

    输出. leading vehicle set $N_I$

    $N_I\leftarrow \varnothing$, $i=1$, $j\subset N_c \backslash N_I$

    While $i\leq N_c$

    If

    $k_{ij}>k_{ji}~~\&~~k_{ij}>k_{j(j+1)}~~\&~~k_{ij}>k_{(j+1)j}$~

    Then

    $N_I\leftarrow N_I\cup \{i\}$

    Else if

    $k_{ij}<0~~\&~~(k_{ij}>k_{j(j+1)}\|k_{ij}<k_{(j+1)j})~~\&$

    Then

    $N_I\leftarrow N_I\cup\{i\}$

    End if

    End if

    $i\leftarrow i+1$

    End While

    本节考虑通过第2.3节规划出的车队集合$P$中的车辆的速度优化问题.根据文献[17]可知, 当两辆车合并成车队时, 同时调节两辆车的速度相对于单一追赶策略能够更大限度地节省能耗.而前文中的调度方案是在领队车辆采用默认运输方案、跟随车辆采用调度方案的基础上确定的.而本文是在保证车辆集合中所有车辆能够完成合并的前提下做出进一步速度优化, 该优化可以改变车队集合中所有车辆的速度与路径, 即每个车队集合中所有车辆均可执行调度方案.其中, 车队集合中所有车辆的公共路段集合用$R=\{e_{1}, e_{2}, \cdots, e_{n}\}$表示, $n$为最大公共路段数.

    考虑每个车辆集合中包含一辆领队车辆$n_{l}$及多辆跟随车辆$N_{f_{i}, n_{l}}=\{f_{1}, f_{2}, \cdots\}$, 需要规划出每辆车的速度序列$V_{i}=\{v_{i}^{s}, v_{i}^{m}, v_{i}^{p}, v_{i}^{sp}\}$及时间序列$T_{i}$$=\{t_{i}^{s}, t_{i}^{m}, t_{i}^{p}, t_{i}^{sp}\}$.

    车队集合中的车辆速度优化问题描述如下:

    $ {\mathop {\min \quad }\limits_{e:{e_i} \in R} \sum\limits_{i \in v} {{d_i}} f({v_i},{\theta _p})} $

    (13)

    $ \begin{array}{l} \begin{array}{*{20}{l}} {}\\ {{\rm{s}}.{\rm{t}}.\quad \sum\limits_{N = N_i^{{\rm{now}}}}^{N_i^m} L (e[n]) \le v_i^c(t_i^p - t_i^c) + } \end{array}\\ x_i^{{\rm{now}}} \le \sum\limits_{n = n_i^{{\rm{now}}}}^{n_i^{sp}} L (e[n]) \end{array} $

    (14)

    $ {v_{\min }} \le \forall v \le {v_{\max }} $

    (15)

    目标函数(13)与式(3)意义相同, 表示每个车辆集合中所有车辆从出发位置到目的地的油耗和.两个限制条件(14)和(15)分别表示对合并位置与速度的限制, 即所有车辆的合并必须发生在公共路段处且车辆的速度始终保持在道路交通所允许的速度范围内, 其中$v_{i}$表示车辆$i$各个阶段的速度序列, $d_{i}$表示各阶段行驶的距离, 表示如下:

    $ {d_i} = \left\{ {\begin{array}{*{20}{l}} {\frac{{\sum\limits_{N = N_f^{{\rm{now}}}}^{{N^m}} L (e[n]) - \sum\limits_{N = N_l^{{\rm{now}}}}^{{N^m}} L (e[n])}}{{v_f^c - v_l^c}}v_i^c + }\\ {\qquad \qquad \frac{{x_l^{{\rm{now}}} - x_f^{{\rm{now}}}}}{{v_f^c - v_l^c}}v_i^c,\qquad t \in [t_i^m,t_i^p]}\\ {\frac{{\sum\limits_{N = N_l^{{\rm{now}}}}^{N_l^{sp}} - x_l^{{\rm{now}}} - v_l^c(t_l^p - t_l^c)}}{{v_l^p}},\;\;t \in (t_i^p,t_i^{sp})}\\ {\frac{{\sum\limits_{N = N_i^{sp}}^{N_i^d} L (e[n])}}{{v_i^{sp}}}v_i^{sp},\quad \qquad \qquad t \in [t_i^{sp},t_i^d]} \end{array}} \right. $

    上述优化问题可借助计算机利用数学规划方法得到各阶段与各个车辆的最优驾驶速度, 将结果带入式(16)可得到相应的合并点及分离点的时刻与位置.

    对于本文的运输系统而言, 网络的引入虽然为分散行驶的车辆调度与规划带来了方便, 但无线传感网络的查询处理过程中的感知信息缺失问题不可避免, 将给调度系统带来不利影响, 甚至造成不稳定.另外, 实际交通状况也可能造成车辆的误调度.将上述存在的问题视为干扰项, 并提出相应的解决框架.由于网络延时对大范围车辆调度影响较小, 所以针对网络信息传输异常数据及其突发情况造成的部分路段的车辆延误问题, 提出了解决方案, 同时也说明了本文运输系统的可扩展性.

    车辆及规划信息的传递在时间维度上可以看成一个时间序列, $y_{in}$为$T_{n}$时刻物理(网络)平面接收的车辆规划信息(车辆信息), 当$y_{ik}$, $k\in[1, n]$时刻信息异常时, 需要对该时刻信息进行替换补偿.通常物理平面与网络平面的突发状况都表现为网络感知信息异常.异常信息的传输可能导致运输系统对车辆的运输计划进行重新规划, 反复的规划占用大量系统资源, 降低运输方案的可执行性.针对网络传输过程中的异常信息的问题, 本文提出了一种基于车辆集合中不同车辆时空相关性的异常值替换算法, 该算法的有效性在其他领域的应用已得到证明.

    定义5 (异常信息). 车辆在执行运输计划的过程中, 未收到计划信息(通常指速度信息)或收到的计划信息发生突变而同一车队集合中的其他车辆运输计划信息保持不变, 则认为该车辆发送或接收的信息异常(忽略速度调度时的信息异常).

