2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分布式策略的直流微电网下垂控制器设计

卢自宝 钟尚鹏 郭戈

卢自宝, 钟尚鹏, 郭戈. 基于分布式策略的直流微电网下垂控制器设计. 自动化学报, 2021, 47(10): 2472−2483 doi: 10.16383/j.aas.c190628
引用本文: 卢自宝, 钟尚鹏, 郭戈. 基于分布式策略的直流微电网下垂控制器设计. 自动化学报, 2021, 47(10): 2472−2483 doi: 10.16383/j.aas.c190628
Lu Zi-Bao, Zhong Shang-Peng, Guo Ge. Design of droop controller for DC microgrid based on distributed strategy. Acta Automatica Sinica, 2021, 47(10): 2472−2483 doi: 10.16383/j.aas.c190628
Citation: Lu Zi-Bao, Zhong Shang-Peng, Guo Ge. Design of droop controller for DC microgrid based on distributed strategy. Acta Automatica Sinica, 2021, 47(10): 2472−2483 doi: 10.16383/j.aas.c190628

基于分布式策略的直流微电网下垂控制器设计

doi: 10.16383/j.aas.c190628
基金项目: 国家自然科学基金(61503003, U1808205),安徽省自然科学基金(2008085MF199)资助
详细信息
    作者简介:

    卢自宝:安徽师范大学物理与电子信息学院副教授. 2013年获得大连海事大学博士学位. 主要研究方向为网络控制系统,微电网控制. 本文通信作者. E-mail: luzibao@163.com

    钟尚鹏:安徽师范大学物理与电子信息学院硕士研究生. 主要研究方向为微电网分布式控制, 网络控制系统. E-mail: zhongshangpeng@163.com

    郭戈:东北大学教授. 1998年获得东北大学博士学位. 主要研究方向为智能交通系统, 运动目标检测跟踪网络. E-mail: geguo@yeah.net

Design of Droop Controller for DC Microgrid Based on Distributed Strategy

Funds: Supported by National Natural Science Foundation of China (61503003, U1808205) and Natural Science Foundation of Anhui Province (2008085MF199)
More Information
    Author Bio:

    LU Zi-Bao Ph.D., associate professor at the College of Physics and Electronic Imformation, Anhui Normal University. He received his Ph. D. degree from Dalian Maritime University in 2013. His research interest covers networked control system and microgrids control. Corresponding author of this paper

    ZHONG Shang-Peng Master student at the College of Physics and Electronic Imformation, Anhui Normal University. His research interest covers distributed control of microgrids, networked control system

    GUO Ge Professor at Northeastern University. He received his Ph. D. degree from Northeastern University in 1998. His research interest covers intelligent transportation system, moving target detection and tracking with network

  • 摘要: 本文研究了分布式控制策略下直流微电网的负荷分配和电压平衡问题. 给出一种新的基于分布式策略的下垂控制器设计方法, 能够在统一的框架下实现直流微电网负载共享和电压平衡. 首先,将直流微电网的负载共享和电压平衡问题转化为多目标优化问题, 其性能指标与微源的容量密切相关. 然后, 通过求解多目标优化问题获得实现负载共享和电压平衡的集中式控制策略, 并给出下垂控制器的设计方法. 为了降低系统的通信负担, 给出一种新的只需与邻居节点交换信息的分布式控制策略, 通过理论分析可知该分布式控制策略能够收敛到多目标优化问题的最优解. 最后, 通过对新能源汽车充换电站系统的仿真验证了本文提出的方法的有效性.
  • 图  1  用户级直流微电网的典型结构

    Fig.  1  Typical structure of user-level DC microgrid

    图  3  用户级微电网i的等效电路模型

    Fig.  3  Equivalent circuit model of user-level microgrid i

    图  2  系统级直流微电网的典型结构

    Fig.  2  Typical structure of system-level dc microgrid

    图  4  系统级微电网的等效电路模型

    Fig.  4  Equivalent circuit model of system-level microgrid

    图  5  新能源汽车充换电站

    Fig.  5  New energy vehicle charging and changing station

    图  6  改进的直流微电网充换电站

    Fig.  6  An improved dc microgrid changing and changing station

    图  7  基于分布式方案的$k, V, I_s $的演化曲线$a = 0.5$

    Fig.  7  When $a = 0.5$, the evolution curve of $k, V, I_s $ based on the distributed scheme

    图  8  $a = 0.1, 0.5, 0.9$$k, V, I_s/m$的演化曲线

    Fig.  8  When $a = 0.1, 0.5, 0.9$, the evolution curve of $k, V, I_s/m$

    图  9  负载变化对$k, V, I_s $的影响$a = 0.5$

    Fig.  9  When $a = 0.5$, effect of load change on $k, V, I_s $

    图  10  节点7接入和退出对$k, V, I_s $的影响$a = 0.5$

    Fig.  10  When $a = 0.5$, influence of node 7 access and exit on $k, V, I_s $

  • [1] Dong J, Feng T, Sun H X, Cai H X, Li R, Yang Y. Clean distributed generation in China: policy options and international experience. Renewable and Sustainable Energy Reviews, 2016, 57: 753-764 doi: 10.1016/j.rser.2015.12.171
    [2] 王盼宝, 王卫, 孟尼娜, 吴炎. 直流微电网离网与并网运行统一控制策略. 中国电机工程学报, 2015, 35(17): 4388-4396

