The Research on ACP-based Modeling and Computational Experiment for Cyber Movement Organizations
-
摘要: 由互联网促成的社会运动组织一经出现, 就受到了广大社会学者以及计算机领域专家的广泛关注. 一方面, 互联网特别是移动互联网在整合信息、引发共振、实时分享及高度互动等方面的特性, 为网民行为的大规模快速聚集提供了直通渠道, 使得多角度超视距观察并研究在线人群复杂行为及其组织特性成为可能; 另一方面, 这一研究在社会化媒体营销、共享经济、非军事组织行动中的应用意义愈加显著. 本文引入群体行为动力学和社会运动组织理论的研究, 提出基于ACP的动态网民群体运动组织(Cyber movement organizations, CMOs)研究方法. 本文工作首先使用多智能体建模方法构造双层结构的人工社区模型, 以此为基础对动态网民的个体以及群体动态组织行为展开计算实验探讨, 重点阐释了社区用户的交互行为机制及群体组织活动的建模机制, 为揭示微观个体简单行为对于宏观群体复杂涌现现象的影响奠定基础.
-
关键词:
- 社会网络 /
- 多智能体 /
- 社会运动组织 /
- 动态网民群体运动组织
Abstract: Once it appeared, the cyber-enabled social movement organizations (CeSMOs) became an instant concern of the majority of scholars in sociology and computer science. On the one hand, the Internet, especially the mobile Internet, with characteristics such as information integrating, resonance causing, real time sharing and high interaction, provides a direct channel for the large-scale and rapid aggregation of human behaviors. This makes it possible to observe and study the complex behavior of online crowds and their organizational features. On the other hand, this research plays an increasingly significant role in social media marketing, sharing economy and non-military organization actions. In this paper, we introduce the studies in crowd behavioral dynamics and social movement organizations, and propse the ACP-based CMOs reseach method. Firstly, an artificial community with a double-layer structure is designed based on multi-agent modeling method. Secondly, the dynamics of organizational behaviors of netizens and online crowds are analyzed by computational experiments. Thus, the interactive behavioral mechanism of community crowds and the mechanism modeling of crowd organizational activities are emphatically discussed, laying a foundation for revealing the influence of simple behavioral rules of micro individuals on complex emergent phenomena of macro crowds. -
高可靠控制系统在现代工业的诸多领域中越来越重要, 如航空航天、化工、核能、武器、生产制造等领域[1-3]. 实现控制系统高可靠性的一个主要手段是采用贮备技术. 目前, 对于一些先进生产制造企业, 具有双贮备设备的控制系统已逐渐涌现并凸显其作用[4]. 因此, 对这些双贮备系统的可靠性和经济性等指标进行定量分析和优化具有重要的理论意义和实际价值.
贮备系统按照贮备设备在系统运行时是否失效通常分为: 冷贮备系统、热贮备系统和温贮备系统[5-6]. 冷贮备系统是指系统运行过程中, 贮备设备不参与工作也不老化. 对能耗要求极高的系统往往配成冷贮备系统, 如冶金系统、武器系统等[7]. 热贮备系统是指运行设备和贮备设备在相同的环境下工作, 因此两种设备的失效率相同. 热贮备系统主要是对系统切换时间要求极高的系统, 如网络打印机、飞机引擎等系统[8-9]. 温贮备系统是指贮备设备在系统工作期间参与工作, 但在温和的环境中工作其失效率小于运行设备. 对需要平衡切换时间和能耗的系统大都配成温贮备系统, 如电力系统、存储系统、高性能计算系统和飞机控制系统等[10-13].
由于三种贮备系统在不同应用领域中都有重要的作用, 因此学者们对每种贮备系统在故障检测、失效分析、可靠性分析、冗余分配及优化维修等方面都做了深入研究并取得了一定研究成果[14-15]. 在冷贮备系统研究方面, Chen等[16]对两部件冷贮备系统在不同失效机理的累积作用下进行了可靠性分析. 分析过程中作者考虑了部件工作状态和贮备状态之间的依赖关系, 评估了系统在不同失效机理影响下的动态演化过程, 计算了不同阶段应力持续影响下的部件损坏程度, 最后建立了基于改进的序列二值决策图方法的系统可靠性模型. Zhong等[17]对双设备组成的冷贮备控制系统提出了基于半Markov理论的最优预防维护策略. 所提策略中作者使用再生点技术和半Markov过程刻画了系统状态转移概率并用Markov更新理论建立了系统每个状态逗留时间分布的线性方程组, 最后以最大化系统寿命为目标, 优化了系统最优维护周期. Wang等[18]研究了由双设备组成的冷贮备系统的更换策略, 首先假设系统恶化过程服从广义Polya过程, 在此假设下, 作者以最小化系统长期平均费用率(Cost rate)为目标函数, 给出了系统的最优更换策略. 陈童等[19]针对装备系统中多状态工作部件存在退化失效与突发失效竞争的情况, 以冷贮备系统为研究对象, 研究随机检测策略. 其中工作部件在各性能水平停留时间、各类维修时间等随机时间变量以及外部冲击的到达过程均采用相位型 (Phase-type, PH)分布进行描述. 在此基础上, 建立了多状态冷贮备系统可靠性模型, 得到了系统可靠性主要参数的解析表达式. 在热贮备系统研究方面, 研究成果相对较少, 原因在于热贮备系统中的工作设备和贮备设备失效率相同且以并联方式工作. 因此热贮备的可靠性可完全借鉴并联系统的可靠性方法进行分析. 曹晋华等[20]利用Markov更新过程和交替更新过程研究了两个不同部件组成的热贮备系统, 推导了系统首次失效时间与其后停工时间的联合分布、修理工在任一时刻忙的概率以及在(0, t]内系统失效率的分布及其均值等性能指标. Patowary等[21]采用Markov模型结合故障树分析(Fault tree analysis, FTA)方法研究了热贮备微电网系统的可靠性, 所提方法与传统Markov和FTA方法相比能够适应不同的系统失效率. 与冷贮备系统相比, 温贮备系统中的贮备设备在贮备期间也逐渐恶化存在失效风险, 但失效风险小于热贮备系统. 从贮备设备失效率角度看, 冷贮备和热贮备属于温贮备的两个特例. 因此温贮备模型是更为一般的贮备模型, 这也导致温贮备系统的可靠性分析难度急剧增加. 在温贮备系统研究方面, 近年来涌现出许多重要成果. Huang等[22]以卫星数据处理子系统为背景, 研究了一类特殊结构的温贮备系统, 该类系统由两组相同数量的不同部件组成, 一组是工作部件, 另一组是温备份部件. 两组部件分别由两个电源供电. 对这类贮备系统, 作者给出了系统可靠度模型, 建立了各个部件可靠度的闭合方程组, 推导了系统可靠度的解析解. 然而, 该研究成果局限于各部件寿命都符合指数分布的情况, 对其他寿命分布不再适用. Ma等[23]研究了两部件温贮备冷却系统, 采用多阶段维纳过程刻画系统恶化趋势, 提出了基于温度检测数据的优化维护模型. 该模型中, 同时考虑稳态温度控制和系统寿命阈值, 优化系统整体维护费用. 尹东亮等[24]对具有维修和保养两类活动的多状态温贮备系统进行了研究, 考虑了维修较保养具有更高优先级的情况. 用PH分布构建了系统状态转移矩阵, 推导了系统稳态可用度、系统故障率、平均故障间隔时间等可靠性指标. 刘宝亮等[25]研究了修理设备和开关不完全可靠情形下的温贮备可修系统, 用补充变量法和Laplace变换相结合的方式推导了系统瞬时可用度. 该成果实际上是Kuo等[26]研究成果的进一步扩展.
由此可见, 关于三种类型贮备系统的可靠性问题学者们做了大量研究, 同时取得了许多重要成果. 然而这些成果大多是针对“用一备一”的情况进行研究. 随着某些尖端系统对高可靠性的要求, “用一备二”的情形逐渐涌现. 对该类系统的研究也刚刚起步, 其研究成果也鲜有报道. 目前, 我国某自动化厂商已经开始研发具有双贮备设备(即“用一备二”)的控制系统, 对该种控制系统配成冷/温/热三种模型中的何种模型是研发过程中需要解决的关键问题之一, 具有现实意义. 原因在于最优贮备模型可以提高系统稳态可用度(即可靠性), 降低维修人员忙期稳态概率以及系统稳态平均维修次数, 延长系统寿命. 除此之外, 在经济方面最优贮备模型还能降低系统维修费用, 提高系统单位时间内产生的效益. 然而据作者查阅大量相关文献可知, 目前关于双贮备系统的最优贮备模型选择方面研究甚少, 没有可借鉴的通用方法. 因此如何建立系统三种贮备模型并给出确定不同条件下最优贮备模型的优化选择算法是主要研究难点. 为此, 本文用Markov及半Markov更新理论结合Laplace及Laplace-Stieltjes变换技术分析系统状态转移概率和系统再生状态的平均逗留时间, 推导系统稳态可用度、维修人员忙期稳态概率和系统稳态维修次数的可靠性指标以及系统单位时间内净收益的经济指标, 给出确定不同条件下贮备模型的优化选择算法.
表 1 模型中主要变量说明Table 1 Main variables involved in models变量符号 变量含义 $\lambda$ 运行设备失效率 $\lambda _1$ 温贮备设备失效率 X 冷贮备模型中设备运行时的寿命 Z 冷贮备模型中设备失效后的维修时间 Xi 温贮备模型中第 i 个设备运行时的寿命 Yi 温贮备模型中第 i 个设备贮备时的寿命 Zi 温贮备模型中第 i 个设备失效后的维修时间 μi 系统在状态$S_i $的平均停留时间 Qij(t) 系统从进入状态$S_i $开始经过时间$ t $后, 直接进入状态$S_j $的概率分布函数 Qij(k)(t) 系统从进入状态$S_i $开始经过时间t后, 中间经过状态$S_k$后, 再进入状态$S_j $的概率分布函数 qij(t) Qij(t) 的导数, 系统由状态$S_i $到状态$S_j $的转移率 $F( t;\lambda)$ 参数为$ \lambda $的指数分布函数 $G(t)$,${G_1}(t)$ 分别为运行设备失效后和温贮备设备失效后的维修时间分布函数 W(t) 激活时间分布函数 $P_i(t) $ 系统在状态$S_i $的存活函数, 即$P_i(t)=P\{X > t \}$ $F^*(s)$ 函数$F(t) $经 Laplace 变换后的象函数 $\hat F(s)$ 函数$F(t) $经 Laplace-Stieltjes 变换后的象函数 Ai(t) 系统从进入状态$S_i $开始 (t = 0), 在 t 时刻的可用度 ${\bar A_1}$,${\bar A_2}$,${\bar A_3}$ 分别为冷、温、热贮备系统稳态可用度 Bi(t) 系统从进入状态$S_i $开始(t = 0), 维修人员在t时刻正在维修(即忙期)的概率 ${\bar B_1}$,${\bar B_2}$,${\bar B_3}$ 分别为冷、温、热贮备系统稳态维修概率, 即维修人员忙期稳态概率 $V_i(t) $ 系统从进入状态$S_i $开始 (t = 0), 维修人员在(0, $t $) 期间的维修次数 ${\bar V_1}$,${\bar V_2}$,${\bar V_3}$ 分别为冷、温、热贮备系统稳态平均维修次数 ${\omega _i}(t)$ 系统从进入状态$S_i $开始$(t $= 0), 在 t时刻处于激活状态的概率 ${\bar \omega _1}$ 冷贮备系统稳态激活概率 表 2 模型中主要符号说明Table 2 Main symbols involved in models符号 符号含义 $S_i $ 系统状态 $( i=0, 1, \cdots )$ $Op $ 设备处于运行状态 $Cs $ 设备处于冷贮备状态 $Ws $ 设备处于温贮备状态 $Fr $ 运行设备失效后处于维修状态 $Fr1 $ 温贮备设备失效后处于维修状态 $FR $ 失效后的运行设备继续维修的状态 $FR1 $ 失效后的温贮备设备继续维修的状态 $Fwr $ 运行设备失效后处于等待维修状态 $Fwr1 $ 温贮备设备失效后处于等待维修状态 $Fra $ 正在维修的设备暂停维修的状态 $Csa $ 冷贮备设备处于被激活状态 1. 系统冷贮备模型分析
该模型下系统由三个同类型的设备组成, 其中一个运行, 另外两个冷贮备(即贮备期间设备既不失效也不老化). 令随机变量$X$表示设备在运行期间的寿命, $Z$表示失效设备的维修时间. 因为电子设备的寿命多数服从指数分布或近似服从指数分布[27], 而失效设备的维修时间由多种因素决定, 如维修人员的维修水平、失效设备的复杂程度以及维修工具的先进性等因素. 因此维修时间往往不服从某一特定类型的分布[28]. 所以设运行设备寿命服从参数为$\lambda $的指数分布$F(t,\lambda )$, 失效设备维修时间服从一般分布$G(t)$, 即$X \sim F(t,\lambda )$, $Z \sim G(t)$. 经分析, 此系统共有6个不同状态:
$$ \begin{array}{l} {{S}_0} = \left( {{Op,Cs,Cs}} \right),\;\;\;{S_1} = \left( {Fwr,Csa,Cs} \right)\\ {{S}_2} = \left( {{Fr,Op,Cs}} \right),\;\;\;{S_3} = \left( {Fra,Fwr,Csa} \right)\\ {{S}_4} = \left( {Fr,Fwr,Op} \right),\;{S_5} = \left( {FR,Fwr,Fwr} \right) \end{array} $$ 为了建立系统在再生状态下的更新方程, 需要将这些状态进行状态划分. 根据$X \sim F(t,\lambda )$, $Z \sim G(t)$, 通过分析易知, 系统进入状态${S_0}$, ${S_1}$, ${S_2}$, ${S_3}$和${S_4}$的时刻均是系统的再生时刻(又称再生点), 而进入状态${S_5}$的时刻是非再生时刻. 因此${S_0}$, ${S_1}$, ${S_2}$, ${S_3}$和${S_4}$是再生状态, ${{S}_5}$是非再生状态(又称滑过状态)且是失效状态. 状态之间的转移关系如图1所示.