    由于车队集合中不同车辆的空间相关性, 当某辆车或网络平面收到的速度信息异常时, 可以利用STM算法通过车队集合中的其他车辆的信息对其进行估计.为不失一般性, 设同一时刻仅存在一辆车速度异常.由于路径信息的不可跳变性, 所以只针对车辆的速度异常信息进行估计, 采用STM算法模型刻画目标车辆与车队其他车辆的速度相关性, 车辆$i$对任意时刻$t$的估计信息如下:

    $ \begin{align} \hat{v}_{it}=w_s\hat{v}_{it}^{s}+w_Tv_{it}^{t} \end{align} $

    (16)

    其中, $\hat{v}_{it}^{s}$和$\hat{v}_{it}^{t}$分别表示$t$时刻采用SM与TM算法对车辆$i$的速度的估计值, $w_{s}$与$w_{T}$为权重系数, $0$ $<$ $w_{s}$, $w_{T}<1$, 表示为

    $ \begin{array}{l} {w_s} = \frac{{\bar R_s^2}}{{\bar R_s^2 + \bar R_T^2}}\\ {w_T} = \frac{{\bar R_T^2}}{{\bar R_s^2 + \bar R_T^2}} \end{array} $

    (17)

    $ {\bar R^2} = 1 - \left( {1 - \frac{{\sum\limits_{n = 1}^h {{{({{\hat v}_{in}} - {{\bar v}_i})}^2}} }}{{\sum\limits_{n = 1}^h {{{({v_{in}} - {{\bar v}_i})}^2}} }}} \right)\frac{{h - 1}}{{h - k - 1}} $

    (18)

    其中, $\bar{v}_i$为车辆$i$接收速度信息的均值, $h$为估计样本容量, $k$为车队中其他车辆的个数.可以看出该权重系数主要取决于回归方程对样本的拟合程度.

    基于空间相关性的SM算法对车辆$i$在$t$时刻的估计信息如下:

    $ \begin{align} \hat{v}_{it}^s=\hat{\beta}_0+\hat{\beta}_1v_{1t}\, +\hat{\beta}_2v_{2t}\, +\cdots+\hat{\beta}_mv_{mt} \end{align} $

    (19)

    其中, $\hat{v}_{it}^{s}$表示收到异常信息的车辆$i$在$t$时刻的信息估计值, $v_{kt}$为车队中其他车辆在$t$时刻的速度信息, $k={1, \cdots, m}$.偏相关系数$\hat{\beta}_k$表示如下:

    $ \begin{align} (\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_m)^{{\rm{T}}}=(X^\mathit{{\rm{T}}}X)^{-1}(X^\mathit{\boldsymbol{T}}V) \end{align} $

    (20)

    其中, $V=(v_{i1}, \cdots, v_{ih})$表示车辆$i$在$t$临近时刻的$h$组样本数据, 车队中$m$个其他车辆的数据组成$X$表示如下:

    $ \begin{align} X= \begin{bmatrix} 1&v_{11}&\cdots &v_{m1}\\ 1&v_{12}&\cdots &v_{m2}\\ \vdots&\vdots&\ddots&\vdots \\ 1& v_{1h}& \cdots&v_{mh}\\ \end{bmatrix} \end{align} $

    (21)

    同理, 可将基于时间相关性的TM算法的估计值表示如下:

    $ \begin{align} \hat{v}_{it}^{t}=&\ \hat{\beta}_0+\hat{\beta}_1v_{i\left(t-\frac{v}{2}\right)}\, +\cdots+\hat{\beta}_{\frac{v}{2}}v_{i(t-1)}\, + \nonumber\\ &\ \hat{\beta}_{\frac{v}{2}\, +1}\hat{v}_{i(t+1)}\, +\cdots+\hat{\beta}_v\hat{v}_{i\left(t+\frac{v}{2}\right)} \end{align} $

    (22)

    其中, $v_{ik}$为车辆$i$在$t$时刻的前$v/2$时刻的实际观测速度轨迹, $\hat{v}_{ik}$为$t$时刻后的理想速度轨迹预测值, $k$ $\in$ $\{1, \cdots, v/2\}$.

    虽然基于STM算法的信息估计可有效补偿丢失信息, 但实际交通的突发状况也可能导致运输计划不可执行.车辆间信息传输机制如图 4所示.

    图 4  信息传输机制
    Fig. 4  Information transmission mechanism

    假设网络平面在$t$时刻收到的目标车辆状态信息$P_i=(e_i(t), x_i(t), v_i(t))$与计划运输信息速度绝对误差超过一定阈值(10%), 且多个采样周期的状态信息持续异常时, 则需进一步判断.比较其前车$t$时刻与$t-1$时刻的状态信息, 如果速度波动较大, 则认为该路段可能出现突发状况, 采集$t+1$, $t+2$, $\cdots$多个时刻目标车辆与其前车的状态信息, 如果速度恢复正常(目标车辆可按计划速度行驶), 则运输系统持续进行监测状态; 否则计算目标车辆与前车的车间距的变化率$m$, 如果$m$持续降低到某一值时, 则认为该路段发生车辆拥堵(不考虑路段车辆数达到路段最大容限及自身车辆事故等情况), 需要重新规划车辆的运输计划.

    $ \begin{align} m=\frac{x_f(t)-x_i(t)}{x_f(t+1)-x_i(t+1)} \end{align} $

    (23)

    由于突发状况不可提前预测, 所以对车辆重新规划时需要预测车辆的拥堵时间, 车辆恢复自由驾驶时, 实施规划后的运输方案.拥堵时车辆行驶速度取决于道路的拥堵程度, 且较难确定.因此以路段畅通$\omega_i\in[0, 1]$, 车辆速度为任意值$v_0$(以最佳车速为例)与路段车辆数达到最大容限$\omega_i$ $=$$c_{\max}/c_i$, 车辆速度为0作为端点值, 用线性函数逼近$\omega_i\in[1, c_{\max}/c_i]$时车辆拥堵程度与车速的关系.

    $ \begin{align} &v(\omega_i)=-\frac{v_0}{c_{\max}-c_i}(c_i\omega_i-c_{\max}), \nonumber\\&\qquad\qquad\qquad\qquad\qquad \omega_i\in\left[1, \frac{c_{\max}}{c_i}\right] \end{align} $

    (24)

    其中, $\omega_i=y_i/c_i$表示道路的饱和度, $y_{i}$为道路$i$的车辆数, $c_{i}$为道路的拥堵容限, $\omega_i\geq1$表示该路段发生拥堵, 但车辆仍可以以某一速度行驶, 当车辆数$y_{i}$达到该路段的最大拥堵容限$c_{\max}$时, 车辆速度为0.

    根据拥堵路段位置$P_c=(e_c, x_c)$、车辆当前位置$P_i=(e_i(t), x_i(t))$及拥堵路段平均车辆数量$\bar{y}_i$估计车辆的拥堵时间$t_{ct}$, 将其作为合并阶段$(t_i^m, t_i^p)$的延迟时间加入上述优化过程, 重新计算车辆的运输方案.

