2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于文本与图像的肺疾病研究与预测

吕晴 赵奎 曹吉龙 魏景峰

吕晴, 赵奎, 曹吉龙, 魏景峰. 基于文本与图像的肺疾病研究与预测. 自动化学报, 2022, 48(2): 531−538 doi: 10.16383/j.aas.c190645
引用本文: 吕晴, 赵奎, 曹吉龙, 魏景峰. 基于文本与图像的肺疾病研究与预测. 自动化学报, 2022, 48(2): 531−538 doi: 10.16383/j.aas.c190645
Lv Qing, Zhao Kui, Cao Ji-Long, Wei Jing-Feng. Research and prediction of lung diseases based on text and images. Acta Automatica Sinica, 2022, 48(2): 531−538 doi: 10.16383/j.aas.c190645
Citation: Lv Qing, Zhao Kui, Cao Ji-Long, Wei Jing-Feng. Research and prediction of lung diseases based on text and images. Acta Automatica Sinica, 2022, 48(2): 531−538 doi: 10.16383/j.aas.c190645

基于文本与图像的肺疾病研究与预测

doi: 10.16383/j.aas.c190645
基金项目: 国家水体污染控制与治理科技重大专项(2012ZX07505004)资助
详细信息
    作者简介:

    吕晴:中国科学院沈阳计算技术研究所硕士研究生. 2017年获得曲阜师范大学信息科学与工程专业学士学位. 主要研究方向为医学图像处理.E-mail: lvqing17@mails.ucas.ac.cn

    赵奎:中国科学院沈阳计算技术研究所研究员. 2017年获得中国科学院大学硕士学位. 主要研究方向为人工智能, 大数据, 物联网. 本文通信作者. E-mail: zhaokui@sict.ac.cn

    曹吉龙:中国医科大学附属第四医院信息中心主任. 2013年获得东北大学硕士学位. 主要研究方向为医疗信息化, 医疗健康物联网, 医疗信息安全.E-mail: jlcao@cmu.edu.cn

    魏景峰:辽宁省医疗器械检验检测院高级工程师. 2011年获得中国医科大学生物医学工程专业硕士学位. 主要研究方向为源医疗器械检验, 电磁兼容检测, 检测实验室质量体系管理.E-mail: 13898154351@163.com

Research and Prediction of Lung Diseases Based on Text and Images

Funds: Supported by National Science and Technology Major Project of Water Pollution Control and Treatment (2012ZX07505004)
More Information
    Author Bio:

    LV Qing Master student at Shenyang Institute of Computing Technology, Chinese Academy of Sciences. She received her bachelor degree in information science and engineering from Qufu Normal University in 2017. Her main research interest is medical image processing

    ZHAO Kui Professor at Shenyang Institute of Computing Technology, Chinese Academy of Sciences. He received his master degree from University of Chinese Academy of Sciences in 2017. His research interest covers artificial intelligence, big data, and the internet of things. Corresponding author of this paper

    CAO Ji-Long Director at the Information Center, the Fourth Affiliated Hospital of China Medical University. He received his master degree from Northeastern University in 2013. His research interest covers hospital information, health internet of things, and medical information security

    WEI Jing-Feng Senior engineer at Liaoning Medical Device Testi Institute. He received his master degree in biomedical engineering from China Medical University in 2011. His research interest covers medical electrical equipment test, electromagnetic compatibility test, and quality management of testing laboratories

  • 摘要: 通过对目前现有的肺癌检测技术研究, 发现大部分研究人员主要针对肺癌(Computed tomography, CT)影像进行研究, 忽略了电子病历所隐藏的肺癌信息, 本文提出一种基于图像与文本相结合的肺癌分类方法, 从现有的基于深度学习的肺癌图像分类出发, 引入了电子病历信息, 使用Multi-head attention以及(Bi-directional long short-term memory, Bi-LSTM)对文本建模. 实验结果证明, 将电子病历信息引入到图像分类模型之后, 对模型的性能有进一步的提升. 相对仅使用电子病历进行预测, 准确率提升了大约14 %, 精确率大约提升了15 %, 召回率提升了14 %. 相对仅使用肺癌CT影像来进行预测, 准确率提升了3.2 %, 精确率提升了4 %, 召回率提升了4 %.
  • 图  1  模型结构图