1.1 系统半Markov核函数
令$X(t) = {S_j}$表示时刻t系统处于状态${S_j}$, ${T_n}$表示系统第n次状态转移时刻, ${Z_n} = X({T_n} + 0)$表示第n次转移时刻系统进入的状态, 容易验证$\{ {Z_n},{T_n},n \in {\bf{N}}\} $ 是状态空间$E = \{ {S_j}|j = 0,\cdots,5\}$ 上的Markov更新过程, $\{ X(t),t \geq 0\}$是半Markov过程. 因此需对系统的半Markov核函数${Q_{ij}}(t), i,j = 0,\cdots,5$进行分析. 如图1所示.
1)当系统处于${{S}_0}$时, 如果运行设备失效, 则其中一个冷贮备设备被立刻激活, 此时系统转移至${S_1}$. 因此, ${Q_{01}}(t)$可表示为
$${Q_{01}}(t) = P \left\{ {X < t} \right\} = 1 - {{\rm{e}}^{ - \lambda t}}$$ (1) 2) 当系统处于${S_1}$时, 如果冷贮备设备激活完成, 则该设备进入运行状态, 且失效设备进入维修状态. 此时系统转移至${S_2}$. 因此, ${Q_{12}}(t)$可表示为
$${Q_{12}}(t) = W(t)$$ (2) 3)当系统处于${S_2}$时, 此时有下述两种情况:
a) 如果维修设备在运行设备失效前修好, 则系统转移至${S_0}$. 因此, ${Q_{20}}(t)$可表示为
$${Q_{20}}(t) = P \left\{ {X > Z,Z \leq t} \right\} = \int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}{\rm{d}}G(u)} $$ (3) b) 反之, 如果运行设备在维修设备修好前失效, 则该设备进入等待维修状态且维修设备立刻暂停维修, 冷贮备设备被激活. 此时系统转移至${S_3}$. 因此, ${Q_{23}}(t)$可表示为
$$\begin{split} {Q_{23}}(t) =\;& {P} \left\{ {X < Z,X \leq t} \right\} =\\ & \int\nolimits_0^t {\bar G(u){\rm{d}}(1 - {{\rm{e}}^{ - \lambda u}})} =\\ & \int\nolimits_0^t {\lambda {{\rm{e}}^{ - \lambda u}}\bar G(u){\rm{d}}u} \end{split} $$ (4) 其中, $\bar G(u ) = 1 - G(u )$.
4) 当系统处于${S_3}$时, 冷贮备设备激活完成时, 该设备进入运行状态, 暂停维修的设备开始继续维修, 此时系统转移至${{\rm{S}}_4}$. 因此, ${Q_{34}}(t)$可表示为
$${Q_{34}}(t) = W(t)$$ (5) 5) 当系统处于${S_4}$时, 此时有下述两种情况:
a) 如果维修设备在运行设备失效前修好, 则修好后的设备进入冷贮备状态, 等待维修的设备开始维修, 此时系统进入${S_2}$. 因此, ${Q_{42}}(t)$可表示为
$${Q_{42}}(t) = P \left\{ {X > Z,Z \leq t} \right\} = \int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}{\rm{d}}G(u)} $$ (6) b)反之, 如果运行设备在维修设备修好前失效, 则系统转移至${S_5}$. 因此, ${Q_{45}}(t)$可表示为
$$\begin{split} {Q_{45}}(t) =& \;P \left\{ {X < Z,X \leq t} \right\} = \\ & \int\nolimits_0^\infty {\bar G(u){\rm{d}}} (1 - {{\rm{e}}^{ - \lambda u}}) =\\ &\int\nolimits_0^t {\lambda {{\rm{e}}^{ - \lambda u}}\bar G(u){\rm{d}}} u\\[-8pt] \end{split} $$ (7) 由于${S_5}$是非再生状态, 当正在维修设备修好后, 系统将由${S_5}$再次转移至${S_4}$. 因此, $Q_{44}^{(5)}(t)$表示为
$$\begin{array}{l} Q_{44}^{(5)}(t) = P \left\{ {X < Z,Z \leq t} \right\} = \displaystyle\int\nolimits_0^t {(1 - {{\rm{e}}^{ - \lambda u}}){\rm{d}}} G(u) \end{array} $$ (8) 1.2 系统所有再生状态的平均逗留时间
令${\mu _i}$和${{{F}}_i}(t)$, ${i = 0,1,2,3,4} $, 分别表示系统在状态${{S}_i}$的平均逗留时间和概率分布函数. 令${P_i}(t)$表示系统在状态${{S}_i}$的存活函数, 即${P_i}(t) = 1 - {F_i}(t) = {\bar F_i}(t)$. 对每个状态的平均逗留时间${\mu _i}$进行分析可得
$$\begin{aligned}[b] {\mu _0}=\;&\int\nolimits_0^\infty {t{\rm{d}}{{F}_0}(t)} =\\ &\int\nolimits_0^\infty {{P_0}(t){\rm{d}}t} = \int\nolimits_0^\infty {P \left\{ {{X_1} > t} \right\}} {\rm{d}}t= \\ & \int\nolimits_0^\infty {{{\rm{e}}^{ - \lambda t}}} {\rm{d}}t = \frac{1}{\lambda } \end{aligned} $$ (9) $${\mu _1}\;{\rm{ = }}\;{\mu _3} = \int\nolimits_0^\infty {{P_1}(t){\rm{d}}t} = \int\nolimits_0^\infty {\bar W(t)} {\rm{d}}t $$ (10) 其中, $\bar W(t) = 1 - W(t)$
$$\begin{split} {\mu _2}\;{\rm{ = }}&\;{\mu _4} = \int\nolimits_0^\infty {{P_2}(t){\rm{d}}t} =\\ & \int\nolimits_0^\infty {P \left\{ {Z > t,X > t} \right\}} {\rm{d}}t= \\ & \int\nolimits_0^\infty {{{\rm{e}}^{ - \lambda t}}\bar G(t){\rm{d}}t} \end{split} $$ (11) 1.3 系统性能指标
对系统稳态可用度、维修人员稳态忙期概率以及系统稳态平均维修次数三个性能指标进行分析.
1.3.1 系统稳态可用度
设当前时刻系统处于状态${S_0}$, 经过时间t后, 根据系统状态是否发生变化, 存在两种情况: 1)如果没有发生变化, 即系统依然停留在${S_0}$, 此种情况可表示为$P \left\{ {X \geq t} \right\}$. 此时系统的瞬时可用度为${A_0}(t) = P \left\{ {X \geq t} \right\} \cdot 1 = P \left\{ {X \geq t} \right\}$. 2)如果系统状态发生变化, 如图1所示系统只能转移到${S_1}$. 此时根据Markov更新理论, 系统瞬时可用度为
$${A_0}(t) = \int_0^t {{A_1}(t - u){\rm{d}}{Q_{01}}(u)} = {Q_{01}}(t) * {A_1}(t)$$ (12) 其中, 符号 “$* $” 表示卷积运算符. 根据概率加法原理可得: ${A_0}(t) = {Q_{01}}(t) * {A_1}(t) + P\{ X \geq t\}$. 同理可得系统在其余再生状态${S_1}$, ${S_2}$, ${S_3}$, ${S_4}$下的瞬时可用度更新方程. 从而系统瞬时可用度的更新方程组为
$$\left\{ \begin{aligned} &{A_0}(t) = {Q_{01}}(t) * {A_1}(t) + P \left\{ {X \geq t} \right\} \\ & {A_1}(t) = {Q_{12}}(t)*{A_2}(t) \\ &{A_2}(t) = {Q_{20}}(t)*{A_0}(t) + {Q_{23}}(t)*{A_3}(t)\;+ \\ &\qquad\qquad P \left\{ {X \geq,Z \geq t} \right\} \\ &{A_3}(t) = {Q_{34}}(t)*{A_4}(t) \\ & {A_4}(t) = {Q_{42}}(t)*{A_2}(t) + Q_{44}^{(5)}(t)*{A_4}(t)\;+\\ & \qquad\qquad P \left\{ {X \geq t,Z \geq t} \right\} \end{aligned} \right.$$ (13) 对式(13)进行Laplace变换得
$$\left\{ \begin{aligned} & A_0^*(s) = {{\hat Q}_{01}}(s)A_1^*(s) + \dfrac{1}{{\lambda + s}} \\ &A_1^*(s) = {{\hat Q}_{12}}(s)A_2^*(s) \\ &A_2^*(s) = {{\hat Q}_{20}}(s)A_0^*(s) + {{\hat Q}_{23}}(s)A_3^*(s) + {{\bar G}^*}(\lambda + s) \\ & A_3^*(s) = {{\hat Q}_{34}}(s)A_4^*(s) \\ & A_4^*(s) = {{\hat Q}_{42}}(s)A_2^*(s) + \hat Q_{44}^{(5)}(s)A_4^*(s) + {{\bar G}^*}(\lambda + s) \end{aligned} \right.$$ (14) 解式(14)可得
$$A_0^*(s) = \frac{{\left( {\lambda + s} \right){G^*}\left( {\lambda + s} \right){\Gamma _1}(s) + {\Gamma _2}(s)}}{{\left( {\lambda + s} \right) \left[ {{\Gamma _3}(s) - {{\hat Q}_{23}}(s){{\hat Q}_{34}}(s){{\hat Q}_{42}}(s)} \right]}}$$ (15) 其中,
$${\Gamma _1}(s) = {\hat Q_{01}}(s){\hat Q_{12}}(s)\left( {1 - \hat Q_{44}^{(5)}(s) + {{\hat Q}_{23}}(s){{\hat Q}_{34}}(s)} \right)$$ $${\Gamma _2}(s) = 1 - \hat Q_{44}^{(5)}(s) - {\hat Q_{23}}(s){\hat Q_{34}}(s){\hat Q_{42}}(s)\;\qquad\qquad$$ $${\Gamma _3}(s) = \left( {1 - {{\hat Q}_{01}}(s){{\hat Q}_{12}}(s){{\hat Q}_{20}}(s)} \right)\left( {1 - \hat Q_{44}^{(5)}(s)} \right)\;\quad$$ 根据Abel定理, 系统稳态可用度为
$${\bar A_1} = \mathop {\lim }\limits_{t \to \infty } \frac{{{A_0}(t)}}{t} = \mathop {\lim }\limits_{s \to 0} sA_0^*(s) = \frac{{{N_A}}}{D}$$ (16) 其中,
$${N_A} = {p_{42}}{p_{20}}{\mu _0} + {p_{42}}{\mu _2} + {p_{23}}{\mu _4}\qquad\qquad\qquad\qquad\;\;$$ $$D = {p_{42}}{p_{20}}\left( {{\mu _0} + {\mu _1}} \right) + {p_{42}}{\mu _2} + {p_{23}}{p_{42}}{\mu _3} + {p_{23}}{\mu _4}$$ $${p_{ij}} = \mathop {\lim }\limits_{t \to \infty } {Q_{ij}}(t)$$ 1.3.2 维修人员稳态忙期概率
与第1.3.1节类似, 首先建立维修人员在t时刻忙期的瞬时概率更新方程组
$$\left\{\begin{aligned} &{B_0}(t) = {Q_{01}}(t) * {B_1}(t) \\ &{B_1}(t) = {Q_{12}}(t)*{B_2}(t) \\ &{B_2}(t) = {Q_{20}}(t)*{B_0}(t) + {Q_{23}}(t)*{B_3}(t)\;+ \\ & \qquad\qquad P \left\{ {X \geq t,Z \geq t} \right\} \\ & {B_3}(t) = {Q_{34}}(t)*{B_4}(t) \\ & {B_4}(t) = P \left\{ {X \geq t,Z \geq t} \right\} + {Q_{42}}(t)*{B_2}(t) \;+\\ & \quad\quad\quad\;\; Q_{44}^{(5)}(t)*{B_4}(t) + P \left\{ {X < t,Z \geq t} \right\} \end{aligned} \right.$$ (17) 对式(17)进行Laplace变换得
$$\left\{ \begin{aligned} &B_0^*(s) = {{\hat Q}_{01}}(s)B_1^*(s) \\ &B_1^*(s) = {{\hat Q}_{12}}(s)B_2^*(s) \\ &B_2^*(s) = {{\hat Q}_{20}}(s)B_0^*(s) + {{\hat Q}_{23}}(s)B_3^*(s) + {{\bar G}^*}(\lambda + s) \\ &B_3^*(s) = {{\hat Q}_{34}}(s)B_4^*(s) \\ & B_4^*(s) = {{\hat Q}_{42}}(s)B_2^*(s) + \hat Q_{44}^{(5)}(s)B_4^*(s) + {{\bar G}^*}(s) \end{aligned} \right.$$ (18) 解式(18)可得
$$B_0^*(s) = \frac{{{{\hat Q}_{01}}(s)\left( {{G^*}(\lambda + s){\Gamma _4}(s) + {G^*}(s){{\hat Q}_{12}}(s){\Gamma _5}(s)} \right)}}{{{\Gamma _6}(s) - {{\hat Q}_{23}}(s){{\hat Q}_{34}}(s){{\hat Q}_{42}}(s)}}$$ (19) 其中,
$$\;\;\;{\Gamma _4}(s) = {\hat Q_{12}}(s)\left[ {1 - \hat Q_{44}^{(5)}(s)} \right]$$ $$ \;\;\;{\Gamma _5}(s) = {\hat Q_{12}}(s){\hat Q_{23}}(s){\hat Q_{34}}(s) $$ $$\;\;\;{\Gamma _6}(s) = \left( {1 - {{\hat Q}_{01}}(s){{\hat Q}_{12}}(s){{\hat Q}_{20}}(s)} \right)\left( {1 - \hat Q_{44}^{(5)}(s)} \right)$$ 根据Abel定理, 维修人员稳态忙期概率为
$${\bar B_1} = \mathop {\lim }\limits_{t \to \infty } \frac{{{B_0}(t)}}{t} = \mathop {\lim }\limits_{s \to 0} sB_0^*(s) = \frac{{{N_B}}}{D}$$ (20) 其中, ${N_B} = {p_{23}}\displaystyle\int_0^\infty {t{\rm{d}}G(t)} + {p_{42}}{\mu _2} .$
1.3.3 系统稳态平均维修次数
同理, 建立系统在$\left( {0,t} \right]$时间内维修次数的更新方程组
$$\left\{ \begin{aligned} &{V_0}(t) = {Q_{01}}(t) * {V_1}(t) \\ &{V_1}(t) = {Q_{12}}(t)*\left[ {{V_2}(t) + 1} \right] \\ &{V_2}(t) = {Q_{20}}(t)*{V_0}(t) + {Q_{23}}(t)*{V_3}(t) \\ &{V_3}(t) = {Q_{34}}(t)*\left[ {{V_4}(t) + 1} \right] \\ &{V_4}(t) = {Q_{42}}(t)*\left[ {{V_2}(t) + 1} \right] + Q_{44}^{(5)}(t)*\left[ {{V_4}(t) + 1} \right] \end{aligned} \right.$$ (21) 对式(21)进行Laplace-Stieltjes变换得
$$\left\{ \begin{aligned} &{{\hat V}_0}(s) = {{\hat Q}_{01}}(s){{\hat V}_1}(s) \\ &{{\hat V}_1}(s) = {{\hat Q}_{12}}(s){{\hat V}_2}(s) + {{\hat Q}_{12}}(s) \\ &{{\hat V}_2}(s) = {{\hat Q}_{20}}(s){{\hat V}_0}(s) + {{\hat Q}_{23}}(s){{\hat V}_3}(s) \\ & {{\hat V}_3}(s) = {{\hat Q}_{34}}(s){{\hat V}_4}(s) + {{\hat Q}_{34}}(s) \\ & {{\hat V}_4}(s) = {{\hat Q}_{42}}(s){{\hat V}_2}(s) + \hat Q_{44}^{(5)}(s){{\hat V}_4}(s) \;+\\ & \qquad\qquad{{\hat Q}_{42}}(s) + \hat Q_{44}^{(5)}(s) \end{aligned}\right.$$ (22) 解式(22)可得
$${\hat V_0}(s) = \frac{{{{\hat Q}_{01}}(s)\left( {{\Gamma _4}(s) + {{\hat Q}_{12}}(s){{\hat Q}_{23}}(s){{\hat Q}_{34}}(s)} \right)}}{{{\Gamma _6}(s) - {{\hat Q}_{23}}(s){{\hat Q}_{34}}(s){{\hat Q}_{42}}(s)}}$$ (23) 其中, ${\Gamma _4}(s)$和${\Gamma _6}(s)$与式(19)中相同.