    $ \begin{align} t_{ct}=\frac{(x_c-x_i^t)(c_i-c_{\max})}{v_0(\bar{y}_i-c_{\max})} \end{align} $

    (25)

    对于物理平面车辆收到异常信息的情况可以通过发送多个数据包进行检验.

    本节通过TCPS模拟实际高速公路路网, 对本文提出的车辆调度方法进行研究.通过仿真分析验证本文的换路合并策略的有效性及相对于最短路径调度策略的优越性和可扩展性.

    首先在TCPS的框架下, 模拟构建华北及其周边地区的部分路网, 其次在华北地区某时刻500km2的区域随机产生40个运输任务, 如图 5所示.在其周边约500~1, 000 km2的区域产生$A$, $B$, $C$, $D$, $E$ 5个目的地, 正方形表示车辆(每辆车当前时刻的位置), 其中, 在路线上的正方形的车辆表示正在执行运输任务的车辆, 其他正方形表示待出发的车辆; 六角星为车辆的目的地, 且每辆车的当前状态信息及其目的地已通过TCPS获得.设在不发生调度的情况下, 每辆车均以最短路径匀速单独行驶, 未考虑路况及其他因素干扰.

    图 5  车辆运输任务
    Fig. 5  Vehicle transportation tasks

    采用的燃料模型为大约80km/h的仿射近似模型[15], 以单位距离的油耗量表示车辆的油耗率.

    $ \begin{align} f(v, \theta(p))=&\ \theta(p)(5.0495\times 10^{-6}v\, + \nonumber\\&\ 8.5426\times 10^{-5})\, + (1-\theta(p))\, \times\nonumber\\ &\ (8.41598\times 10^{-6}v+4.8021\times 10^{-5}) \end{align} $

    (26)

    根据该模型, 当车队以80km/h的速度行驶时, 跟随车辆的节油率约为15.9%.假设初始默认速度为80 km/h, 速度可选择区间在70~90 $\rm{km/h}$.

    首先验证本文调度方案的有效性, 设定每辆车的初始速度均为80km/h.将本文算法应用在模拟路网中, 通过调整部分车辆的路径与速度使得部分车辆合并成车队行驶, 对上述车辆的模拟调度结果如图 6所示.其中, 颜色相同的临近车辆表示可以通过路径与速度的调整(或只改变路径或速度中的某一项), 使其在公共路段的某处组成车队行驶, 且相对于单独行驶能够节省油耗.从图 6可以看出, 通过本文的调度方法, 能够使较多车辆有机会合并成车队行驶, 达到节能减排的目的.

    图 6  本文策略调度策略的仿真结果
    Fig. 6  The simulation results of scheduling strategy in this paper

    其次, 验证变路径合并策略较固定路径合并策略[11]的优越性.文献[11]指出, 当车辆相互靠近时, 可以改变部分车辆的速度, 使后车追上前车合并成车队行驶.将其思想应用在上述模拟路网, 结果如图 7.对比图 6发现, 可组成车队的车辆数明显减少, 与之对应的节油能力也随之降低.原因如下:由于路网的复杂度较高, 每辆车的最短路径不尽相同, 固有公共路段较少且长度有限, 到达公共路段的时间不一, 所以合并成车队行驶的机会较少.假设存在出发地临近的两辆车, 目的地相同, 如果不改变路径, 两辆车无公共路段.采用文献[11]中的固定路径策略, 将无法节省能耗, 如果采用本文的调度方法, 通过路径与速度的微调, 可以使车辆合并成车队行驶, 从而降低能耗.从逻辑与仿真分析的角度验证本文的调度方案具有优越性.但本文的调度方案较大限度利用车辆的速度, 使得本文策略在发生突发情况下的应变能力相对较差.

    图 7  固定路径合并策略的仿真结果
    Fig. 7  The simulation results of fixed path merging strategy

    最后, 本文的策略也可以扩展到更多车辆, 当某一地区参与运输的车辆数量增多时, 车辆的合并机会也随之增大.基于本文换路合并策略与文献[11]中固定路径合并策略的大量车辆的仿真对比结果如图 8.从图 8可以看出, 本文提出的策略在车辆较少时调度效果明显, 可显著节约能耗.随着车辆的增加, 两种策略的调度效果差距减少, 但本文的策略总是优于固定路径合并策略.由于改变路径可以增加车辆合并的机会, 使本文的合并策略在一定程度上包含了固定路径合并策略.

    图 8  两种策略的模拟调度的油耗对比
    Fig. 8  Comparison of the fuel consumption of the simulation of two strategies

    在实际路网中, 许多因素会对车辆调度产生影响, 特别是交通拥堵.所以, 本文通过在不同位置设置不同的延时时间来模拟实际交通状况对具有公共路段的车辆合并的影响.仿真条件如下:具有公共路段的前后两辆车之间的车间距为2 km, 前车距离目的地100 km, 初始速度均为80 km/h, 车型一致, 在不发生拥堵的前提下, 两车合并行驶的最大节油率为13%.假设车辆经过拥堵路段后可自由行驶, 且道路各个位置的拥堵消散速度一致.当不同位置出现交通拥堵时(设置不同的延时时间), 两车的最大节油率如图 9所示, 可以看出, 短时间的拥堵会对车辆的合并造成很大影响.本文的目的在于调度策略的研究, 而交通流的预测可以通过TCPS预测得到, 本文的调度策略可考虑更多实际情况.假设各个路段的拥堵状态已经预测得到(本文设置3处延时表示拥堵时间), 其调度结果如图 10.对比图 10的圈出区域与图 6的调度策略可以发现, 交通拥堵状况的出现(随机在部分车队集合中设置的短时延时)可能使原本的车队集合分离, 也可能使单独行驶的车辆与其他车辆合并, 对调度结果影响很大, 说明了实际交通状况对调度的重要性, 同时也说明了本文调度方案的可扩展性.

    图 9  拥堵对车辆合并的影响
    Fig. 9  Congestion impact on vehicle merging
    图 10  考虑交通状况的车辆调度结果
    Fig. 10  Vehicle scheduling results considering actual traffic conditions

    为了进一步提高道路吞吐量, 降低运输成本, 本文提出了一种基于交通信息物理系统(TCPS)的分布式车辆调度方案.该方案将绿色路径的思想融入到车辆的合并调度中, 提出了一种领队车辆选择算法解决了方案中的候选车辆选择冲突问题, 并针对网络信息传输异常及其突发情况进行处理, 说明了本文调度方案的可扩展性.

    但本文调度方案在设计过程中仅考虑了用户均衡原则而忽略了整个路网的系统最优原则, 即没有考虑车辆的调度对路网中其他车辆的影响; 此外, 本文的调度方案没有考虑路网中的细节问题, 例如交通环境、速度限制、交通信号灯、车型及司机休息时间等.所以, 建立更广泛的调度系统仍是一个值得关注的问题.

