2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应Kalman滤波的智能电网假数据注入攻击检测

罗小元 潘雪扬 王新宇 关新平

罗小元, 潘雪扬, 王新宇, 关新平. 基于自适应Kalman滤波的智能电网假数据注入攻击检测. 自动化学报, 2022, 48(12): 2960−2971 doi: 10.16383/j.aas.c190636
引用本文: 罗小元, 潘雪扬, 王新宇, 关新平. 基于自适应Kalman滤波的智能电网假数据注入攻击检测. 自动化学报, 2022, 48(12): 2960−2971 doi: 10.16383/j.aas.c190636
Luo Xiao-Yuan, Pan Xue-Yang, Wang Xin-Yu, Guan Xin-Ping. Detection of false data injection attack in smart grid via adaptive Kalman filtering. Acta Automatica Sinica, 2022, 48(12): 2960−2971 doi: 10.16383/j.aas.c190636
Citation: Luo Xiao-Yuan, Pan Xue-Yang, Wang Xin-Yu, Guan Xin-Ping. Detection of false data injection attack in smart grid via adaptive Kalman filtering. Acta Automatica Sinica, 2022, 48(12): 2960−2971 doi: 10.16383/j.aas.c190636

基于自适应Kalman滤波的智能电网假数据注入攻击检测

doi: 10.16383/j.aas.c190636
基金项目: 国家自然科学基金 (61873228, 62103357), 河北省教育厅青年基金 (QN2021139), 河北省自然基金 (F2021203043), 汽车测控与安全四川省重点实验室开放基金 (QCCK2022-006)资助
详细信息
    作者简介:

    罗小元:燕山大学自动化系教授. 2005年获得燕山大学控制科学与工程学科博士学位. 主要研究方向为网络控制系统, CPS网络攻击检测. E-mail: xyluo@ysu.edu.cn

    潘雪扬:燕山大学控制科学与工程专业硕士研究生. 主要研究方向为卡尔曼滤波和智能电网攻击检测. E-mail: onty123@126.com

    王新宇:燕山大学电气工程系讲师. 2020年获得燕山大学控制科学与工程学科博士学位. 主要研究方向为智能电网攻击检测与防御. 本文通信作者. E-mail: wangxinyuphd@163.com

    关新平:上海交通大学电子信息与电气工程学院教授. 1999年获得哈尔滨工业大学控制科学与工程学科博士学位.主要研究方向为无线网络系统, CPS网络攻击检测. E-mail: xpguan@sjtu.edu.cn

Detection of False Data Injection Attack in Smart Grid via Adaptive Kalman Filtering

Funds: Supported by National Natural Science Foundation of China (61873228, 62103357), Science and Technology Youth Foundation of Hebei Education Department (QN2021139), Natural Science Foundation of Hebei Province (F2021203043), and Open Research Fund of Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province (QCCK2022-006)
More Information
    Author Bio:

    LUO Xiao-Yuan Professor at the School of Electrical Engineering, Yanshan University. He received his Ph.D. degree in control science and engineering from Yanshan University in 2005. His research interest covers detection of cyber attack of CPS and networked control systems

    PAN Xue-Yang  Master student in the Department of Control Science and Engineering, Yanshan University. His research interest covers Kalman filter and smart grid attack detection

    WANG Xin-Yu  Lecturer in the Department of Electrical Engineering, Yanshan University. He received his Ph.D. degree in control science and engineering from Yanshan University in 2020. His research interest covers attack detection and defense in smart grid. Corresponding author of this paper

    GUAN Xin-Ping Professor at the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University. He received his Ph.D. degree in control science and engineering from Harbin Institute of Technology in 1999. His research interest covers wireless networked systems and detection of cyber attack in CPS

  • 摘要: 研究了一种针对智能电网中假数据注入攻击的有效检测方法. 假数据注入攻击可以保持攻击前后残差基本不变, 绕过传统的不良数据检测技术. 首先基于电网模型, 分析了假数据注入攻击的攻击特性, 针对噪声统计特性未知且无迹Kalman滤波 (Unscented Kalman filter, UKF) 不稳定的现象, 提出了自适应平方根无迹Kalman滤波改进算法. 基于状态估计值, 结合中心极限定理提出检测算法, 并与欧几里得检测方法、巴氏系数检测方法进行比较. 最后, 仿真表明本文所提检测算法的优越性.
  • 图  1  3总线电网模型

    Fig.  1  3-bus grid model

    图  2  系统遭受攻击框图

    Fig.  2  block diagram of system under attack

    图  3  ASRUKF下的状态估计

    Fig.  3  State estimation in ASRUKF

    图  4  两种检测方法针对隐蔽假数据攻击

    Fig.  4  Two detection methods for covert false data attack

    图  5  巴氏相似性系数

    Fig.  5  Bhattacharyya coefficient

    图  6  $S\tilde x$的Q-Q图

    Fig.  6  Quantile-quantile plot of $S\tilde x$

    图  7  本文提出的攻击检测方法

    Fig.  7  Attack detection proposed in this paper

    图  8  误检率${P_F}$

    Fig.  8  False alarm rate ${P_F}$

  • [1] 彭大天, 董建敏, 蔡忠闽, 张长青, 彭勤科. 假数据注入攻击下信息物理融合系统的稳定性研究. 自动化学报, 2019, 45(1): 196-205.