根据Abel定理, 可得系统稳态平均维修次数为
$${\bar V_1} = \mathop {\lim }\limits_{t \to \infty } \frac{{{V_0}(t)}}{t} = \mathop {\lim }\limits_{s \to 0} s{\hat V_0}(s) = \frac{{{N_V}}}{D}$$ (24) 其中, ${N_V} = {p_{23}} + {p_{42}}$.
1.3.4 系统稳态激活概率
建立系统在t时刻的激活概率更新方程组
$$\left\{ \begin{aligned} & {\omega _0}(t) = {Q_{01}}(t) * {\omega _1}(t) \\ & {\omega _1}(t) = \bar W(t) + {Q_{12}}(t)*{\omega _2}(t) \\ &{\omega _2}(t) = {Q_{20}}(t)*{\omega _0}(t) + {Q_{23}}(t)*{\omega _3}(t) \\ & {\omega _3}(t) = \bar W(t) + {Q_{34}}(t)*{\omega _4}(t) \\ & {\omega _4}(t) = {Q_{42}}(t)*{\omega _2}(t) + Q_{44}^{(5)}(t)*{\omega _4}(t) \end{aligned} \right.$$ (25) 对式(25)进行Laplace变换得
$$\left\{\begin{aligned} &\omega _0^*(s) = {{\hat Q}_{01}}(s)\omega _1^*(s) \\ &\omega _1^*(s) = {{\bar W}^*}(s) + {{\hat Q}_{12}}(s)\omega _2^*(s) \\ &\omega _2^*(s) = {{\hat Q}_{20}}(s)\omega _0^*(s) + {{\hat Q}_{23}}(s)\omega _3^*(s) \\ & \omega _3^*(s) = {{\bar W}^*}(s) + {{\hat Q}_{34}}(t)\omega _4^*(s) \\ &\omega _4^*(s) = {{\hat Q}_{42}}(s)\omega _2^*(s) + \hat Q_{44}^{(5)}(s)\omega _4^*(s) \end{aligned} \right.$$ (26) 解式(26)可得
$$\omega _0^*(s) = \frac{{{{\hat Q}_{01}}(s){{\bar W}^*}(s)\left( {1 + {\Gamma _7}(s) - {\Gamma _8}(s)} \right)}}{{{\Gamma _6}(s) - {{\hat Q}_{23}}(s){{\hat Q}_{34}}(s){{\hat Q}_{42}}(s)}}$$ (27) 其中,
$${\Gamma _7}(s) = {\hat Q_{12}}(s){\hat Q_{23}}(s)\left( {1 + \hat Q_{44}^{(5)}(s)} \right)\;\;\;$$ $${\Gamma _8}(s) = \hat Q_{44}^{(5)}(s) + {\hat Q_{23}}(s){\hat Q_{34}}(s){\hat Q_{42}}(s)$$ ${\Gamma _6}(s)$与式(19)中相同.
根据Abel定理, 系统稳态激活概率为
$${\bar \omega _1} = \mathop {\lim }\limits_{t \to \infty } \frac{{{\omega _0}(t)}}{t} = \mathop {\lim }\limits_{s \to 0} s\omega _0^*(s) = \frac{{{N_\omega }}}{D}$$ (28) 其中, ${N_\omega } = {p_{01}}{p_{42}}({p_{23}} + {p_{20}}){\mu _1}$.
1.4 系统单位时间内产生的经济效益
系统单位时间内的经济效益${\Theta _1}$等于系统的运行收益减去设备的维修费用、支付给维修人员的费用、系统激活期间的停工费用以及系统的安装费用. 因此
$${\Theta _1} = {c_0}{\bar A_1} - {c_1}{\bar B_1} - {c_2}{\bar V_1} - {c_3}{\bar \omega _1} - 3I$$ (29) 其中, ${c_0}$, ${c_1}$, ${c_2}$, ${c_3}$分别表示系统单位时间内的运行收益、设备维修费用、支付给维修人员的费用、停工费用, $I $表示一个设备的安装费用.
2. 系统温贮备模型分析
该模型下系统由三个同类型的设备组成, 其中一个设备运行, 另外两个设备温贮备(即贮备设备在温和的环境下运行, 其失效率低于运行设备). 令随机变量${X_i}$, ${i = 1,2,3}$表示第$i$个设备在运行期间的寿命, ${Y_i}$表示第$i$个设备在贮备期间的寿命, ${Z_i}$表示第$i$个设备失效后的维修时间, $F(t,\lambda )$表示参数为$\lambda $的指数分布, $G(t)$和${G_1}(t)$表示一般分布. 假设运行设备和温贮备设备的寿命分别服从参数为$\lambda $和${\lambda _1}$的指数分布, 即${X_i} \sim F(t,\lambda )$, ${Y_i} \sim F(t,{\lambda _1})$. 运行设备和温贮备设备失效后的维修时间均服从一般分布, 但实际系统中这两种维修时间往往不同, 需要分别考虑. 因此, 如果${Z_i}$是运行设备失效后的维修时间, 则${Z_i} \sim G(t)$; 反之, 如果${Z_i}$是温贮备设备失效后的维修时间, 则${Z_i} \sim {G_1}(t)$. 为了便于描述模型, 进一步假设:
1)${X_1}$, ${X_2}$, ${X_3}$, ${Y_1}$, ${Y_2}$相互独立.
2)系统不同状态之间的转移是瞬时的.
3)设备失效后, 如果没有其他设备正在维修, 则维修人员立刻对该设备进行维修; 否则, 该设备进入等待状态直到其他设备维修完成. 设备修复后, 其寿命分布像新的设备一样.
经分析可得系统共有13个状态:
$$ \begin{array}{lll} &{S_0} = \left( {{{Op,Ws,Ws}}} \right),&{S_1} = \left( {Op,Fr1,Ws} \right)\\ &{S_2} = \left( {{{Fr,Op,Ws}}} \right),&{S_3} = \left( {Op,FR1,Fwr1} \right)\\ &{S_4} = \left( {{{Fwr,FR1,Op}}} \right),&{S_5} = \left( {Fwr,FR1,Fwr1} \right)\\ &{S_6} = \left( {{{Fwr,FR1,Fwr}}} \right),&{S_7} = \left( {Fr,Op,Fwr} \right)\\ &{S_8} = \left( {{{FR,Fwr,Fwr}}} \right),&{S_9} = \left( {FR,Fwr,Op} \right)\\ &{S_{10}} = \left( {{{FR,Op,Fwr1}}} \right),&{S_{11}} = \left( {FR,Fwr,Fwr1} \right)\\ &{S_{12}} = \left( {{{Op,Fwr,Fr1}}} \right)&{} \end{array} $$ 与冷贮备模型分析过程相同, 经分析可得: ${S_0}$, ${S_1}$, ${S_2}$, ${S_7}$和${S_{12}}$是再生状态; ${S_3}$, ${S_4}$, ${S_5}$, ${S_6}$, ${S_8}$, ${S_9}$, ${S_{10}}$和${S_{11}}$是非再生状态; ${S_5}$, ${S_6}$, ${S_8}$和${S_{11}}$是失效状态. 状态之间的转移关系如图2所示.
2.1 系统半Markov核函数
与第1.1节类似, 经分析可得温贮备模型下系统所有半Markov核函数为(具体分析过程见附录A)
$${Q_{01}}(t) = \int\nolimits_0^t {2{\lambda _1}{{\rm{e}}^{ - (\lambda + 2{\lambda _1})u}}{\rm{d}}u} $$ $${Q_{02}}(t) = \int\nolimits_0^t {\lambda {{\rm{e}}^{ - (\lambda + 2{\lambda _1})u}}{\rm{d}}u} $$ $${Q_{10}}(t) = \int\nolimits_0^t {{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}{\rm{d}}} {G_1}(u)$$ $$Q_{11}^{(3)}(t) = \int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}\left( {1 - {{\rm{e}}^{ - {\lambda _1}u}}} \right){\rm{d}}} {G_1}(u)$$ $$Q_{15}^{(3)}(t) = \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}} \right){{\bar G}_1}(u){\rm{d}}} u$$ $$Q_{17}^{(3,5)}(t) = \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}{G_1}(u)} $$ $$Q_{12}^{(4)}(t) = \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*{{\rm{e}}^{ - \lambda u}}} \right){\rm{d}}{G_1}(u)} $$ $$Q_{16}^{(4)}(t) = \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}} \right){{\bar G}_1}(u){\rm{d}}u} $$ $$Q_{17}^{(4,6)}(t) = \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}{G_1}(u)} $$ $${Q_{20}}(t) = \int\nolimits_0^t {{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}{\rm{d}}G(u)} $$ $$Q_{21}^{(10)}(t) = \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*{{\rm{e}}^{ - \lambda u}}} \right){\rm{d}}G(u)} $$ $$Q_{2,11}^{(10)}(t) = \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}} \right)\bar G(u){\rm{d}}u} $$ $$ Q_{2,12}^{(10,11)}(t) = \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}G(u)} $$ $$ Q_{22}^{(9)}(t) = \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*{{\rm{e}}^{ - \lambda u}}} \right){\rm{d}}G(u)} $$ $$ Q_{2,7}^{(9,8)}(t) = \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}G(u)} $$ $$ {Q_{72}}(t) = \int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}{\rm{d}}G(u)} $$ $$Q_{77}^{(8)}(t) = \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}G(u)} $$ $${Q_{12,2}}(t) = \int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}{\rm{d}}{G_1}(u)} $$ $$Q_{12,7}^{(6)}(t) = \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}{G_1}(u)} $$ 2.2 系统在所有再生状态的平均逗留时间
与第1.2节类似, 经分析可得系统在每个再生状态的平均逗留时间${\mu _i}$, $ {i = 0,1,2,7,12} $为(具体分析过程见附录B)
$$ {\mu _0} = \frac{1}{{\lambda + 2{\lambda _1}}},\quad\qquad\;{\mu _1} = \frac{{1 - g_1^*(\lambda + {\lambda _1})}}{{\lambda + {\lambda _1}}} $$ $$ {\mu _2} = \frac{{1 - {g^*}(\lambda + {\lambda _1})}}{{\lambda + {\lambda _1}}},\;{\mu _7} = \frac{{1 - {g^*}(\lambda )}}{\lambda } $$ $${\mu _{12}} = \frac{{1 - g_1^*(\lambda )}}{\lambda }$$ 其中, ${g^*}( \lambda ) = \int_0^\infty {{{\rm{e}}^{ - \lambda t}}{\rm{d}}G(t)}$, $g_1^*( \lambda ) = \int_0^\infty {{\rm{e}}^{ - \lambda t}} {\rm{d}}{G_1}(t).$
2.3 系统性能指标
本节对系统的稳态可用度、维修人员稳态忙期概率和系统稳态平均维修次数三个性能指标进行分析.