  • 图  1  论文的整体框架

    Fig.  1  The overall framework of this paper

    表  1  证据的基本概率分配

    Table  1  Basic probability assignment of evidence

    基本概率质量 犯罪嫌疑人
    Peter Paul Mary
    ${m_1}$ 0.99 0.01 0
    ${m_2}$ 0 0.01 0.99
    下载: 导出CSV

    表  2  证据的置信分布

    Table  2  Belief distribution of evidence

    证据 命题
    $A$ $B$
    ${e_1}$ 0.8 0.2
    ${e_2}$ 0.4 0.6
    下载: 导出CSV

    表  3  证据组合结果的比较

    Table  3  Comparison of evidence combination results

    组合规则 概率质量 $\emptyset $ $A$ $B$ $\Theta$ $P(\Theta )$
    Dempster 组合规则 ${m_1}$ 0 0.1600 0.0400 0.8000 0
    ${m_2}$ 0 0.3200 0.4800 0.2000 0
    $\displaystyle\sum\nolimits_{C \cap D = \theta } \displaystyle{ {m_1}(C){m_2}(D)}$ 0.0896 0.3392 0.4112 0.1600 0
    $m$ 0 0.3726 0.4517 0.1757 0
    原始 ER 算法 ${m_1}$ 0 0.1600 0.0400 0 0.8000
    ${m_2}$ 0 0.3200 0.4800 0 0.2000
    ${m_{\theta ,e(2)}}$ 0 0.3726 0.4517 0 0.1757
    ${p_{\theta ,e(2)}}$ 0 0.4520 0.5480 0 0
    ER 规则 ${\widetilde m_1}$ 0 0.4000 0.1000 0 0.5000
    ${\widetilde m_2}$ 0 0.2909 0.4364 0 0.2727
    ${\widehat m_{\theta ,e(2)}}$ 0 0.1632 0.1272 0 0.0600
    ${m_{\theta ,e(2)}}$ 0 0.4658 0.3630 0 0.1712
    ${p_{\theta ,e(2)}}$ 0 0.5620 0.4380 0 0
    下载: 导出CSV
  • [1] Dempster A P. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 1967, 38(2): 325−339 doi: 10.1214/aoms/1177698950
    [2] Dempster A P. A generalization of Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological), 1968, 30(2): 205−247 doi: 10.1111/j.2517-6161.1968.tb00722.x
    [3] Shafer G. A Mathematical Theory of Evidence. London: Princeton University Press, 1976.
    [4] Yang J B, Sen P. A general multi-level evaluation process for hybrid MADM with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(10): 1458−1473 doi: 10.1109/21.310529
    [5] Yang J B, Singh M G. An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(1): 1−18 doi: 10.1109/21.259681
    [6] Pal N R, Bezdek J C, Hemasinha R. Uncertainty measures for evidential reasoning I: A review. International Journal of Approximate Reasoning, 1992, 7(3−4): 165−183 doi: 10.1016/0888-613X(92)90009-O
    [7] 康耀红. 数据融合理论与应用. 西安: 西安电子科技大学出版社, 1997.

    Kang Yao-Hong. Theory and Application of Data Fusion. Xi' an: Xidian University Press, 1997.
    [8] Zadeh L A. On the Validity of Dempster′s Rule of Combination of Evidence. ERL Memo M79/24, University of California, USA, 1979.
    [9] Gordon J, Shortliffe E H. A method for managing evidential reasoning in a hierarchical hypothesis space. Artificial Intelligence, 1985, 26(3): 323−357 doi: 10.1016/0004-3702(85)90064-5
    [10] Jiang W. A correlation coefficient for belief functions. International Journal of Approximate Reasoning, 2018, 103: 94−106 doi: 10.1016/j.ijar.2018.09.001
    [11] Yang J B, Xu D L. Evidential reasoning rule for evidence combination. Artificial Intelligence, 2013, 205: 1−29 doi: 10.1016/j.artint.2013.09.003
    [12] Smets P. The degree of belief in a fuzzy event. Information Sciences, 1981, 25(1): 1−19 doi: 10.1016/0020-0255(81)90008-6
    [13] Smets P, Kennes R. The transferable belief model. Artificial Intelligence, 1994, 66(2): 191−234 doi: 10.1016/0004-3702(94)90026-4
    [14] Pawlak Z. Rough sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341−356
    [15] Voorbraak F. A computationally efficient approximation of Dempster-Shafer theory. International Journal of Man-Machine Studies, 1988, 30(5): 525−536
    [16] Cobb B R, Shenoy P P. A comparison of Bayesian and belief function reasoning. Information Systems Frontiers, 2003, 5(4): 345−358 doi: 10.1023/B:ISFI.0000005650.63806.03
    [17] Yang J B. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. European Journal of Operational Research, 2001, 131(1): 31−61 doi: 10.1016/S0377-2217(99)00441-5
    [18] Liu J, Yang J B, Wang J, Sii H S. Engineering system safety analysis and synthesis using the fuzzy rule-based evidential reasoning approach. Quality and Reliability Engineering International, 2005, 21(4): 387−411 doi: 10.1002/qre.668
    [19] Wang Y M, Yang J B, Xu D L. Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 2006, 174(3): 1885−1913 doi: 10.1016/j.ejor.2004.09.059
    [20] Xu D L, Yang J B, Wang Y M. The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty. European Journal of Operational Research, 2006, 174(3): 1914−1943
    [21] Gao B, Ni M F. A note on article “The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees”. European Journal of Operational Research, 2009, 197(2): 809−812 doi: 10.1016/j.ejor.2007.10.038
    [22] Denœux T, Zouhal L M. Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets and Systems, 2001, 122(3): 409−424 doi: 10.1016/S0165-0114(00)00086-5
    [23] 刘准钆, 潘泉, Dezert J, 周旷, 焦连猛. 不确定数据信任分类与融合. 北京: 科学出版社, 2016.

    Liu Zhun-Ga, Pan Quan, Dezert J, Zhou Kuang, Jiao Lian-Meng. Classification and Fusion of Uncertain Data Trust. Beijing: Science Press, 2016.
    [24] Florea M C, Jousselme A L, Bossé É, Grenier D. Robust combination rules for evidence theory. Information Fusion, 2009, 10(2): 183−197 doi: 10.1016/j.inffus.2008.08.007
    [25] Smets P. Analyzing the combination of conflicting belief functions. Information Fusion, 2007, 8(4): 387−412 doi: 10.1016/j.inffus.2006.04.003
    [26] Barnett J A. Computational methods for a mathematical theory of evidence. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence. Vancouver, Canada: William Kaufmann, 1981. 868−875
    [27] Yang J B, Liu J, Wang J, Sii H S, Wang H W. Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 2006, 36(2): 266−285 doi: 10.1109/TSMCA.2005.851270
    [28] 周志杰, 陈玉旺, 胡昌华, 张邦成, 常雷雷. 证据推理、置信规则库与复杂系统建模. 北京: 科学出版社, 2017.