    Fig.  1  Model structure

    图  2  图像模型结构图

    Fig.  2  Image model structure

    表  1  检验项目

    Table  1  Examine items

    参考范围检验名称状态结果值
    血常规检查0 ~ 0.1嗜碱性粒细胞正常0.01
    0.05 ~ 0.5嗜酸性粒细胞正常0.07
    0 ~ 1嗜碱性粒细胞比率正常0.20 %
    110 ~ 160血红蛋白正常128 g/L
    100 ~ 300血小板正常$13510{\hat 9}/{\rm{L}}$
    3.5 ~ 5.5红细胞正常4.25
    37 ~ 50红细胞分布宽度正常43.90 %
    4 ~ 10白细胞正常$6.1810{\hat 9}/{\rm{L}}$
    86 ~ 100红细胞平均体积正常88.2 fL
    痰液检查无肿瘤细胞痰液细胞正常无肿瘤细胞
    肿瘤标记物5 μg/mlCEA (Carcinoembryonic antigen)正常2.31
    30 U/mlCA125 (Cancer antigen 125)正常13.70 U/ml
    8.20 U/mlCA72-4 (Cancer antigen 72-4)正常1.34 U/ml
    16.3 ng/mlNSE (Neuron-specific enolase)正常15.18 ng/ml
    1.5 ng/mlSCC (Squamous cell carcinoma)正常0.8 ng/ml
    2.0 ng/mlCYFRA21-1 (Cytokeratin fragment 19)7.31 ng/ml
    胸水检验0.38 ~ 2.1甘油三脂正常0.74 mmol/L
    0.8 ~ 1.95高密度脂蛋白正常1.31 mmol/L
    3.8 ~ 6.1葡萄糖10.11 mmol/L
    2 ~ 4低密度脂蛋白正常2.02 mmol/L
    109 ~ 271乳酸脱氢酶正常205.2 U/L
    0 ~ 6.8直接胆红素正常3.49 μmol/L
    3.6 ~ 5.9总胆固醇3.54 mmol/L
    20 ~ 45球蛋白正常31.7 g/L
    下载: 导出CSV

    表  2  MLP参数设置

    Table  2  The parameter of MLP

    Name节点个数激活函数
    Hidden165Sigmoid
    Hidden2131Sigmoid
    Hidden3263Sigmoid
    下载: 导出CSV

    表  3  正负样本比例

    Table  3  Positive and negative sample ratio

    正样本1 262
    负样本2 523
    下载: 导出CSV

    表  4  实验1的结果

    Table  4  The result of experiment 1

    Model nameTrain (%)Test (%)
    AccuracyPrecisionRecallAccuracyPrecisionRecall
    Text-net83.12 ± 0.0280.10 ± 0.0581.12 ± 0.0281.21 ± 0.0179.82 ± 0.0380.15 ± 0.01
    Text-net176.87 ± 0.0275.29 ± 0.0175.11 ± 0.0374.91 ± 0.0273.41 ± 0.0274.07 ± 0.03
    Text-net280.49 ± 0.0378.16 ± 0.0478.82 ± 0.0378.43 ± 0.0277.15 ± 0.0178.59 ± 0.02
    Text-net379.73 ± 0.0277.19 ± 0.0276.92 ± 0.0178.19 ± 0.0276.79 ± 0.0375.57 ± 0.02
    下载: 导出CSV

    表  5  实验2的结果

    Table  5  The result of experiment 2

    Model NameTrain (%)Test (%)
    AccuracyPrecisionRecallAccuracyPrecisionRecall
    TI-Net97.08 ± 0.0395.69 ± 0.0194.37 ± 0.0296.90 ± 0.0495.17 ± 0.0393.71 ± 0.01
    Img+MLP95.15 ± 0.0393.90 ± 0.0293.17 ± 0.0394.76 ± 0.0292.89 ± 0.0391.78 ± 0.01
    Img+Text94.71 ± 0.0292.13 ± 0.0391.26 ± 0.0493.17 ± 0.0490.88 ± 0.0389.99 ± 0.03
    MLP+Text89.88 ± 0.0487.67 ± 0.0186.92 ± 0.0287.78 ± 0.0384.23 ± 0.0384.57 ± 0.04
    Img-Net93.85 ± 0.0391.84 ± 0.0290.83 ± 0.0392.67 ± 0.0289.77 ± 0.0388.93 ± 0.01
    VGG-1992.53 ± 0.0289.16 ± 0.0388.57 ± 0.0190.94 ± 0.0287.10 ± 0.0387.04 ± 0.02
    MLP86.75 ± 0.0385.21 ± 0.0285.12 ± 0.0384.86 ± 0.0282.37 ± 0.0381.59 ± 0.01
    Text-Net83.12 ± 0.0480.10 ± 0.0581.12 ± 0.0281.21 ± 0.0379.82 ± 0.0380.15 ± 0.02
    下载: 导出CSV
  • [1] 韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法. 清华大学学报(自然科学版), 2020. 1-9