2.3.1 系统稳态可用度
与第1.3.1节类似, 经分析可得系统稳态可用度为
$${\bar A_2} = \mathop {\lim }\limits_{s \to 0} \frac{{s{N_1}(s)}}{{{D_1}(s)}}$$ (30) 其中, ${D_1}(s)$和${N_1}(s)$分别为
$$ \begin{split}& {D_1}(s) =\;\\& \left| {\begin{array}{*{20}{c}} 1&{ - {{\hat Q}_{01}}(s)}& { - {{\hat Q}_{02}}(s)} \\ { - {{\hat Q}_{10}}(s)}&{1 - \hat Q_{11}^{(3)}(s)}&{ - \hat Q_{12}^{(4)}(s)} \\ { - {{\hat Q}_{20}}(s)}&{ - \hat Q_{21}^{(10)}(s)}&{1 - \hat Q_{22}^{(9)}(s)} \\ 0&0&{ - {{\hat Q}_{72}}(s)}\\ 0&0&{ - {{\hat Q}_{12,2}}(s)} \end{array}} \right.\\ &\qquad\;\;\;\;\;\;\;\;\;\left. {\begin{array}{*{20}{c}} 0 &0\\ { - \hat Q_{17}^{(35)}(s) - \hat Q_{17}^{(46)}(s)}&0 \\ { - \hat Q_{27}^{(98)}(s)}&{ - \hat Q_{2,12}^{(10,11)}(s)} \\ {1 - \hat Q_{77}^{(8)}(s)}&0 \\ { - \hat Q_{12,7}^{(6)}(s)}&1 \end{array}} \;\right| \end{split}$$ $$ \begin{split}& {N_1}(s) = \;\\& \left| {\begin{array}{*{20}{c}} {\dfrac{1}{{s + \lambda + 2{\lambda _1}}}}&{ - {{\hat Q}_{01}}(s)}&{ - {{\hat Q}_{02}}(s)}\\ {\dfrac{{1 - {{\hat G}_1}(s + \lambda + {\lambda _1})}}{{s + \lambda + {\lambda _1}}}}&{1 - \hat Q_{11}^{(3)}(s)}&{ - \hat Q_{12}^{(4)}(s)} \\ {\dfrac{{1 - \hat G(s + \lambda + {\lambda _1})}}{{s + \lambda + {\lambda _1}}}}&{ - \hat Q_{21}^{(10)}(s)}&{1 - \hat Q_{22}^{(9)}(s)} \\ {\dfrac{{1 - \hat G(s + \lambda )}}{{s + \lambda }}}&0&{ - {{\hat Q}_{72}}(s)}\\ {\dfrac{{1 - {{\hat G}_1}(s + \lambda )}}{{s + \lambda }}}&0&{ - {{\hat Q}_{12,2}}(s)} \end{array}} \right.\\ &\;\;\;\;\;\qquad\qquad\left. {\begin{array}{*{20}{c}}0&0 \\ { - \hat Q_{17}^{(35)}(s) - \hat Q_{17}^{(46)}(s)}&0 \\ { - \hat Q_{17}^{(98)}(s)}&{ - \hat Q_{2,12}^{(10,11)}(s)} \\ {1 - \hat Q_{77}^{(8)}(s)}&0 \\ { - \hat Q_{12,7}^{(6)}(s)}&1 \end{array}} \;\right|\end{split}$$ 2.3.2 维修人员稳态忙期概率
与第1.3.2节类似, 经分析可得维修人员稳态忙期概率为
$${\bar B_2} = \frac{{s{N_2}(s)}}{{{D_1}(s)}}$$ (31) 其中, ${N_2}(s)$为
$$ \begin{split}& {N_2}(s) =\;\\ & \left| {\begin{array}{*{20}{c}} 0&{ - {{\hat Q}_{01}}(s)}&{ - {{\hat Q}_{02}}(s)} \\ {\dfrac{{1 - {{\hat G}_1}(s + \lambda + {\lambda _1})}}{{s + \lambda + {\lambda _1}}}}&{1 - \hat Q_{11}^{(3)}(s)}&{ - \hat Q_{12}^{(4)}(s)} \\ {\dfrac{{1 - \hat G(s + \lambda + {\lambda _1})}}{{s + \lambda + {\lambda _1}}}}&{ - \hat Q_{21}^{(10)}(s)}&{1 - \hat Q_{22}^{(9)}(s)} \\ {\dfrac{{1 - \hat G(s + \lambda )}}{{s + \lambda }}}&0&{ - {{\hat Q}_{72}}(s)} \\ {\dfrac{{1 - {{\hat G}_1}(s + \lambda )}}{{s + \lambda }}}&0&{ - {{\hat Q}_{12,2}}(s)} \end{array}} \right.\\ &\;\qquad\qquad\quad\left. {\begin{array}{*{20}{c}} 0&0 \\ { - \hat Q_{17}^{(35)}(s) - \hat Q_{17}^{(46)}(s)}&0 \\ { - \hat Q_{17}^{(98)}(s)}&{ - \hat Q_{2,12}^{(10,11)}(s)} \\ {1 - \hat Q_{77}^{(8)}(s)}&0 \\ { - \hat Q_{12,7}^{(6)}(s)}&1 \end{array}} \right| \end{split}$$ 2.3.3 系统稳态平均维修次数
与第1.3.3节类似, 经分析可得系统稳态平均维修次数为
$${\bar V_2} = \frac{{s{N_3}(s)}}{{{D_1}(s)}}$$ (32) 其中, ${N_3}(s)$为
$$ \begin{split} &{N_3}(s) =\\ \;& \left| {\begin{array}{*{20}{c}} {{\varphi _0}(s)}&{ - {{\hat Q}_{01}}(s)}&{ - {{\hat Q}_{02}}(s)} \\ {{\varphi _1}(s)}&{1 - \hat Q_{11}^{(3)}(s)}&{ - \hat Q_{12}^{(4)}(s)} \\ {{\varphi _2}(s)}&{ - \hat Q_{21}^{(10)}(s)}&{1 - \hat Q_{22}^{(9)}(s)}\\ {{\varphi _7}(s)}&0&{ - {{\hat Q}_{72}}(s)} \\ {{\varphi _{12}}(s)}&0&{ - {{\hat Q}_{12,2}}(s)} \end{array}} \right.\\ &\qquad\;\;\;\;\;\;\;\;\;\;\left. {\begin{array}{*{20}{c}} 0&0 \\ { - \hat Q_{17}^{(35)}(s) - \hat Q_{17}^{(46)}(s)}&0 \\ { - \hat Q_{17}^{(98)}(s)}&{ - \hat Q_{2,12}^{(10,11)}(s)} \\ {1 - \hat Q_{77}^{(8)}(s)}&0 \\ { - \hat Q_{12,7}^{(6)}(s)}&1 \end{array}} \right| \end{split}$$ $${\varphi _0}(s) = {\hat Q_{01}}(s) + {\hat Q_{02}}(s) $$ $${\varphi _1}(s) = \hat Q_{11}^{(3)}(s) + \hat Q_{12}^{(4)}(s) + \hat Q_{17}^{(35)}(s) + \hat Q_{17}^{46}(s)$$ $${\varphi _2}(s) = \hat Q_{21}^{(10)} (s) + \hat Q_{22}^{(9)} (s) + \hat Q_{27}^{(98)}(s) + \hat Q_{2,12}^{(10,11)}(s)$$ $${\varphi _7}(s) = {\hat Q_{72}}(s) + Q_{77}^{(8)}(s)$$ $${\varphi _{12}}(s) = {\hat Q_{12,2}}(s) + \hat Q_{12,7}^{(6)}(s)$$ 2.4 系统单位时间内产生的经济收益
与第1.4节类似, 温贮备系统单位时间内产生的经济效益${\Theta _2}$可表示为
$${\Theta _2} = {c_4}{\bar A_2} - {c_5}{\bar B_2} - {c_6}{\bar V_2} - 3I$$ (33) 其中, 参数${c_4}$, ${c_5}$, ${c_6}$的含义分别与式(29)中的${c_0}$, ${c_1}$, ${c_2}$相同.
3. 系统热贮备模型分析
双贮备设备下热贮备系统实质上是三个设备以并联的方式工作. 该模型中不考虑某个设备失效后负载均衡对其他运行设备失效率造成的影响. 因此三个设备的失效率和维修率均视为相同. 实际上, 该模型的分析方法与温贮备系统模型的分析方法相同, 在分析过程中只需令${\lambda _1} = \lambda $, ${\beta _1} = \beta $即可. 因此, 该模型的分析过程略. 下面只给出系统单位时间内的净收益函数
$${\Theta _3} = {c_7}{\bar A_3} - {c_8}{\bar B_3} - {c_9}{\bar V_3} - 3I$$ (34) 其中, 参数${c_7}$, ${c_8}$, ${c_9}$的含义分别与式(29)中的${c_0}$, ${c_1}$, ${c_2}$相同.
4. 系统冷/温/热贮备模型优化选择算法
从系统性能指标(即稳态可用度、维修人员稳态忙期概率、系统稳态平均维修次数)以及经济指标(即系统单位时间内净收益)两个方面, 分别给出双贮备系统冷/温/热贮备模型的优化选择算法.
算法 1. 以系统性能为目标的双贮备系统冷/温/热贮备模型优化选择算法
输入. 参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $, 某系统性能指标.
输出. 该性能指标下的最优贮备模型.
算法流程:
1. 初始化参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $; 定义数组类型变量Models并初始化Models = [“冷贮备”, “温贮备”, “热贮备”]; 初始化循环变量$i = 0$;
2. While $ i < 3 $
2.1 计算models$[i] $模型下的所有半Markov核函数$Q_{ij}^{(k)}(t)$.
2.2 计算models$[i] $ 模型下的每个状态的平均逗留时间$ {\mu _i}$.
2.3 根据$Q_{ij}^{(k)}(t)$和${\mu _i}$建立系统该性能指标下的瞬时更新方程组.
2.4 对瞬时更新方程组进行Laplace或Laplace-Stieltjes变换并进行求解, 得到该性能指标的表达式: ${A_i}$, ${B_i}$或${V_i}$.
2.5 更新循环变量 $i \leftarrow i + 1$.
End while
3. 将参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $代入${\bar A_i}$, ${\bar B_i}$或${\bar V_i}$并计算结果.
4. 通过结果比较, 输出该性能指标下${\bar A_i}$, ${\bar B_i}$或${\bar V_i}$最优值对应的贮备模型.
算法 2. 以系统单位时间内净收益为目标的双贮备系统冷/温/热贮备模型优化选择算法
输入. 参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $, ${c_i}$, $i = 0, \cdots ,9$, $I$.
输出. 以系统单位时间内净收益为目标的系统最优贮备模型.
算法流程:
1. 初始化参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $, ${c_i}$, $i = 0,1, \cdots , 9$, $I$.
2. 令系统性能指标分别为稳态可用度、维修人员稳态忙期概率、系统稳态平均维修次数, 并将其与参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $代入算法1, 分别得到${A_i}$, ${B_i}$和${V_i}$, $i = 0,1,2$.
3. 将参数${c_i}$, $i = 1, \cdots ,9$, $I$以及计算结果${\bar A_i}$, ${\bar B_i}$, ${\bar V_i}$, $i = 1,2,3$分别代入${\Theta _1}$, ${\Theta _2}$和${\Theta _3}$.
4. 分别以系统单位时间内运行收益、设备维修费用、支付给维修人员费用为研究对象, 建立不等式:
情况 a):
${\Theta _1} \geq\max ({\Theta _2},{\Theta _3})$(对应冷贮备模型最优);
情况 b):
${\Theta _2} \geq \max ({\Theta _1},{\Theta _3})$(对应温贮备模型最优);
情况 c):
${\Theta _3} \geq \max ({\Theta _1},{\Theta _2})$(对应热贮备模型最优).
5. 求解步骤4中的不等式, 在参数取值范围内如果不等式有解, 则输出相应研究对象下该不等式对应的最优贮备模型.
5. 实例分析
以实际的双贮备PLC (Programmable logic controller)控制系统(如图3所示)为研究对象, 进行实例分析. 从系统性能指标, 即系统稳态可用度、维修人员稳态忙期概率、系统稳态平均维修次数, 以及经济指标, 即系统单位时间内净收益两个方面, 对系统贮备模型优化算法的输入参数进行假设.