    Zhou Zhi-Jie, Chen Yu-Wang, Hu Chang-Hua, Zhang Bang-Cheng, Chang Lei-Lei. Evidential Reasoning, Belief Rule Base and Complex System Modeling. Beijing: Science Press, 2017.
    [29] 徐晓滨, 文成林, 孙新亚, 吉吟东. 设备故障诊断中的证据融合与决策方法. 北京: 科学出版社, 2017.

    Xu Xiao-Bin, Wen Cheng-Lin, Sun Xin-Ya, Ji Yin-Dong. Evidence Fusion and Decision-making Methods in Equipment Fault Diagnosis. Beijing: Science Press, 2017.
    [30] Yang J B, Xu D L. On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2002, 32(3): 289−304 doi: 10.1109/TSMCA.2002.802746
    [31] Yang J B, Wang Y M, Xu D L, Chin K S. The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties. European Journal of Operational Research, 2006, 171(1): 309−343 doi: 10.1016/j.ejor.2004.09.017
    [32] Guo M, Yang J B, Chin K S, Wang H W. Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty. European Journal of Operational Research, 2007, 182(3): 1294−1312 doi: 10.1016/j.ejor.2006.09.064
    [33] Zhou Z J, Chang L L, Hu C H, Han X X, Zhou Z G. A new BRB-ER-based model for assessing the lives of products using both failure data and expert knowledge. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(11): 1529−1543 doi: 10.1109/TSMC.2015.2504047
    [34] 胡冠宇. 基于置信规则库的网络安全态势感知技术研究[博士学位论文], 哈尔滨理工大学, 中国, 2016.

    Hu Guan-Yu. Study on Network Security Situation Awareness Based on Belief Rule Base [Ph.D. dissertation], Harbin University of Science and Technology, China, 2016.
    [35] Huber R. Scene classification of SAR images acquired from antiparallel tracks using evidential and rule-based fusion. Image and Vision Computing, 2001, 19(13): 1001−1010 doi: 10.1016/S0262-8856(01)00062-2
    [36] Wang Y M, Elhag T M S. A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks. Expert Systems with Applications, 2007, 32(2): 336−348 doi: 10.1016/j.eswa.2005.11.029
    [37] Bazargan-Lari R M. An evidential reasoning approach to optimal monitoring of drinking water distribution systems for detecting deliberate contamination events. Journal of Cleaner Production, 2014, 78: 1−14 doi: 10.1016/j.jclepro.2014.04.061
    [38] Durbach I N, Stewart T J. Modeling uncertainty in multi-criteria decision analysis. European Journal of Operational Research, 2012, 223(1): 1−14 doi: 10.1016/j.ejor.2012.04.038
    [39] 周志杰, 杨剑波, 胡昌华, 徐冬玲. 置信规则库专家系统与复杂系统建模. 北京: 科学出版社, 2011.

    Zhou Zhi-Jie, Yang Jian-Bo, Hu Chang-Hua, Xu Dong-Ling. Belief Rule Base Expert System and Complex System Modeling. Beijing: Science Press, 2011.
    [40] Bustince H, Burillo P. Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning. Fuzzy Sets and Systems, 2000, 113(2): 205−219 doi: 10.1016/S0165-0114(98)00020-7
    [41] Chen S M, Hsiao W H. Bidirectional approximate reasoning for rule-based systems using interval-valued fuzzy sets. Fuzzy Sets and Systems, 2000, 113(2): 185−203 doi: 10.1016/S0165-0114(98)00351-0
    [42] Haenni R. Shedding new light on Zadeh′s criticism of Dempster′s rule of combination. In: Proceedings of the 7th International Conference on Information Fusion. Philadelphia, SUA: IEEE, 2005.
    [43] Huynh V N, Nakamori Y, Ho T B, Murai T. Multiple-attribute decision making under uncertainty: The evidential reasoning approach revisited. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2006, 36(4): 804−822 doi: 10.1109/TSMCA.2005.855778
    [44] 胡昌华, 司小胜, 周志杰, 王鹏. 新的证据冲突衡量标准下的D-S改进算法. 电子学报, 2009, 37(7): 1578−1583 doi: 10.3321/j.issn:0372-2112.2009.07.032

    Hu Chang-Hua, Si Xiao-Sheng, Zhou Zhi-Jie, Wang Peng. An improved D-S algorithm under the new measure criteria of evidence conflict. Acta Electronica Sinica, 2009, 37(7): 1578−1583 doi: 10.3321/j.issn:0372-2112.2009.07.032
    [45] 韩德强, 韩崇昭, 邓勇, 杨艺. 基于证据方差的加权证据组合. 电子学报, 2011, 39(3A): 153−157