    Han Kun, Pan Hai-Wei, Zhang Wei, Bian Xiao-Fei, Chen Chun-Ling, He Shu-Ning. Alzheimer's disease classification method based on multimodal medical images. Journal of Tsinghua University (Natural Science), 2020. 1-9
    [2] 张淑丽, 李靖宇, 穆传斌, 刘雅楠, 孟欣, 杨滇. 多模态医学图像的自由变形法融合策略. 电脑编程技巧与维护, 2019, 8: 139-140+155 doi: 10.3969/j.issn.1006-4052.2019.08.050

    Zhang Shu-Li, Li Jing-Yu, Mu Chuan-Bin, Liu Yanan, Meng Xin, Yang Dian. Free-form fusion method for multi-modal medical images. Computer programming skills and maintenance, 2019, 8: 139-140+155 doi: 10.3969/j.issn.1006-4052.2019.08.050
    [3] 田娟秀, 刘国才, 谷珊珊, 鞠忠建, 刘劲光, 顾冬冬. 医学图像分析深度学习方法研究与挑战. 自动化学报, 2018, 44(3): 401-424

    Tian Juan-Xiu, Liu Guo-Cai, Gu Shan-Shan, Ju Zhong-Jian, Liu Jin-Guang, Gu Dong-Dong. Deep learning in medical image analysis and its challenges. ACTA AUTOMATICA SINICA, 2018, 44(3): 401-424.
    [4] Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on Empirical Methods in Natural Language Processing (EMNLP). 2014. 1532−1543
    [5] McCann B, Bradbury J, Xiong C, et al. Learned in translation: Contextualized word vectors. Advances in Neural Information Processing Systems. 2017. 6294-6305
    [6] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Advances in neural information processing systems. 2017. 5998-6008
    [7] Sun Y, Wang S, Li Y, et al. ERNIE: Enhanced representation through knowledge integration. arXiv preprint arXiv: 1904.09223, 2019
    [8] Sun W, Zheng B, Qian W. Computer aided lung cancer diagnosis with deep learning algorithms. SPIE Medical Imaging, 2016
    [9] Xiao Huan-Hui, Yuan Cheng-Lang, Feng Shi-Ting. Research progress of computer aided diagnosis in cancer based on deep learning. International Journal of Medical Radiology, 2019, 42(1), 22-25
    [10] Cheng JZ, Ni D, Chou YH, et al. Computer -aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Scientific Reports, 2016, 6: 24454 doi: 10.1038/srep24454
    [11] Nibali A, He Z, Wollersheim D. Pulmonary nodule classification with deep residual networks. Int J Comput Assist Radiol Surg, 2017, 12: 1799-1808 doi: 10.1007/s11548-017-1605-6
    [12] Shen W, Zhou M, Yang F, et al. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition, 2017, 61: 663-673 doi: 10.1016/j.patcog.2016.05.029
    [13] HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [14] 陈斌, 周勇, 刘兵. 基于卷积长短期记忆网络的事件触发词抽取方法. 计算机工程, 2019, 45(01): 153-158

    Chen Bin, Zhou Yong, Liu Bing. Event-triggered word extraction method based on convolutional long-term and short-term memory networks. Computer Engineering, 2019, 45(01): 153-158
    [15] Litjens G., Sánchez C., Timofeeva, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep, 2016, 6: 2628.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  956
  • HTML全文浏览量:  313
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 录用日期:  2020-01-28
  • 网络出版日期:  2021-12-23
  • 刊出日期:  2022-02-18

目录

    /

    返回文章
    返回