为了给出合理的参数假设, 首先对图3所示的系统进行简要描述. 该PLC控制系统是我国某自动化厂商自主研制的高可靠双贮备控制系统. 系统中每个PLC设备经过加速寿命测试后得到平均工作寿命约为1800天, 因此运行设备的平均失效率设为$\lambda = 0.00055$ (个/天). 温贮备设备失效率与工作环境有关, 设其为${\lambda _1} \in [0.00001,0.00055]$(个/天). 维修时间一般服从指数分布, 即$G(t) = 1 - {{\rm{e}}^{ - \beta t}}$, ${G_1}(t) = 1 - {{\rm{e}}^{ - {\beta _1}t}}$. 其中参数$\beta $, ${\beta _1}$分别表示运行设备和温贮备设备失效后的平均维修率. 实际上, 设备失效后需要返厂、检测、维修、测试、现场安装调试、重新运行等环节. 因此根据设备历史维修数据可得运行设备失效后从返厂到重新运行约为7 ~ 30天, 温贮备设备约为5到15天. 因此设$\beta \in [0.03,0.14]$(个/天), ${\beta _1} = [0.067,0.2]$(个/天). 该系统如果配成冷贮备模式, 则当运行设备失效后, 冷贮备设备能够自动上电并上载控制程序以及导入设备失效前的数据, 整个激活过程需要3 min左右. 通过对历史激活数据的统计分析可得贮备设备激活时间服从正态分布, 即
$$W(t) = \frac{1}{{\sqrt {2\pi } \sigma }}\exp \left( { - \frac{{{{(\gamma - {\rm{t}})}^2}}}{{2{\sigma ^2}}}} \right)$$ 其中, 参数$\gamma $和$\sigma $分别代表均值和方差. 因此设$\gamma = 0.0021$(天), $\sigma = 0.0007$.
5.1 以系统性能为目标的实例分析
5.1.1 以稳态可用度为目标的实例分析
令$\lambda = 0.00055$, ${\lambda _1} = 0.00011$, $\beta = 0.05$, ${\beta _1} = 0.1$, $\gamma = 0.0021$, $\sigma = 0.0007$, 系统性能指标为稳态可用度. 将这些参数代入算法1, 在MATLAB (2014b)环境下运行算法1 (公式推导部分利用MATLAB的符号计算), 其计算结果如表3所示.
表 3 系统稳态可用度Table 3 System steady-state availability系统模型 模型 Ⅰ 模型 Ⅱ 模型 Ⅲ ${\bar A_i}$ 1.0000 0.9967 0.9845 表3中, 模型I、 模型II和模型III分别表示冷贮备模型、温贮备模型和热贮备模型. 由表3可知, ${\bar A_1} > {\bar A_2} > {\bar A_3}$. 因此以系统稳态可用度为目标时, 算法1输出为: 冷贮备是最优贮备模型. 由于温贮备设备的失效率与其工作环境有关, 因此属于可变参数, 为了研究该参数对系统稳态可用度的影响, 令${\lambda _1}$从$0.00001$变化到$0.00055$, 步长为$0.00001$, 其他参数不变. 将这些参数重新代入算法1, 其计算结果如图4所示.
由图4可知, 温贮备系统的稳态可用度随${\lambda _1}$的增加而降低. $\forall {\lambda _1} \in [0.00001,0.00055]$, 温贮备系统的稳态可用度均小于冷贮备系统, 但均大于热贮备系统. 可见温贮备设备的失效率对温贮备系统稳态可用度有一定影响, 但对算法1输出结果即最优贮备模型没有影响.
5.1.2 以维修人员忙期稳态概率为目标的实例分析
参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $取值与第5.1.1节相同, 系统性能指标为维修人员忙期稳态概率. 将这些参数代入算法1, 其计算结果如表4所示.
表 4 维修人员忙期稳态概率Table 4 Steady-state probability of repairmen busy系统模型 模型 Ⅰ 模型 Ⅱ 模型 Ⅲ ${\bar B_i}$ 0.0110 0.0131 0.0323 由表4可知, ${\bar B_1} < {\bar B_2} < {\bar B_3}$. 因此以维修人员稳态忙期概率为目标时, 算法1输出结果为: 冷贮备是最优贮备模型. 实际上, 运行设备和温贮备设备失效后的维修率(即参数$\beta $, ${\beta _1}$)对维修人员稳态忙期概率有直接影响, 因此, 令$\beta \in [0.03,0.14]$, ${\beta _1} = [0.067,0.2]$, 两个参数的变化步长均设为0.005, 其他参数不变, 研究$\beta $对${\bar B_1}$, ${\bar B_3}$的影响以及$\beta $, ${\beta _1}$对${\bar B_2}$的影响. 其结果分别如图5和图6所示.
由图5可知, 在参数$\beta $的取值范围内变化时, ${\bar B_1}$均小于${\bar B_3}$. 说明以维修人员稳态忙期概率为目标时, 算法1输出是: 冷贮备是最优贮备模型. 由图6可知, ${\bar B_2}$随$\beta $, ${\beta _1}$的增大呈非线性减小. 从数值计算结果可知: 当$\beta $取值相同时, ${\bar B_1} < {\bar B_2} < {\bar B_3}$总成立. 说明在相同的运行设备维修率下, 算法1输出依然是: 冷贮备是最优贮备模型.
5.1.3 以系统稳态平均维修次数为目标的实例分析
参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $取值与第5.1.1节相同, 系统性能指标为系统稳态平均维修次数. 将这些参数代入算法1. 其计算结果如表5所示.
表 5 系统稳态平均维修次数Table 5 Mean repair number of the system in steady-state系统模型 模型 Ⅰ 模型 Ⅱ 模型 Ⅲ ${\bar V_i}$ 0.00056 0.00077 0.00170 由表5可知, ${\bar V_1} < {\bar V_2} < {\bar V_3}$. 因此以系统稳态平均维修次数为目标时, 算法1输出结果是: 冷贮备是最优贮备模型. 运行设备维修率对冷、温、热贮备系统都有重要影响. 除此之外, 温贮备系统还受温贮备设备失效率的影响. 因此, 令${\lambda _1} \in [0.00011, 0.00055]$, $\beta \in [0.03,0.14]$, 步长分别设为0.00001和0.005, 其他参数不变, 研究$\beta $对${\bar V_1}$, ${\bar V_3}$的影响以及$\beta $, ${\lambda _1}$对${\bar V_2}$的影响. 其结果分别如图7和图8所示.
由图7可知, 在$\beta \in [0.03,0.14]$时, ${\bar V_3} > {\bar V_1}$, 无论设备维修率取值如何, 冷贮备系统稳态维修次数小于热贮备系统. 由图8可知, 参数$\beta $, ${\lambda _1}$和变量${\bar V_2}$构成一个平面, 说明${\bar V_2}$与$\beta $, ${\lambda _1}$呈线性变化关系. 另外从数值结果可知, 在$\beta \in [0.03,0.14]$, ${\lambda _1} \in [0.00011, 0.00055]$范围时, ${\bar V_3} > {\bar V_2} > {\bar V_1}$成立. 说明温贮备系统的稳态平均维修次数小于热贮备系统, 但大于冷贮备系统. 因此. 当以系统稳态平均维修次数为目标时, 算法输出依然是冷贮备是最优贮备模型.
5.2 以系统经济效益为目标的实例分析
根据系统应用案例中的历史财务数据和历史维修费用记录, 给出三个模型下净收益中费用的合理范围: 设${c_0},{c_4},{c_7} \in [1\;000,5\;000]$(元/h), ${c_1},{c_5}, {c_8} \in [300,500]$(元/h), ${c_2},{c_6},{c_9} \in [300,700]$(元/h). 实际上, 冷贮备系统激活期间的停机对于不同行业的生产制造企业带来的经济损失或产生的费用大相径庭、难以估计. 但根据使用该系统的某生产企业的停机记录, 停机费用的合理范围为: ${c_3} \in [500,1\;000]$(元/h), 系统安装费用的合理范围为: $I \in [100,300]$(元/h).
5.2.1 以系统单位时间内运行收益为研究对象
令参数$\lambda $, ${\lambda _1}$, $\beta $, ${\beta _1}$, $\gamma $, $\sigma $取值与第5.1.1 节相同, 令参数${c_1} = 400$, ${c_2} = 500$, ${c_3} = 800$, ${c_5} = 100$, ${c_6} = 200$, ${c_8} = 300$, ${c_9} = 500$, $I = 200$, ${c_0},{c_4},{c_7} \in [1\;000,5\;000]$ . 将以上参数代入算法2, 其计算结果如下.
对于情况a), 化简后最终不等式为
$$\begin{split} &\max ( 0.9967{c_4} + 3.2273,0.9845{c_7} \;-\\ &\qquad5.9432,1\;000) \leq{c_0} \leq 5\;000 \end{split} $$ 该不等式在$ \forall {c_0},{c_4},{c_7} \in [1\;000,5\;000]$取值范围内有解, 即${\Theta _1} \geq \max ({\Theta _2},{\Theta _3})$成立, 此时算法2输出结果是: 冷贮备是最优贮备模型.
对于情况b), 化简后的最终不等式为
$$\begin{split} &\max ( 1.0033{c_0} - 3.2273,0.9878{c_7}\; -\\ &\qquad9.0978,1\;000) \leq {c_4} \leq 5\;000 \end{split} $$ 该不等式在$\forall {c_0},{c_4},{c_7} \in [1\;000,5\;000]$取值范围内有解, 即${\Theta _2} \geq \max ({\Theta _1},{\Theta _3})$成立, 此时算法2输出结果是: 温贮备是最优贮备模型.
对于情况c), 化简后最终不等式为
$${c_7} \geq \max \left( {1.0157{c_0} + 5.9442,1.0124{c_4} + 9.2105} \right)$$ 该不等式在$\forall {c_0},{c_4},{c_7} \in [1\;000,5\;000]$取值范围内有解, 即${\Theta _3} \geq \max ({\Theta _1},{\Theta _2})$成立, 此时算法2输出结果是: 热贮备是最优贮备模型.
5.2.2 以系统单位时间内设备维修费用为研究对象
令${c_0} = 3\;000$, ${c_4} = 3\;000$, ${c_7} = 3\;000$, ${c_1},{c_5},{c_8} \in [300,500]$, 其他参数与第5.2.1节相同. 将以上参数代入算法2, 其计算结果如下.
对于情况a), 化简后的最终不等式为
$$\begin{split} 300 \leq\;& {c_1} \leq \min t( {1.1892{c_5} + 909.6062,} \\ &2.9405{c_8} + {4\;173.9914,500} ) \end{split} $$ 该不等式在$ \forall {c_1},{c_5},{c_8} \in [300,500] $取值范围内恒成立, 即${\Theta _1} \geq \max ({\Theta _2},{\Theta _3})$恒成立, 此时算法2输出结果是: 冷贮备是最优贮备模型.
对于情况b)和情况c), 化简后分别得最终不等式为
$$ \begin{split} 300 \leq\;& {c_5} \leq \min( 0.8409{c_1} - 764.9161, \\ &2.4728{c_8} + {2\;745.1231,500} ) \end{split} $$ $$ \begin{split} 300 \leq\; &{c_8} \leq \min ( 0.3401{c_1} - 1\;419.4655, \\ &0.4044{c_5} - {1\;110.1322,500}) \end{split} $$ 然而, 在$\forall {c_1},{c_5},{c_8} \in [300,500]$取值范围内, 以上两个不等式均无解. 即, ${\Theta _2} \geq \max ({\Theta _1},{\Theta _3})$和${\Theta _3} \geq \max ({\Theta _1},{\Theta _2})$均不成立, 此时算法2无输出. 说明以系统单位时间内设备维修费用为研究对象时, 无论参数如何取值, 冷贮备均是最优贮备模型.
5.2.3 以单位时间内支付给维修人员的费用为研究对象
令${c_0} = 3\;000$, ${c_4} = 3\;000$, ${c_7} = 3\;000$, ${c_2},{c_6},{c_9} \in [300,700]$, 其他参数取值与第5.2.1节相同. 将以上参数代入算法2, 其计算结果如下.
对于情况a), 化简后的最终不等式为
$$\begin{split} 300 \leq\;& {c_2} \leq \min ( 1.3865{c_6} + 16\;276.7,\\ &2.9724{c_9} + 68\;210.4,700 ) \end{split} $$ 该不等式在$\forall {c_2},{c_6},{c_9} \in [300,700]$取值范围内恒成立, 即${\Theta _1} \geq \max ({\Theta _2},{\Theta _3})$恒成立. 此时算法2输出结果是: 冷贮备是最优贮备模型.
对于情况b)和情况c), 化简后分别得到的最终不等式为
$$\begin{split} 300 \leq\;& {c_6} \leq \min ( 0.7213{c_2} - 11\;739.5,\\ &2.1438{c_9} + {47\;356.9,700}) \end{split} $$ $$\begin{split} 300 \leq\;&{c_9} \leq \min ( 0.3364{c_2} - 22\;947.8,\\ & 0.4665{c_6} - {17\;471.8,700} ) \end{split} $$ 然而, 在$\forall {c_2},{c_6},{c_9} \in [300,700]$取值范围内, 以上两个不等式均无解, 即${\Theta _2} \geq \max ({\Theta _1},{\Theta _3})$和${\Theta _3} \geq \max ({\Theta _1},{\Theta _2})$均不成立. 此时算法2无输出. 说明以系统单位时间内支付给维修人员费用为研究对象时, 无论参数如何取值, 冷贮备均是最优贮备模型.
6. 结束语
针对选择哪种贮备模型才能使双贮备系统实现性能和经济效益最优的问题, 本文创新性地提出了双贮备系统贮备模型优化选择算法. 通过分析系统状态及半Markov核函数分别建立了系统冷/温/热贮备模型下的更新方程组, 利用Laplace、Laplace-Stieltjes变换技术和Abel定理求得了系统稳态可用度、维修人员稳态忙期概率和系统稳态平均维修次数的系统性能指标, 并给出了系统单位时间内净收益的目标函数, 之后通过模型对比分析给出了分别以系统性能指标和经济指标为目标的系统贮备模型优化选择算法. 最后以实际的国产双贮备控制系统作为研究对象, 对所提算法进行实例分析, 实例结果表明所提算法能够有效地确定系统在不同条件下的最优贮备模型. 本文是在系统确定参数或确定参数变化范围的情况下进行研究的. 然而对于某些实际的工业现场, 现场环境复杂, 系统部分参数无法测量, 这些参数属于不确定参数. 对具有不确定参数的双贮备系统如何进行分析、建模并给出贮备模型的优化选择算法是下一步重点研究的问题.