    Han De-Qiang, Han Chong-Zhao, Deng Yong, Yang Yi. Weighted combination of conflicting evidence based on evidence variance. Acta Electronica Sinica, 2011, 39(3A): 153−157
    [46] Yager R R. On the Dempster-Shafer framework and new combination rules. Information Sciences, 1987, 41(2): 93−137 doi: 10.1016/0020-0255(87)90007-7
    [47] Dubois D, Prade H. Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence, 1988, 4(3): 244−264 doi: 10.1111/j.1467-8640.1988.tb00279.x
    [48] Smarandache F, Dezert J. Proportional conflict redistribution rules for information fusion. Advances and Applications of DSmT for Information Fusion (Collected Works). Rehoboth: American Research Press, 2006. 3−68
    [49] Simard M A, Couture J, Bosse E. Data fusion of multiple-sensors attribute information for target-identity estimation using a Dempster-Shafer evidential combination algorithm. In: Proceedings of the SPIE 2759, Signal and Data Processing of Small Targets 1996. Orlando, USA: SPIE, 1996. 577−588
    [50] Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and conflict management. Information Fusion, 2002, 3(2): 149−162 doi: 10.1016/S1566-2535(02)00053-2
    [51] Chen T L, Que P W. Target recognition based on modified combination rule. Journal of Systems Engineering and Electronics, 2006, 17(2): 279−283 doi: 10.1016/S1004-4132(06)60048-0
    [52] Jiang W, Zhan J. A modified combination rule in generalized evidence theory. Applied Intelligence, 2017, 46(3): 630−640 doi: 10.1007/s10489-016-0851-6
    [53] Chen Y, Chen Y W, Xu X B, Pan C C, Yang J B, Yang G K. A data-driven approximate causal inference model using the evidential reasoning rule. Knowledge-Based Systems, 2015, 88: 264−272 doi: 10.1016/j.knosys.2015.07.026
    [54] Keeney R L, Raiffa H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. New York: Cambridge University Press, 1993.
    [55] Deng H P, Yeh C H, Willis R J. Inter-company comparison using modified TOPSIS with objective weights. Computers and Operations Research, 2000, 27(10): 963−973
    [56] Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: The CRITIC method. Computers and Operations Research, 1995, 22(7): 763−770
    [57] Yeh C H, Willis R J, Deng H P, Pan H Q. Task oriented weighting in multi-criteria analysis. European Journal of Operational Research, 1999, 119(1): 130−146 doi: 10.1016/S0377-2217(98)90353-8
    [58] Deng M R, Xu W X, Yang J B. Estimating the attribute weights through evidential reasoning and mathematical programming. International Journal of Information Technology & Decision Making, 2004, 3(3): 419−428
    [59] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(3): 338−353 doi: 10.1016/S0019-9958(65)90241-X
    [60] Ishizuka M, Fu K S, Yao J T P. Inference procedures under uncertainty for the problem-reduction method. Information Sciences, 1982, 28(3): 179−206 doi: 10.1016/0020-0255(82)90047-0
    [61] 周谧. 基于证据推理的多属性决策中若干问题的研究[博士学位论文], 合肥工业大学, 中国, 2009.

    Zhou Mi. Research on Some Problems in the Multiple Attribute Decision Making Based on Evidential Reasoning Approach [Ph.D. dissertation], Hefei University of Technology, China, 2009.
    [62] 宋亚飞, 王晓丹, 雷蕾. 基于直觉模糊集的时域证据组合方法研究. 自动化学报, 2016, 42(9): 1322−1338

    Song Ya-Fei, Wang Xiao-Dan, Lei Lei. Combination of temporal evidence sources based on intuitionistic fuzzy sets. Acta Automatica Sinica, 2016, 42(9): 1322−1338
    [63] Yang Z L, Maistralis L, Bonsall S, Wang J. Use of fuzzy evidential reasoning for vessel selection under uncertainty. Multi-Criteria Decision Making in Maritime Studies and Logistics. Cham: Springer, 2018. 105−121
    [64] Lee E S, Zhu Q. An interval Dempster-Shafer approach. Computers and Mathematics with Applications, 1992, 24(7): 89−95
    [65] Denœux T. Reasoning with imprecise belief structures. International Journal of Approximate Reasoning, 1999, 20(1): 79−111 doi: 10.1016/S0888-613X(00)88944-6
    [66] Denœux T. Modeling vague beliefs using fuzzy-valued belief structures. Fuzzy Sets and Systems, 2000, 116(2): 167−199 doi: 10.1016/S0165-0114(98)00405-9
    [67] Yager R R. Dempster-Shafer belief structures with interval valued focal weights. International Journal of Intelligent Systems, 2001, 16(4): 497−512 doi: 10.1002/int.1020
    [68] Wang Y M, Yang J B, Xu D L, Chin K S. On the combination and normalization of interval-valued belief structures. Information Sciences, 2007, 177(5): 1230−1247 doi: 10.1016/j.ins.2006.07.025
    [69] 徐晓滨, 郑进, 徐冬玲, 杨剑波. 基于证据推理规则的信息融合故障诊断方法. 控制理论与应用, 2015, 32(9): 1170−1182 doi: 10.7641/CTA.2015.50245

    Xu Xiao-Bin, Zheng Jin, Xu Dong-Ling, Yang Jian-Bo. Information fusion method for fault diagnosis based on evidential reasoning rule. Control Theory and Applications, 2015, 32(9): 1170−1182 doi: 10.7641/CTA.2015.50245
    [70] Zhao F J, Zhou Z J, Hu C H, Chang L L, Zhou Z G, Li G L. A new evidential reasoning-based method for online safety assessment of complex systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(6): 954−966 doi: 10.1109/TSMC.2016.2630800
    [71] Smarandache F, Dezert J, Tacnet J M. Fusion of sources of evidence with different importances and reliabilities. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1−8
    [72] 邬永革, 黄炯, 杨静宇. 基于多传感器信息融合的机器人障碍检测和环境建模. 自动化学报, 1997, 23(5): 641−648

    Wu Yong-Ge, Huang Jiong, Yang Jing-Yu. Mobile robot obstacle detection and environment modeling with sensor fusion. Acta Automatica Sinica, 1997, 23(5): 641−648
    [73] Bosse E, Simard M A. Managing evidential reasoning for identity information fusion. Optical Engineering, 1998, 37(2): 391−400 doi: 10.1117/1.601625
    [74] Liu Z G, Dezert J, Mercier G, Pan Q. Dynamic evidential reasoning for change detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1955−1967 doi: 10.1109/TGRS.2011.2169075
    [75] Paksoy A, Göktürk M. Information fusion with Dempster-Shafer evidence theory for software defect prediction. Procedia Computer Science, 2011, 3: 600−605 doi: 10.1016/j.procs.2010.12.100
    [76] Quost B, Masson M H, Denœux T. Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules. International Journal of Approximate Reasoning, 2011, 52(3): 353−374 doi: 10.1016/j.ijar.2010.11.008
    [77] Li B, Wang H W, Yang J B, Guo M, Qi C. A belief-rule-based inference method for aggregate production planning under uncertainty. International Journal of Production Research, 2013, 51(1): 83−105 doi: 10.1080/00207543.2011.652262
    [78] Kong G L, Xu D L, Yang J B, Ma X M. Combined medical quality assessment using the evidential reasoning approach. Expert Systems with Applications, 2015, 42(13): 5522−5530 doi: 10.1016/j.eswa.2015.03.009
    [79] Zhu W D, Wang Y L, Wu Y, Sun Y B. A fusion model for securities analysts′ stock rating information based on the evidential reasoning algorithm under two-dimensional progressive recognition framework. International Journal of Security and Its Applications, 2016, 10(7): 213−228 doi: 10.14257/ijsia.2016.10.7.19
    [80] Li F J, Qian Y H, Wang J T, Liang J Y. Multigranulation information fusion: A Dempster-Shafer evidence theory-based clustering ensemble method. Information Sciences, 2017, 378: 389−409 doi: 10.1016/j.ins.2016.10.008
    [81] Von Winterfeldt D, Edwards W. Decision Analysis and Behavioral Research. New York: Cambridge University Press, 1986. 6−8
    [82] Yang J B, Sen P. Multiple attribute design evaluation of complex engineering products using the evidential reasoning approach. Journal of Engineering Design, 1997, 8(3): 211−230 doi: 10.1080/09544829708907962
    [83] Sii H S, Wang J. A design-decision support framework for evaluation of design options/proposals using a composite structure methodology based on the approximate reasoning approach and the evidential reasoning method. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2003, 217(1): 59−76 doi: 10.1243/09544080360562990
    [84] Wang Y M, Elhag T. M S. Evidential reasoning approach for bridge condition assessment. Expert Systems with Applications, 2008, 34(1): 689−699 doi: 10.1016/j.eswa.2006.10.006
    [85] 付艳华, 张化光, 唐加福. 基于证据推理的供应商绩效评价与决策. 东北大学学报(自然科学版), 2009, 30(11): 1546−1549 doi: 10.3321/j.issn:1005-3026.2009.11.007