    Wang Pan-Bao, Wang Wei, Meng Ni-Na, Wu Yan. Unified control strategy of island and drid-connected operations for dc microgrid. Proceedings of the CSEE, 2011, 35(17): 4388-4396
    [3] 吴卫民, 何远彬, 耿攀, 钱照明, 汪槱生. 直流微网研究中的关键技术. 电工技术学报, 2012, 27(1): 98-113

    Wu Wei-Min, He Yuan-Bin, Geng Ban, Qian Zhao-Ming, Wang You-Sheng. Key technolog-ies for dc microgrids. Transaction of China Electrotechnical Society, 2012, 27(1): 98-113
    [4] De Persis C, Monshizadeh N. Bregman storage functions for microgrid control. IEEE Transations Automatic Control, 2018, 63(1): 53-68 doi: 10.1109/TAC.2017.2709246
    [5] Ding L, Han Q, Wang L Y, Sindi E. Distributed cooperative optimal control of dc microgrids with communication delays. IEEE Transactions on Industrial Informatics, 2018, 14(9): 3924-3935 doi: 10.1109/TII.2018.2799239
    [6] Zhao J, Dörfler F. Distributed control and optimization in DC microgrids. Automatica, 2015, 61: 18-26 doi: 10.1016/j.automatica.2015.07.015
    [7] Augustine S, Mishra M K,Lakshminarasamma N. Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid. IEEE Transactions on Sustainable Energy, 2015, 6(1): 132-141 doi: 10.1109/TSTE.2014.2360628
    [8] Tah A, Das D. An enhanced droop control method for accurate load sharing and voltage improvement of isolated and interconnected dc microgrids. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1194-1204 doi: 10.1109/TSTE.2016.2535264
    [9] Trip S, Cucuzzella M, Cheng X D, Scherpen J. Distributed averaging control for voltage regulation and current sharing in dc microgrids: Modeling and Experimental Validation. IEEE Control Systems Letters, 2019, 3(1): 174-179 doi: 10.1109/LCSYS.2018.2857559
    [10] Tucci M, Riverso S, Vasquez J C, GuerreroJ M, Ferrari-Trecate G. A decentralized scalable approach to voltage control of dc islanded microgrids. IEEE Transactions on Control Systems Technology, 2015, 24(6): 1965-1979
    [11] Byeon G, Yoon T, Oh S, Jang G. Energy managem-ent strategy of the DC distribution system in buildings using the EV service Model. IEEE transactions on power Electronics, 2013, 28(4): 1544-1554 doi: 10.1109/TPEL.2012.2210911
    [12] Guerrero J M, Vasquez J C, Matas J, Vicuna L G de, Castilla M. Hierarchical control of droop-controlled ac and dc microgrids—A general approach toward standardization. IEEE Transations on Industrial Electronics, 2011,58(1), 158-172 doi: 10.1109/TIE.2010.2066534
    [13] Dragicevic, Tomislav, Guerrero J, Vasquez, Juan C, skrlec, Davor. Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability. IEEE Transaction on Power Electronics, 2014, 29(6): 695-706
    [14] Jyothish M R, Jasmin E A. Load sharing control and circulating current minimization of parallel DC-DC converters based on droop index. In: Proceedings of 2018 International CET Conference on Control Communication and Computing, Thiruvananthapura, India: IEEE, 2018. 84−88
    [15] Nasirian V, Davoudi A, Lewis F L, Guerrero J M. Distributed adaptive droop control for DC distribution systems. IEEE Transactions on Energy Conversion, 2014, 29(4): 944-956 doi: 10.1109/TEC.2014.2350458
    [16] Lu X, Guerrero J M, Sun K, Vasquez J C. An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy. IEEE Transactions on Power Electronics, 2014, 29(4): 1800-1812 doi: 10.1109/TPEL.2013.2266419
    [17] Wang P B, Lu X,Yang X, Wang W, Xu D G. An improved distributed secondary control method for dc microgrids with enhanced dynamic current sharing performance. IEEE Transactions on Power Electronics, 2016, 31(9): 6658-6673 doi: 10.1109/TPEL.2015.2499310
    [18] Ingle A A, shyan A B, sahoo S R, Anand S. Quality index based distributed secondary controller for low voltage dc microgrid. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7004-7014 doi: 10.1109/TIE.2018.2795524
    [19] Cucuzzella M, Trip S, De Persis C, Cheng X, Ferrara A, Arjan V D S. A robust consensus algorithm for current sharing and voltage regulation in dc microgrids. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1583-1595 doi: 10.1109/TCST.2018.2834878
    [20] Gu Y, Xiang X, Li W, He X. Mode-adaptive decentralized control for renewable dc microgrid with enhanced reliability and flexibility. IEEE Transactions on Power Electronics, 2014, 29(9): 5072-5080 doi: 10.1109/TPEL.2013.2294204
    [21] Zhang D, Jiang J C, Wang L Y, Zhang W G. Robust and scalable management of power networks in dual-source trolleybus systems:A consensus control framework. IEEE Transaction on Intelligent Transportation System, 2016, 17 (4): 1029-1038 doi: 10.1109/TITS.2015.2492564
  • 加载中
图(10)
计量
  • 文章访问数:  3483
  • HTML全文浏览量:  3473
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-04
  • 录用日期:  2019-11-25
  • 网络出版日期:  2019-12-24
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回