附录A
对温贮备模型下系统所有半Markov核函数进行分析如下.
1)当系统处于${S_0}$时, 如果其中一个温贮备设备先于运行设备失效, 则系统转移至${S_1}$. 此时有
$$ \begin{split} {Q_{01}}(t) =\;& P \left\{ {{X_1} > \min \left( {{Y_2},{Y_3}} \right),\min \left( {{Y_2},{Y_3}} \right) \leq t} \right\} =\\ &\int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}{\rm{d}}{{P}} \left\{ {\min \left( {{Y_2},{Y_3}} \right) \leq u} \right\}}= \\ & \int\nolimits_0^t {2{\lambda _1}{{\rm{e}}^{ - (\lambda + 2{\lambda _1})u}}{\rm{d}}u} \end{split}$$ 反之, 如果运行设备先于温贮备设备失效, 则系统转移至${S_2}$. 此时有
$$\begin{split} {Q_{02}}(t) =\;& P \left\{ {\min \left( {{Y_2},{Y_3}} \right) > {X_1},{X_1} \leq t} \right\} =\\ &\int\nolimits_0^t {P \left\{ {\min \left( {{Y_2},{Y_3}} \right) > {X_1}} \right\}{\rm{d}}} \left( {1 - {{\rm{e}}^{ - \lambda u}}} \right) =\\ & \int\nolimits_0^t {\lambda {{\rm{e}}^{ - (\lambda + 2{\lambda _1})u}}{\rm{d}}u} \end{split} $$ 2)当系统处于${S_1}$时, 此时有下述几种情况:
a)如果失效设备在运行设备和温贮备设备失效前已修好, 则系统转移至${S_0}$. 此时有
$$\begin{split} {Q_{10}}(t) =& \;P \left\{ {{X_1} > {Z_2},{Y_3} > {Z_2},{Z_2} \leq t} \right\} =\\ & \int\nolimits_0^t {{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}{\rm{d}}} {G_1}(u) \end{split} $$ b)如果温贮备设备在失效设备修好前失效且在该失效时刻运行设备依然运行, 则系统转移至${S_3}$, 然而由于${S_3}$是非再生状态, 因此当系统进入${S_3}$后会再次转移至哪些状态需要分别考虑.
c)如果维修设备在运行设备失效前已修好, 则系统由${S_{3}}$转移至${S_1}$, 此时有
$$\begin{split} Q_{11}^{(3)}(t) =& \;P \left\{ {{X_1} > {Z_2},{Y_3} < {Z_2},{Z_2} \leq t} \right\} =\\ &\int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}\left( {1 - {{\rm{e}}^{ - {\lambda _1}u}}} \right){\rm{d}}} {G_1}(u) \end{split} $$ d)如果运行设备在失效设备修好前失效, 则系统将由${S_3}$再次转移至${S_5}$, 此时有
$$\begin{split} Q_{15}^{(3)}(t) & P\left\{ {{Y_3} < {X_1},{X_1} < {Z_2},{X_1} \leq t} \right\}=\\ &\int\nolimits_0^t {\left( {1 - {{\rm{e}}^{ - {\lambda _1}u}}} \right){{\bar G}_1}(u){\rm{d}}} \left( {1 - {{\rm{e}}^{ - \lambda u}}} \right) =\\ &\int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}} \right){{\bar G}_1}(u){\rm{d}}} u \end{split} $$ e)当系统转移至${S_5}$后, 正在维修的设备修好后, 系统将转移至${S_7}$. 此时有
$$\begin{split} & Q_{17}^{(3,5)}(t) = \;P \left\{ {{Y_3} < {X_1},{X_1} < {Z_2},{Z_2} \leq t} \right\} =\\ & \qquad\int\nolimits_0^t {\left[ {\int\nolimits_0^u {\left( {1 - {{\rm{e}}^{ - {\lambda _1}\sigma }}} \right)} {\rm{d}}\left( {1 - {{\rm{e}}^{ - \lambda \sigma }}} \right)} \right]{\rm{d}}{G_1}(u)} =\\ &\qquad \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}{G_1}(u)} \end{split} $$ 当系统处于${S_1}$时, 如果运行设备在维修设备修好前失效且在失效时刻温贮备设备没有失效, 则系统转移至${S_4}$. 由于${S_4}$是非再生状态, 因此系统由${S_4}$转移至哪些状态需要分别考虑.
f)如果失效设备在运行设备失效前已修好, 则系统将由${S_4}$转移至${S_2}$. 此时有
$$\begin{split} & Q_{12}^{(4)}(t) =\;P \left\{ {{X_1} < {Y_3},{X_1} + {X_3} > {Z_2},{Z_2} \leq t} \right\} =\\ & \qquad\int\nolimits_0^t {\int\nolimits_0^u {{{\rm{e}}^{ - {\lambda _1}\sigma }}} {{\rm{e}}^{ - \lambda (u - \sigma )}}{\rm{d}}\left( {1 - {{\rm{e}}^{ - \lambda \sigma }}} \right){\rm{d}}{G_1}(u)}= \\ &\qquad \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*{{\rm{e}}^{ - \lambda u}}} \right){\rm{d}}{G_1}(u)} \end{split} $$ g)反之, 如果运行设备在失效设备修好前失效, 则系统将由${S_4}$转移至${S_6}$. 此时有
$$\begin{split} &Q_{16}^{(4)}(t ) =\\ &\quad P \left\{ {{X_1} < {Y_3},{X_1} + {X_3} < {Z_2},{X_1} + {X_3} \leq t} \right\}= \\ &\quad \int\nolimits_0^t {\int\nolimits_0^{t - u} {\bar G(\sigma + u){{\rm{e}}^{ - {\lambda _1}\sigma }}} {\rm{d}}\left( {1 - {{\rm{e}}^{ - \lambda \sigma }}} \right){\rm{d}}} \left( {1 - {{\rm{e}}^{ - \lambda \mu }}} \right) =\\ &\quad\int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}} \right){{\bar G}_1}(u){\rm{d}}u} \end{split} $$ h)当系统转移至${S_6}$后, 正在维修的设备修好后, 系统将转移至${S_7}$. 此时有
$$\begin{split} & Q_{17}^{(4,6)}(t) = \;P \left\{ {{X_1} < {Y_3},{X_1} + {X_3} < {Z_2},{Z_2} \leq t} \right\}= \\ &\quad \int\nolimits_0^t {\int\nolimits_0^u {\left( {1 - {{\rm{e}}^{ - \lambda (u - \sigma )}}} \right){{\rm{e}}^{ - {\lambda _1}\sigma }}} {\rm{d}}\left( {1 - {{\rm{e}}^{ - \lambda \sigma }}} \right){\rm{d}}{G_1}(u)}=\\ &\quad \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}{G_1}(u)} \end{split} $$ 3)当系统处于${S_2}$时, 此时有下述几种情况:
a)如果维修设备在运行设备和温贮备设备失效前已修好, 则系统转移至${S_0}$. 此时有
$$\begin{split} {Q_{20}}(t) =& \; P \left\{ {{Z_1} < {Y_3},{Z_1} < {X_2},{Z_1} \leq t} \right\}= \\ & \int\nolimits_0^t {{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}{\rm{d}}G(u)} \end{split} $$ b)如果温贮备设备在维修设备修好前失效, 且在失效时刻运行设备正常运行, 则系统转移至${S_{10}}$, 由于${S_{10}}$是非再生状态, 因此系统由${S_{10}}$转移至哪些状态需要分别考虑.
c)如果维修设备在运行设备失效前已修好, 则系统由${S_{10}}$转移至${S_1}$. 此时有
$$\begin{split} Q_{21}^{(10)}(t) =& \; P \left\{ {{Y_3} < {Z_1},{X_2} < {Z_1},{Z_1} \leq t} \right\}= \\ & \int\nolimits_0^t {\left( {1 - {{\rm{e}}^{ - {\lambda _1}u}}} \right){{\rm{e}}^{ - \lambda u}}{\rm{d}}} G(u) =\\ & \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}} \right){\rm{d}}} G(u) \end{split} $$ d)反之, 如果运行设备在维修设备修好前失效, 则系统由${S_{10}}$转移至${S_{11}}$. 此时有
$$\begin{split} Q_{2,11}^{(10)}(t) =& \;P \left\{ {{Y_3} < {X_1},{X_2} < {Z_1},{X_2} \leq t} \right\}= \\ & \int\nolimits_0^t {\left( {1 - {{\rm{e}}^{ - {\lambda _1}u}}} \right)\bar G(u){{\rm{e}}^{ - \lambda u}}{\rm{d}}} \left( {1 - {{\rm{e}}^{ - \lambda u}}} \right) =\\ & \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}} \right)\bar G(u){\rm{d}}u} \end{split} $$ e)当系统转移至${S_{11}}$后, 维修设备修好后, 系统转移至${S_{12}}$. 此时有
$$\begin{split} Q_{2,12}^{(10,11)}(t) =& \; P \left\{ {{Y_3} < {X_1},{X_2} < {Z_1},{Z_1} \leq} \right\} =\\ & \int\nolimits_0^t {\int\nolimits_0^u {\left( {1 - {{\rm{e}}^{ - {\lambda _1}\sigma }}} \right)} {\rm{d}}\left( {1 - {{\rm{e}}^{ - \lambda \sigma }}} \right){\rm{d}}G(u)} =\\ & \int\nolimits_0^t {\left( {{\lambda _1}{{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}G(u)} \end{split} $$ 当系统处于${S_2}$时, 如果运行设备在维修设备修好前失效且在失效时刻温贮备设备没有失效, 则系统转移至${S_9}$. 由于${S_9}$是非再生状态, 因此由${S_9}$转移至哪些状态需要分别考虑.
f)如果维修设备在运行设备失效前已修好, 则系统由${S_9}$转移至${S_2}$. 此时有
$$\begin{split} &Q_{22}^{(9)}(t) = P \{ {{X_2} < {Y_3},{X_2} < {Z_1},{X_1} + {X_2} > {Z_1},} \\ & {{Z_1} \leq t} \} = \int\nolimits_0^t {\int\nolimits_0^u {{{\rm{e}}^{ - {\lambda _1}\sigma }}{{\rm{e}}^{ - \lambda (u - \sigma )}}} {\rm{d}}\left( {1 - {{\rm{e}}^{ - \lambda \sigma }}} \right){\rm{d}}G(u)}= \\ & \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}*{{\rm{e}}^{ - \lambda u}}} \right){\rm{d}}G(u)} \end{split} $$ g)如果运行设备在维修设备修好前失效, 则系统由${S_9}$转移至${S_8}$. 系统处于${S_8}$后, 维修设备修好后, 系统由${S_8}$转移至${S_7}$. 此时有
$$\begin{split} Q_{2,7}^{(9,8)}(t) =\; & P \left\{ {{X_2} < {Y_3},{X_2} < {Z_1},{X_1} + {X_2} < {Z_1},} \right. \\ &{\left. {{Z_1} \leq t} \right\} = \int\nolimits_0^t {\int\nolimits_0^u {{{\rm{e}}^{ - {\lambda _1}\sigma }}}}}\;\times\\&\left( {1 - {{\rm{e}}^{ - \lambda (u - \sigma )}}} \right){ {\rm{d}} \left( {1 - {{\rm{e}}^{ - \lambda \sigma }}} \right)}{{\rm{d}}G(u)}= \\& \int\nolimits_0^t \left( {\lambda {{\rm{e}}^{ - (\lambda + {\lambda _1})u}}}*\right. \left.{\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}G(u) \end{split} $$ 4)当系统处于${S_7}$时, 此时有下述几种情况:
a)如果正在维修的设备在运行设备失效前已修好, 则系统转移至${S_2}$. 此时有
$$ {Q_{72}}(t) = P \left\{ {{Z_1} < {X_2},{Z_1} \leq t} \right\} = \int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}{\rm{d}}G(u)} $$ b)反之, 如果运行设备在维修设备修好前失效, 则系统转移至${S_6}$. 系统处于${S_6}$后, 当维修设备修好后, 系统由${S_6}$转移至${S_7}$. 此时有
$$\begin{split} Q_{77}^{(8)}(t) =& \;P \left\{ {{X_2} < {Z_1},{Z_1} \leq t} \right\}= \\ & \int\nolimits_0^t {\left( {1 - {{\rm{e}}^{ - \lambda u}}} \right){\rm{d}}G(u)} =\\ &\int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}G(u)} \end{split} $$ 5)当系统处于${S_{12}}$时, 此时有下述几种情况:
a)如果维修设备在运行设备失效前已修好, 则系统转移至${S_2}$, 此时有
$${Q_{12,2}}(t) = P \left\{ {{Z_3} < {X_1},{Z_3} \leq t} \right\} = \int\nolimits_0^t {{{\rm{e}}^{ - \lambda u}}{\rm{d}}{G_1}(u)} $$ b)反之, 如果运行设备在维修设备修好前失效, 则系统转移至${S_6}$. 系统处于${S_6}$后, 当维修设备修好后, 系统由${S_6}$转移至${S_7}$. 此时有
$$\begin{split} Q_{12,7}^{(6)}(t) =\;& \; P \left\{ {{X_1} < {Z_3},{Z_3} \leq t} \right\} = \\ &\int\nolimits_0^t {\left( {1 - {{\rm{e}}^{ - \lambda u}}} \right){\rm{d}}{G_1}(u)} =\\ & \int\nolimits_0^t {\left( {\lambda {{\rm{e}}^{ - \lambda u}}*1} \right){\rm{d}}{G_1}(u)} \end{split} $$ 附录B
对温贮备模型在所有再生状态的平均逗留时间进行分析如下.