    Fu Yan-Hua, Zhang Hua-Guang, Tang Jia-Fu. Performance evaluation for selection of supplier and decision-making based on evidential reasoning. Journal of Northeastern University (Natural Science), 2009, 30(11): 1546−1549 doi: 10.3321/j.issn:1005-3026.2009.11.007
    [86] Shintemirov A, Tang W H, Wu Q H. Transformer winding condition assessment using frequency response analysis and evidential reasoning. IET Electric Power Applications, 2010, 4(3): 198−212 doi: 10.1049/iet-epa.2009.0102
    [87] 沈江, 余海燕, 徐曼. 实体异构性下证据链融合推理的多属性群决策. 自动化学报, 2015, 41(4): 832−842

    Shen Jiang, Yu Hai-Yan, Xu Man. Heterogeneous evidence chains based fusion reasoning for multi-attribute group decision making. Acta Automatica Sinica, 2015, 41(4): 832−842
    [88] 刘佳俊, 胡昌华, 周志杰, 张鑫, 王鹏. 基于证据推理和置信规则库的装备寿命评估. 控制理论与应用, 2015, 32(2): 231−238 doi: 10.7641/CTA.2015.40406

    Liu Jia-Jun, Hu Chang-Hua, Zhou Zhi-Jie, Zhang Xin, Wang Peng. Life assessment approach of equipment based on belief-rule-base and evidential reasoning. Control Theory and Applications, 2015, 32(2): 231−238 doi: 10.7641/CTA.2015.40406
    [89] Li G L, Zhou Z J, Hu C H, Chang L L, Zhou Z G, Zhao F J. A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base. Safety Science, 2017, 93: 108−120 doi: 10.1016/j.ssci.2016.11.011
    [90] Bao T T, Xie X L, Long P Y, Wei Z K. MADM method based on prospect theory and evidential reasoning approach with unknown attribute weights under intuitionistic fuzzy environment. Expert Systems with Applications, 2017, 88: 305−317 doi: 10.1016/j.eswa.2017.07.012
    [91] Zhou M, Liu X B, Chen Y W, Yang J B. Evidential reasoning rule for MADM with both weights and reliabilities in group decision making. Knowledge-Based Systems, 2018, 143: 142−161 doi: 10.1016/j.knosys.2017.12.013
    [92] 汪洪桥, 孙富春, 蔡艳宁, 陈宁, 丁林阁. 多核学习方法. 自动化学报, 2010, 36(8): 1037−1050 doi: 10.3724/SP.J.1004.2010.01037

    Wang Hong-Qiao, Sun Fu-Chun, Cai Yan-Ning, Chen Ning, Ding Lin-Ge. On multiple kernel learning methods. Acta Automatica Sinica, 2010, 36(8): 1037−1050 doi: 10.3724/SP.J.1004.2010.01037
    [93] Van Cleynenbreugel J, Osinga S A, Fierens F, Suetens P, Oosterlinck A. Road extraction from multi-temporal satellite images by an evidential reasoning approach. Pattern Recognition Letters, 1991, 12(6): 371−380 doi: 10.1016/S0167-8655(05)80007-8
    [94] Kim H, Swain P H. Evidential reasoning approach to multisource-data classification in remote sensing. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(8): 1257−1265 doi: 10.1109/21.398687
    [95] 司小胜, 胡昌华, 周志杰. 基于证据推理的故障预报模型. 中国科学: 信息科学, 2010, 40(7): 954−967

    Si Xiao-Sheng, Hu Chang-Hua, Zhou Zhi-Jie. Fault prediction model based on evidential reasoning approach. Science China Information Sciences, 2010, 40(7): 954−967
    [96] Liu Z G, Pan Q, Mercier G, Dezert J. A new incomplete pattern classification method based on evidential reasoning. IEEE Transactions on Cybernetics, 2015, 45(4): 635−646 doi: 10.1109/TCYB.2014.2332037
    [97] 李新德, 王丰羽. 一种基于ISODATA聚类和改进相似度的证据推理方法. 自动化学报, 2015, 41(3): 575−590

    Li Xin-De, Wang Feng-Yu. A method of evidence reasoning based on ISODATA clustering and improved similarity measure. Acta Automatica Sinica, 2015, 41(3): 575−590
    [98] Wang Y N, Dai Y P, Chen Y W, Meng F C. The evidential reasoning approach to medical diagnosis using intuitionistic fuzzy Dempster-Shafer theory. International Journal of Computational Intelligence Systems, 2015, 8(1): 75−94 doi: 10.2991/ijcis.2015.8.1.7
    [99] 周志杰, 赵福均, 胡昌华, 王力, 冯志超, 刘涛源. 基于证据推理的航天继电器故障预测方法. 山东大学学报(工学版), 2017, 47(5): 22−29

    Zhou Zhi-Jie, Zhao Fu-Jun, Hu Chang-Hua, Wang Li, Feng Zhi-Chao, Liu Tao-Yuan. Failure prognosis method based on evidential reasoning for aerospace relay. Journal of Shandong University (Engineering Science), 2017, 47(5): 22−29
    [100] 袁杰, 王福利, 王姝, 赵露平. 基于D-S融合的混合专家知识系统故障诊断方法. 自动化学报, 2017, 43(9): 1580−1587