    PENG Da-Tian, DONG Jian-Min, CAI Zhong-Min, ZHANG Chang-Qing, PENG Qin-Ke. On the Stability of Cyber-physical Systems Under False Data Injection Attacks. ACTA AUTOMATICA SINICA, 2019, 45(1): 196-205.
    [2] 王琦, 邰伟, 汤奕, 倪明. 面向电力信息物理系统的虚假数据注入攻击研究综述. 自动化学报, 2019, 45(1): 72-83.

    WANG Qi, TAI Wei, TANG Yi, NI Ming. A Review on False Data Injection Attack Toward Cyber-physical Power System. ACTA AUTOMATICA SINICA, 2019, 45(1): 72-83.
    [3] 童晓阳, 王晓茹. 乌克兰停电事件引起的网络攻击与电网信息安全防范思考. 电力系统自动化, 2016, 40(7): 144-148.

    Tong Xiao-Yang, Wang Xiao-Ru. Inferrence and Countermeasure Presuppostion of Network Attack in Incdient on Ukrainian Power Grid. Automation of Electric Power Systems, 2016, 40(7): 144-148.
    [4] Liu Y, Ning P, Reiter M K. False Data Injection Attacks against State Estimation in Electric Power Grids. ACM Transactions on Information and System Security, 2011, 14(1): 1-34.
    [5] Yang C, Yang W, Shi H. DoS attack in centralised sensor network against state estimation. IET Control Theory & Applications, 2018, 12(9): 1244–1253.
    [6] Kurt M N, Yılmaz Y, Wang X D. Secure Distributed Dynamic State Estimation in Wide-Area Smart Grids. IEEE Transactions on Information Forensics and Security, 2020, 15: 800-815. doi: 10.1109/TIFS.2019.2928207
    [7] Weimer J, Kar S, Johansson K H. Distributed detection and isolation of topology attacks in power networks. In: Proceedings of the 1st ACM International Conference on High Confidence Networked Systems, Beijing, China. 2012. 65−71
    [8] Qi J J, Sun K, Wang J H, Liu H. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter With Enhanced Numerical Stability. IEEE Transactions on smart grid, 2018, 9(2): 1184-1196. doi: 10.1109/TSG.2016.2580584
    [9] Mo Y L, Garone E, Casavola A, Sinopoli B. False data injection attacks against state estimation in wireless sensor networks. In: Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, USA: IEEE, 2010. 5967−5972
    [10] Mohammadi A, Plataniotis K N. Noncircular. Attacks on Phasor Measurement Units for State Estimation in Smart Grid. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(4): 777-789. doi: 10.1109/JSTSP.2018.2840517
    [11] Manandhar K, Cao X J, Hu F. Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter. IEEE Transactions on Control of Network Systems, 2014, 1(4): 370-379. doi: 10.1109/TCNS.2014.2357531
    [12] Yang Q, Yang J, Yu W, An D, Zhang N, Zhao W. On false data-injection attacks against power system state estimation: modeling and countermeasures. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(3): 717–729. doi: 10.1109/TPDS.2013.92
    [13] 梁天添, 王茂. 一类广义连续-离散系统量测丢失情况下鲁棒滤波算法. 中国惯性技术学报, 2018, 26(2): 81-86.

    LIANG Tian-Tian, WANG Mao. Robust algorithm for a class of sampled-data descriptor systems with missing measurements. Journal of Chinese Inertial Technology, 2018, 26(2): 81-86.
    [14] 赵琳, 王小旭, 孙明, 丁继成, 闫超. 基于极大后验估计和指数加权的自适应UKF滤波算法. 自动化学报, 2010, 36(7): 1008-1019.

    Zhao Lin, WANG Xiao-Xu, SUN Ming, DING Ji-Cheng, YAN Chao. Adaptive UKF Filtering Algorithm Based on Maximum a Posterior Estimation and Exponential Weighting. ACTA AUTOMATICA SINICA, 2010, 36(7): 1008-1019.
    [15] 石勇, 韩崇昭. 自适应UKF算法在目标跟踪中的应用. 自动化学报, 2011, 37(6): 755-759.

    SHI Yong, HAN Chong-Zhao. Adaptive UKF Method with Applications to Target Tracking. ACTA AUTOMATICA SINICA, 2011, 37(6): 755-759.
    [16] Van der Merwe R, Wan E A. The square-root unscented Kalman filter for state and parameter estimation. In: Proceedings of the 2001 International Conference on Acoustics, Speech, and Signal Processing. New York, USA: IEEE, 2001. 3461−3464
    [17] Xiong K, Zhang H Y, Chan C W. Performance Evaluation of UKF-based Nonlinear Filtering. Automatica, 2006, 42(2): 261-270. doi: 10.1016/j.automatica.2005.10.004
    [18] Yu W, Griffith D, Ge L Q, Bhattarai S, Golmie N. An Integrated Detection System against False Data Injection Attacks in the Smart Grid. Security and Communication Networks, 2015, 8(2): 91-109. doi: 10.1002/sec.957
    [19] Hu J, Wang Z D, Gao H J. Recursive Filtering with Random Parameter Matrices, Multiple Fading Measurements and Correlated Noises. Automatica, 2013, 49(11): 3440-3448. doi: 10.1016/j.automatica.2013.08.021
  • 加载中
图(8)
计量
  • 文章访问数:  1538
  • HTML全文浏览量:  455
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2022-12-23

目录

    /

    返回文章
    返回