1)从系统进入${S_0}$开始($t = 0$), 经过时间$t$后, 如果运行设备和温贮备设备均未失效, 则有
$$\begin{split} {\mu _0}{\rm{ \;= }} &\int\nolimits_0^\infty {t{\rm{d}}{F_0}(t)} = \int\nolimits_0^\infty {{P_0}(t){\rm{d}}t} = \\ &\int\nolimits_0^\infty {{{\rm{e}}^{ - (\lambda + 2{\lambda _1})t}}} {\rm{d}}t = \dfrac{1}{{\lambda + 2{\lambda _1}}} \end{split} $$ 2)从系统进入${S_1}$开始($t = 0$), 经过时间$t$后, 如果运行设备和温贮备设备没有失效, 且正在维修的设备没有修好, 则有
$$\begin{split} {\mu _1} =& \int\nolimits_0^\infty {{P_1}(t){\rm{d}}t} =\\ &\int\nolimits_0^\infty {P \left\{ {{X_1} > t,{Z_2} > t,{Y_3} > t} \right\}} {\rm{d}}t =\\ & \int\nolimits_0^\infty {{{\rm{e}}^{ - (\lambda + {\lambda _1})t}}{{\bar G}_1}(t)} {\rm{d}}t = \dfrac{{1 - g_1^*(\lambda + {\lambda _1})}}{{\lambda + {\lambda _1}}} \end{split} $$ 3)从系统进入${S_2}$开始($t = 0$), 经过时间$t$后, 如果运行设备和温贮备设备没有失效, 且正在维修的设备没有修好, 则有
$$\begin{split} {\mu _2} =& \int\nolimits_0^\infty {{P_2}(t){\rm{d}}t} = \int\nolimits_0^\infty P \left\{{Z_1} > t,{X_2} > t,\right.\\ &\left.{{Y_3} > t} \right\} {\rm{d}}t = \int\nolimits_0^\infty {{{\rm{e}}^{ - (\lambda + {\lambda _1})t}}\bar G(t)} {\rm{d}}t = \\ &\dfrac{{1 - {g^*}(\lambda + {\lambda _1})}}{{\lambda + {\lambda _1}}} \end{split} $$ 4)从系统进入${S_7}$开始($t = 0$), 经过时间$t$后, 如果运行设备没有失效且正在维修的设备没有修好, 则有
$$\begin{split} {\mu _7} =\;& \int\nolimits_0^\infty {{P_7}(t){\rm{d}}t} = \int\nolimits_0^\infty {P \left\{ {{Z_1} > t,{X_2} > t} \right\}} {\rm{d}}t =\\ & \int\nolimits_0^\infty {\bar G(t){{\rm{e}}^{ - \lambda t}}} {\rm{d}}t = \dfrac{{1 - {g^*}(\lambda )}}{\lambda } \end{split} $$ 5)从系统进入${S_{12}}$开始($t = 0$), 经过时间$t$后, 如果运行设备没有失效且正在维修的设备没有修好, 则有
$$\begin{split} {\mu _{12}} =\;& \int\nolimits_0^\infty {{P_{12}}(t){\rm{d}}t} = \int\nolimits_0^\infty {P \left\{ {{X_1} > t,{Z_3} > t} \right\}} {\rm{d}}t =\\ & \int\nolimits_0^\infty {{{\bar G}_1}(t){\rm{e}}^{ - {\lambda }t}} {\rm{d}}t = \dfrac{{1 - g_1^*(\lambda )}}{\lambda } \end{split} $$
-
表 1 个体知识相似度阈值
$\omega$ 对于群体发帖行为分布的影响实验参数Table 1 Computational experimental parameters for the experiment on the influence of crowd behavior distribution by individual knowledge similarity threshold
$\omega$ Parameters Values $\omega$ $0.01\sim 0.09$ $\varphi$ $0.5$ ${Max\_A}_a$ $p({Max\_A}_a=X)=0.1$ ,$X=1.1, 1.2,\cdots,2.0$ $GrowthRate_a$ $p(gr_a = Y) = 0.1$ ,$Y = 0.01, 0.02, \cdots, 0.1$ Initial num of Agents $3\;000$ Num of new Agents added at each time step 30 $Knowledge$ $[a,z]$ $|{AK\_Value}^{T_l}_{a}|=|TV\_Theme^{T_l}_{k}|$ $26$ $value_{ak\_\omega}$ $p(value_{ak\_\omega} = Z)=0.1$ ,$Z=0.05, 0.1, \cdots, 0.5$ C $10$ Time $1\;000$ 表 2 初始智能体数量变化对群体评论行为影响的实验参数
Table 2 Computational experimental parameters of the effect crowd comment behavior by the number of initial agents
Parameters Values ${Max\_A}_a$ $p({Max\_A}_a=X)=0.1$ ,$X=1.1, 1.2,\cdots,2.0$ $GrowthRate_a$ $p(gr_a = Y) = 0.1$ ,$Y = 0.01, 0.02, \cdots, 0.1$ Initial num of Agents $100\sim 3\;000$ Num of new Agents added at each time step 30 Number of Topics 1 000 $Knowledge$ $[a,z]$ $|{AK\_Value}^{T_l}_{a}|=|TV\_Theme^{T_l}_{k}|$ $26$ $value_{ak\_\omega}$ $p(value_{ak\_\omega} = Z)=0.1$ ,$Z=0.05, 0.1, \cdots, 0.5$ $c_1$ $0.9$ C $10$ Time $1\;000$ -
[1] 1 Sökjer-Petersen M. The role of grassroot leaders in building networks and organizing learning groups. Nordic Psychology, 2010, 62(1): 4−23 doi: 10.1027/1901-2276/a000002 [2] 2 Gu K, Liu D X, Wang K M. Social community detection scheme based on social-aware in mobile social networks. IEEE Access, 2019, 7: 173407−173418 doi: 10.1109/ACCESS.2019.2956149 [3] 3 Cao J X, Liu W J, Cao B W, Wang P, Li S C, Liu B, Iqbal M. Social relationships and temp-spatial behaviors based community discovery to improve cyber security practices. IEEE Access, 2019, 7: 105973−105986 doi: 10.1109/ACCESS.2019.2931937 [4] 4 Roy S, Dey P, Kundu D. Social network analysis of cricket community using a composite distributed framework: from implementation viewpoint. IEEE Transactions on Computational Social Systems, 2018, 5(1): 64−81 doi: 10.1109/TCSS.2017.2762430 [5] 5 Zaamout K, Barker K. Structure of crowdsourcing community networks. IEEE Transactions on Computational Social Systems, 2018, 5(1): 144−155 doi: 10.1109/TCSS.2017.2768325 [6] 6 Zhang X L, Liu J, Li J, Liu L X. Large-scale dynamic social network directed graph K-In&Out-degree anonymity algorithm for protecting community structure. IEEE Access, 2019, 7: 108371−108383 doi: 10.1109/ACCESS.2019.2933151 [7] 7 Lazer D, Pentland A, Adamic L, Aral S, Barabasi A L, Brewer D, et al. Computational social science. Science, 2009, 323(5915): 721−723 doi: 10.1126/science.1167742 [8] 8 Sundaram H, Lin Y, Choudhury M D, Kelliher A. Understanding community dynamics in online social networks: a multidisciplinary review. IEEE Signal Processing Magazine, 2012, 29(2): 33−40 [9] 9 Zhou Y, Guan X, Zheng Q, Sun Q, Zhao J. Group dynamics in discussing incidental topics over online social networks. IEEE Network, 2010, 24(6): 42−47 [10] 10 Feng X, Wang Y, Yu H, Luo F. A novel intelligence algorithm based on the social group optimization behaviors. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(1): 65−76 [11] 王飞跃. 基于社会计算和平行系统的动态网民群体研究. 上海理工大学学报, 2011, 33(1): 8−17 doi: 10.3969/j.issn.1007-6735.2011.01.00211 Wang Fei-Yue. Study on cyber-enabled social movement organizations based on social computing and parallel systems. Journal of University of Shanghai for Science and Technology, 2011, 33(1): 8−17 doi: 10.3969/j.issn.1007-6735.2011.01.002 [12] 12 Sajadi S H, Fazli M, Habibi J. The affective evolution of social norms in social networks. IEEE Transactions on Computational Social Systems, 2018, 5(3): 727−735 doi: 10.1109/TCSS.2018.2855417 [13] 13 Ye M B, Liu J, Anderson B D O, Yu C B, Basar T. Evolution of social power in social networks with dynamic topology. IEEE Transactions on Automatic Control, 2018, 63(11): 3793−3808 doi: 10.1109/TAC.2018.2805261 [14] 14 Shuai H H, Shen C Y, Yang D N, Lan Y F C, Lee W C, Yu P S, et al. A comprehensive study on social network mental disorders detection via online social media mining. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(7): 1212−1225 doi: 10.1109/TKDE.2017.2786695 [15] 15 Wang W Y, He Z P, Shi P, Wu W W, Jiang Y C, An B, et al. Strategic social team crowdsourcing: forming a team of truthful workers for crowdsourcing in social networks. IEEE Transactions on Mobile Computing, 2019, 18(6): 1419−1432 doi: 10.1109/TMC.2018.2860978 [16] 16 Chopra A K, Artikis A, Bentahar J, Colombetti M, Dignum F, Fornara N, et al. Research directions in agent communication. ACM Transactions on Intelligent Systems and Technology, 2012, 4(2): Article No.20 [17] Jiao Y, Liu Y H, Wang J, Zhu J Q. Impact of habitual behaviors on human dynamics and spreading process. In: Proceedings of the 5th International ICST Conference on Communications and Networking in China. Beijing, China: IEEE, 2010. 25−27 [18] Penaloza C I, Mae Y, Ohara K, Arai T. Social human behavior modeling for robot imitation learning. In: Proceedings of 2012 IEEE International Conference on Mechatronics and Automation. Chengdu, China: IEEE, 2012. 457−462 [19] 19 Vazquez A, Racz B, Lukacs A, Barabasi A L. Impact of non-Poissonian activity patterns on spreading processes. Physical Review Letters, 2007, 98(15): Article No.158702 doi: 10.1103/PhysRevLett.98.158702 [20] 20 Barabasi A L. The origin of bursts and heavy tails in human dynamics. Nature, 2005, 435(7039): 207−211 doi: 10.1038/nature03459 [21] 21 Blanchard P, Hongler M O. Modeling human activity in the spirit of Barabasi’s queueing systems. Physical Review E, 2007, 75(2): Article No.26102 doi: 10.1103/PhysRevE.75.026102 [22] 22 Bedogne C, Rodgers G J. A continuous model of human dynamics. Physica A: Statistical Mechanics and its Applications, 2007, 385(1): 356−362 doi: 10.1016/j.physa.2007.06.025 [23] Leskovec J, Horvitz E. Planetary-scale views on a large instant-messaging network. In: Proceeding of the 17th International Conference on World Wide Web. New York: ACM, 2008. 915−924 [24] 24 Hoteit S, Secci S, Sobolevsky S, Ratti C, Pujolle G. Estimating human trajectories and hotspots through mobile phone data. Computer Networks, 2014, 64: 296−307 doi: 10.1016/j.comnet.2014.02.011 [25] 25 Zhao Z D, Zhou T. Empirical analysis of online human dynamics. Physica A: Statistical Mechanics and its Applications, 2012, 391(11): 3308−3315 doi: 10.1016/j.physa.2012.01.008 [26] 26 Zhou T, Kiet H A T, Kim B J, Wang B H, Holme P. Role of activity in human dynamics. EPL (Europhysics Letters), 2008, 82(2): Article No.28002 doi: 10.1209/0295-5075/82/28002 [27] 27 Duarte Torres S, Weber I, Hiemstra D. Analysis of search and browsing behavior of young users on the web. ACM Transactions on the Web, 2014, 8(2): Article No.7 [28] 28 Hu H B, Han D Y. Empirical analysis of individual popularity and activity on an online music service system. Physica A: Statistical Mechanics and its Applications, 2008, 387(23): 5916−5921 doi: 10.1016/j.physa.2008.06.018 [29] 29 Jiang Z Q, Zhou W X, Tan Q Z. Online-offline activities and game-playing behaviors of avatars in a massive multiplayer online role-playing game. EPL (Europhysics Letters), 2009, 88(4): Article No.48007 doi: 10.1209/0295-5075/88/48007 [30] 30 Yan X Y, Zhou T. Destination choice game: a spatial interaction theory on human mobility. Scientific Reports, 2019, 9: Article No.9466 doi: 10.1038/s41598-019-46026-w [31] Zhou T, Han X P, Wang B H. Towards the understanding of human dynamics. Science Matters: Humanities as Complex Systems Singapore: World Scientific Publishing, 2015 [32] 32 Wang P, Zhou T, Han X P, Wang B H. Modeling correlated human dynamics with temporal preference. Physica A: Statistical Mechanics and its Applications, 2014, 398: 145−151 doi: 10.1016/j.physa.2013.12.014 [33] 33 Zhao Z D, Cai S M, Huang J M, Fu Y, Zhou T. Scaling behavior of online human activity. EPL (Europhysics Letters), 2012, 100(4): Article No.48004 doi: 10.1209/0295-5075/100/48004 [34] 周涛, 韩筱璞, 闫小勇, 杨紫陌, 赵志丹, 汪秉宏. 人类行为时空特性的统计力学. 电子科技大学学报, 2013, 42(4): 481−540 doi: 10.3969/j.issn.1001-0548.2013.04.00134 Zhou Tao, Han Xiao-Pu, Yan Xiao-Yong, Yang Zi-Mo, Zhao Zhi-Dan, Wang Bing-Hong. Statistical mechanics on temporal and spatial activities of human. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481−540 doi: 10.3969/j.issn.1001-0548.2013.04.001 [35] 张海涛, 周涛, 李春光. 基于个体智能的群集动力学演化分析与控制研究. 