    Yuan Jie, Wang Fu-Li, Wang Shu, Zhao Lu-Ping. A fault diagnosis approach by D-S fusion theory and hybrid expert knowledge system. Acta Automatica Sinica, 2017, 43(9): 1580−1587
    [101] Xu X B, Zheng J, Yang J B, Xu D L, Chen Y W. Data classification using evidence reasoning rule. Knowledge-Based Systems, 2017, 116: 144−151 doi: 10.1016/j.knosys.2016.11.001
    [102] Yang Y, Xu D L, Yang J B, Chen Y W. An evidential reasoning-based decision support system for handling customer complaints in mobile telecommunications. Knowledge-Based Systems, 2018, 162: 202−210 doi: 10.1016/j.knosys.2018.09.029
    [103] Sönmez M, Holt G D, Yang J B, Graham G. Applying evidential reasoning to prequalifying construction contractors. Journal of Management in Engineering, 2002, 18(3): 111−119 doi: 10.1061/(ASCE)0742-597X(2002)18:3(111)
    [104] Yang J B, Xu D L. Nonlinear information aggregation via evidential reasoning in multiattribute decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2002, 32(3): 376−393 doi: 10.1109/TSMCA.2002.802809
    [105] Sadiq R, Najjaran H, Kleiner Y. Investigating evidential reasoning for the interpretation of microbial water quality in a distribution network. Stochastic Environmental Research and Risk Assessment, 2006, 21(1): 63−73 doi: 10.1007/s00477-006-0044-7
    [106] Xu D L, Liu J, Yang J B, Liu G P, Wang J, Jenkinson I, Ren J. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection. Expert Systems with Applications, 2007, 32(1): 103−113
    [107] Zhou Z J, Hu C H, Yang J B, Xu D L, Zhou D H. Online updating belief rule based system for pipeline leak detection under expert intervention. Expert Systems with Applications, 2009, 36(4): 7700−7709 doi: 10.1016/j.eswa.2008.09.032
    [108] Zhou Z J, Hu C H, Xu D L, Yang J B, Zhou D H. New model for system behavior prediction based on belief rule based systems. Information Sciences, 2010, 180(24): 4834−4864 doi: 10.1016/j.ins.2010.08.016
    [109] Hu C H, Si X S, Yang J B. System reliability prediction model based on evidential reasoning algorithm with nonlinear optimization. Expert Systems with Applications, 2010, 37(3): 2550−2562 doi: 10.1016/j.eswa.2009.08.024
    [110] Chen Y W, Poon S H, Yang J B, Xu D L, Zhang D X, Acomb S. Belief rule-based system for portfolio optimisation with nonlinear cash-flows and constraints. European Journal of Operational Research, 2012, 223(3): 775−784 doi: 10.1016/j.ejor.2012.07.008
    [111] Fu C, Yang J B, Yang S L. A group evidential reasoning approach based on expert reliability. European Journal of Operational Research, 2015, 246(3): 886−893 doi: 10.1016/j.ejor.2015.05.042
    [112] Chen S Q, Wang Y M, Shi H L, Zhang M J, Lin Y. Evidential reasoning with discrete belief structures. Information Fusion, 2018, 41: 91−104 doi: 10.1016/j.inffus.2017.08.009
    [113] Guo M, Chen Y W, Wang H W, Yang J B, Zhang K Y. The single-period (newsvendor) problem under interval grade uncertainties. European Journal of Operational Research, 2019, 273(1): 198−216 doi: 10.1016/j.ejor.2018.07.048
  • 期刊类型引用(17)

    1. 高振宇,孙振超,郭戈. 考虑执行器非线性的固定时间全局预设性能车辆队列控制. 自动化学报. 2024(02): 320-333 . 本站查看
    2. 李金洋,滕靖,周勇. 弹性交通信息物理系统架构设计. 综合运输. 2024(03): 186-192 . 百度学术
    3. 王兴隆,魏奕雯,贺敏. 空中交通CPS结构特性及韧性评估. 北京航空航天大学学报. 2024(04): 1187-1196 . 百度学术
    4. 黄鑫,畅晨旭,肖舒怡,李小杭. 基于模糊协同交互型观测器的柔性关节机械臂信息物理融合系统的安全控制. 自动化学报. 2024(12): 2487-2498 . 本站查看
    5. 王睿,孙秋野,张化光. 信息能源系统的信-物融合稳定性分析. 自动化学报. 2023(02): 307-316 . 本站查看
    6. 卢自宝,田凯健,方明星,曲立国. 基于运输成本的高速公路车辆协同调度与速度规划. 控制与决策. 2023(06): 1637-1645 . 百度学术
    7. 王寿光,赵玉美,尤丹,冉宁. 离散事件系统框架下信息物理系统攻击问题综述. 控制与决策. 2022(08): 1934-1944 . 百度学术
    8. 郭戈,徐涛,韩英华,赵强. 电动汽车时代的电网-交通网协同优化综述. 控制与决策. 2021(09): 2049-2062 . 百度学术
    9. 付倩慧,李庆奎. 攻击防御下信息物理系统的H_∞控制. 北京信息科技大学学报(自然科学版). 2021(04): 76-81 . 百度学术
    10. 张雯阳,唐明珠,郭胜辉. 信息物理系统区间观测器设计及攻击检测应用. 系统科学与数学. 2021(09): 2379-2389 . 百度学术
    11. 范厚明,郭振峰,岳丽君,马梦知. 考虑能耗节约的集装箱码头双小车岸桥与AGV联合配置及调度优化. 自动化学报. 2021(10): 2412-2426 . 本站查看
    12. 蔡帛良,魏长赟,张鹏鹏. 基于快速非支配排序的多机器人任务分配方法. 计算机与数字工程. 2020(04): 786-792 . 百度学术
    13. 贾兆红,王燕,张以文. 求解差异机器平行批调度的双目标协同蚁群算法. 自动化学报. 2020(06): 1121-1135 . 本站查看
    14. 付芳,蒋翠珍. 车辆运输最优路径的线形布局建模仿真. 计算机仿真. 2020(06): 94-98 . 百度学术
    15. 杨涛,柴天佑. 分布式协同优化的研究现状与展望. 中国科学:技术科学. 2020(11): 1414-1425 . 百度学术
    16. 于晓海,郭戈. 车队控制中的一种通用可变时距策略. 自动化学报. 2019(07): 1335-1343 . 本站查看
    17. 王跃飞,于炯,苏国平,钱育蓉,廖彬,刘粟. ODIC-DBSCAN:一种新的簇内孤立点分析算法. 自动化学报. 2019(11): 2107-2127 . 本站查看

    其他类型引用(22)

  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  3254
  • HTML全文浏览量:  1183
  • PDF下载量:  697
  • 被引次数: 39
出版历程
  • 收稿日期:  2019-09-24
  • 录用日期:  2019-12-15
  • 网络出版日期:  2021-05-21
  • 刊出日期:  2021-05-20

目录

/

返回文章
返回