中国科技成果, 2016, (15): 77 doi: 10.3772/j.issn.1009-5659.2016.15.03935 Zhang Hai-Tao, Zhou Tao, Li Chun-Guang. Analysis and control of cluster dynamics based on individual intelligence. China Science and Technology Achievements, 2016, (15): 77 doi: 10.3772/j.issn.1009-5659.2016.15.039 [36] 韩筱璞, 汪秉宏, 周涛. 人类行为动力学研究. 复杂系统与复杂性科学, 2010, 7(2-3): 132−14436 Han Xiao-Pu, Wang Bing-Hong, Zhou Tao. Researches of human dynamics. Complex Systems and Complexity Science, 2010, 7(2-3): 132−144 [37] 周涛, 韩筱璞, 闫小勇, 杨紫陌, 赵志丹, 汪秉宏. 人类行为时空特性的统计力学. 电子科技大学学报, 2013, 42(4): 481−540 doi: 10.3969/j.issn.1001-0548.2013.04.00137 Zhou Tao, Han Xaio-Pu, Yan Xiao-Yong, Yang Zi-Mo, Zhao Zhi-Dan, Wang Bing-Hong. Statistical mechanics on temporal and spatial activities of human. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481−540 doi: 10.3969/j.issn.1001-0548.2013.04.001 [38] 周涛, 汪秉宏, 韩筱璞, 尚明生. 社会网络分析及其在舆情和疫情防控中的应用. 系统工程学报, 2010, 25(6): 742−75438 Zhou Tao, Wang Bing-Hong, Han Xiao-Pu, Shang Ming-Sheng. Social network analysis and its application in the prevention and control of propagation for public opinion and the epidemic. Journal of Systems Engineering, 2010, 25(6): 742−754 [39] 周涛, 傅忠谦, 牛永伟, 王达, 曾燕, 汪秉宏, 等. 复杂网络上传播动力学研究综述. 自然科学进展, 2005, 15(5): 513−518 doi: 10.3321/j.issn:1002-008X.2005.05.00139 Zhou Tao, Fu Zhong-Qian, Niu Yong-Wei, Wang Da, Zeng Yan, Wang Bing-Hong, et al. Overview of communication dynamics in complex networks. Progress in Natural Science, 2005, 15(5): 513−518 doi: 10.3321/j.issn:1002-008X.2005.05.001 [40] 40 Zald M N, Ash R. Social movement organizations: growth, decay and change. Social Forces, 1966, 44(3): 327−341 doi: 10.2307/2575833 [41] 赵鼎新. 社会与政治运动讲义. 北京: 社会科学文献出版社, 2006: 273Zhao D X. Social and Political Movements. Beijing: Social Sciences Academic Press, 2006: 273 [42] Klandermans B, Roggeband C. Handbook of Social Movements Across Disciplines. Boston: Springer, 2007. [43] Smelser N J. Theory of Collective Behavior. New York, Free Press, 1962. [44] Tilly C. Does modernization breed revolution? Comparative Politics, 1973, 5(3): 425−447 [45] Olson M. The Logic of Collective Action. Cambridge, Mass: Cambridge University Press, 1965. [46] McCarthy J D, Zald M. The Trend of Social Movements in America: Professionalization and Resource Mobilization. Morristown: General Learning Corporation, 1973. [47] 47 Eisinger P K. The conditions of protest behavior in American cities. The American Political Science Review, 1973, 67(1): 11−28 doi: 10.2307/1958525 [48] McAdam D. Political Process and the Development of Black Insurgency (Second edition). Chicago: University of Chicago Press, 1982. [49] Goffman E. Frame Analysis. New York: Harper and Row Publisher, 1974. [50] Meyer D S, Tarrow S. The Social Movement Society: Contentious Politics for a New Century. Lanham, MD: Rowman and Littlefield, 1998. [51] Sharifian F. Cultural Conceptualisations and Language: Theoretical Framework and Applications. Amsterdam: John Benjamins Publishing Company, 2011. [52] 52 Passy F, Giugni M. Life-spheres, networks, and sustained participation in social movements: a phenomenological approach to political commitment. Sociological Forum, 2000, 15(1): 117−144 doi: 10.1023/A:1007550321469 [53] Bissio R. Occupying new places for public life: politics and people in a network society. Whose World Is It Anyway? Civil Society, the United Nations, and the Multilateral Future. Ottawa: United Nations Association of Canada, 1999. 429−459 [54] Gamson W A, Meyer D S. Framing political opportunity. Comparative Perspectives on Social Movements: Political Opportunities, Mobilizing Structures, and Cultural Framing. Cambridge: Cambridge University Press, 1996. [55] Mele C. Cyberspace and disadvantaged community: the internet as a tool for collective action. Communities in Cyberspace. London: Routledge, 2009. 290−310 [56] 56 Clak J D, Themudo N S. Linking the web and the street: Internet-based “Dotcauses” and the “Anti-Globalization” movement. World Development, 2006, 34(1): 50−74 doi: 10.1016/j.worlddev.2005.09.001 [57] 57 Earl J, Kimport K. Movement societies and digital protest: fan activism and other nonpolitical protest online. Sociological Theory, 2009, 27(3): 220−243 doi: 10.1111/j.1467-9558.2009.01346.x [58] 58 Garrett R K. Protest in an information society: a review of literature on social movements and new ICTs. Information Communication & Society, 2006, 9(2): 202−224 [59] 马汀•奇达夫, 蔡文彬 [著], 王凤彬, 朱超威 [译]. 社会网络与组织. 北京: 中国人民大学出版社, 2007.Kilduff M, Tsai W [Author], Wang Feng-Bin, Zhu Chao-Wei [Translator]. Social Networks and Organizations. Beijing: China People’s University Press, 2007 [60] 乐国安, 薛婷. 网络集群行为的理论解释模型探索. 南开学报(哲学社会科学版), 2011, (5): 116−12360 Yue Guo-An, Xue Ting. The theoretical interpretation model on the internet collective behaviors. Nankai Journal, 2011, (5): 116−123 [61] 61 Chmiel A, Sienkiewicz J, Thelwall M, Paltoglou G, Buckley K, Kappas A, et al. Collective emotions online and their influence on community life. PLoS One, 2011, 6(7): Article No.e22207 doi: 10.1371/journal.pone.0022207 [62] 夏艳. 网民群体行为及心理研究 [硕士学位论文], 南昌大学, 中国, 2011Xia Yan. Netizen Group Behavior and Psychological Research [Master thesis], Nanchang University, China, 2011 [63] 63 Epstein J M, Axtell R. Artificial societies and generative social science. Artificial Life and Robotics, 1997, 1(1): 33−34 doi: 10.1007/BF02471109 [64] Epstein J M, Axtell R. Growing Artificial Societies: Social Science from the Bottom up. Cambridge, USA: MIT Press, 1996. [65] 65 Jiang Y C, Jiang J C. Understanding social networks from a multiagent perspective. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(10): 2743−2759 doi: 10.1109/TPDS.2013.254 [66] 66 Lane N D, Xu Y, Lu H, Eisenman S B, Choudhury T, Campbell A T. Cooperative Communities (CoCo): exploiting social networks for large-scale modeling of human behavior. IEEE Pervasive Computing, 2011, 10(4): 45−53 doi: 10.1109/MPRV.2011.70 [67] Nemiche M, Cavero V, Lopez R P. Understanding social behavior evolutions through agent-based modeling. In: Proceedings of 2012 International Conference on Multimedia Computing and Systems, Tangier, Morocco, 2012. pp. 980−986 [68] 68 Radinsky K, Svore K M, Dumais S T, Shokouhi M, Teevan T, Bocharov A, et al. Behavioral dynamics on the Web: learning, modeling, and prediction. ACM Transactions on Information Systems, 2013, 31(3): Article No.16 [69] 69 Zhou M, Dong H R, Zhao Y B, Ioannou P A, Wang F Y. Optimization of crowd evacuation with leaders in urban rail transit stations. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(12): 4476−4487 doi: 10.1109/TITS.2018.2886415 [70] 70 Wang F Y. Parallel control and management for intelligent transportation systems: concepts, architectures, and applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 630−638 doi: 10.1109/TITS.2010.2060218 [71] 71 Wang F Y, Zheng N N, Cao D P, Martinez C M, Li L, Liu T. Parallel driving in CPSS: a unified approach for transport automation and vehicle intelligence. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 577−587 doi: 10.1109/JAS.2017.7510598 [72] 72 Han S S, Wang X, Zhang J J, Cao D P, Wang F Y. Parallel vehicular networks: a CPSS-based approach via multimodal big data in IoV. IEEE Internet of Things Journal, 2019, 6(1): 1079−1089 doi: 10.1109/JIOT.2018.2867039 [73] 王晓, 要婷婷, 韩双双, 曹东璞, 王飞跃. 平行车联网: 基于ACP的智能车辆网联管理与控制. 自动化学报, 2018, 44(8): 1391−140473 Wang Xiao, Yao Ting-Ting, Han Shuang-Shuang, Cao Dong-Pu, Wang Fei-Yue. Parallel internet of vehicles: the ACP-based networked management and control for intelligent vehicles. Acta Automatica Sinica, 2018, 44(8): 1391−1404 [74] 74 Li L, Wang X, Wang K F, Lin Y L, Xin J M, Chen L, et al. Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4(28): Article No.eaaw4106 doi: 10.1126/scirobotics.aaw4106 [75] 杨林瑶, 韩双双, 王晓, 李玉珂, 王飞跃. 网络系统实验平台: 发展现状及展望. 自动化学报, 2019, 45(9): 1637−165475 Yang Lin-Yao, Han Shuang-Shuang, Wang Xiao, Li Yu-Ke, Wang Fei-Yue. Computational experiment platforms for networks: the state of the art and prospect. Acta Automatica Sinica, 2019, 45(9): 1637−1654 [76] 王飞跃, 张军, 张俊, 王晓. 工业智联网: 基本概念、关键技术与核心应用. 自动化学报, 2018, 44(9): 1606−161776 Wang Fei-Yue, Zhang Jun, Zhang Jun, Wang Xiao. Industrial internet of minds: concept, technology and application. Acta Automatica Sinica, 2018, 44(9): 1606−1617 [77] 林懿伦, 戴星原, 李力, 王晓, 王飞跃. 人工智能研究的新前线: 生成式对抗网络. 自动化学报, 2018, 44(5): 775−79277 Lin Yi-Lun, Dai Xing-Yuan, Li Li, Wang Xiao, Wang Fei-Yue. The New frontier of AI research: generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 775−792 [78] 刘烁, 王帅, 孟庆振, 叶佩军, 王涛, 黄文林, 王飞跃. 基于ACP行为动力学的犯罪主体行为平行建模分析. 自动化学报, 2018, 44(2): 251−26178 Liu Shuo, Wang Shuai, Meng Qing-Zhen, Ye Pei-Jun, Wang Tao, Huang Wen-Lin, Wang Fei-Yue. Parallel modeling of criminal subjects behavior based on ACP behavioral dynamics. Acta Automatica Sinica, 2018, 44(2): 251−261 [79] 王飞跃, 李晓晨, 毛文吉, 王涛. 社会计算的基本方法与应用. 杭州: 浙江大学出版社, 2013.Wang Fei-Yue, Li Xiao-Chen, Mao Wen-Ji, Wang Tao. Social Computing: Methods and Applications. Hangzhou: Zhejiang University Press, 2013. [80] 80 Wang X, Zheng X H, Zhang X Z, Zeng K, Wang F Y. Analysis of cyber interactive behaviors using artificial community and computational experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(6): 995−1006 doi: 10.1109/TSMC.2016.2615130 [81] Minsky M. The Society of Mind. New York: Simon & Schuster, 1986. [82] Wooldridge M J, Jennings N R. Towards a theory of cooperative problem solving. In: Proceeding of the 6th European Workshop on Modelling Autonomous Agents in a Multi-Agent World. Odense, Denmark, 1994. 15−26 [83] Russell S J, Norving P. Artificial Intelligence: A Modern Approach. Englewood Cliffs, New Jersey: Prentice Hall, 1995. [84] 刘大有, 杨鲲, 陈建中. Agent研究现状与发展趋势. 软件学报, 2000, 11(3): 315−32184 Liu Da-You, Yang Kun, Chen Jian-Zhong. Agents: present status and trends. Journal of Software, 2000, 11(3): 315−321 [85] Swanke T A. Book review: growing artificial societies: social science from the bottom up. Review of Radical Political Economics, 1999, 31(2): 113−116 期刊类型引用(5)
1. 毛子泉,高家隆,龚建兴,刘权. 虚实结合仿真在军事领域的应用综述. 系统仿真学报. 2023(11): 2289-2311 . 百度学术
2. 金龙,李嘉昌,常振强,卢经纬,程龙. 基于ACP理论的微型扑翼飞行器的姿态控制. 自动化学报. 2023(12): 2532-2543 . 本站查看
3. 冯治东,井石滚. 矿山生产过程时变计算实验及精准执行方法. 控制与决策. 2022(05): 1241-1250 . 百度学术
4. 郑荣,王晓宇,张艺源. 基于ACP理论的企业竞争情报智能系统构建研究. 情报理论与实践. 2021(12): 148-157 . 百度学术
5. 李亚玲,杨林瑶,葛俊,覃缘琪,王晓. 博弈5.0:基于平行系统和机器博弈的社会认知平行博弈. 智能科学与技术学报. 2021(04): 507-520 . 百度学术
其他类型引用(2)
-