2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰狼与郊狼混合优化算法及其聚类优化

张新明 姜云 刘尚旺 刘国奇 窦智 刘艳

张新明, 姜云, 刘尚旺, 刘国奇, 窦智, 刘艳. 灰狼与郊狼混合优化算法及其聚类优化. 自动化学报, 2022, 48(11): 2757−2776 doi: 10.16383/j.aas.c190617
引用本文: 张新明, 姜云, 刘尚旺, 刘国奇, 窦智, 刘艳. 灰狼与郊狼混合优化算法及其聚类优化. 自动化学报, 2022, 48(11): 2757−2776 doi: 10.16383/j.aas.c190617
Zhang Xin-Ming, Jiang Yun, Liu Shang-Wang, Liu Guo-Qi, Dou Zhi, Liu Yan. Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization. Acta Automatica Sinica, 2022, 48(11): 2757−2776 doi: 10.16383/j.aas.c190617
Citation: Zhang Xin-Ming, Jiang Yun, Liu Shang-Wang, Liu Guo-Qi, Dou Zhi, Liu Yan. Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization. Acta Automatica Sinica, 2022, 48(11): 2757−2776 doi: 10.16383/j.aas.c190617

灰狼与郊狼混合优化算法及其聚类优化

doi: 10.16383/j.aas.c190617
基金项目: 国家自然科学基金(61901160, U1904123), 河南省高等学校重点科研项目(19A520026)资助
详细信息
    作者简介:

    张新明:河南师范大学教授. 主要研究方向为智能优化算法, 图像去噪, 图像增强和图像分割. 本文通信作者.E-mail: xinmingzhang@126.com

    姜云:河南师范大学硕士研究生. 主要研究方向为智能优化算法和图像分割.E-mail: jiangyun951120@163.com

    刘尚旺:河南师范大学副教授. 主要研究方向为图像处理和计算机视觉.E-mail: shwl08@126.com

    刘国奇:河南师范大学副教授. 主要研究方向为图像分割和偏微分方程.E-mail: liuguoqi080408@163.com

    窦智:河南师范大学讲师. 主要研究方向为算法及数字图像处理.E-mail: 619534345@163.com

    刘艳:河南师范大学实验师. 主要研究方向为优化算法和图像分割. E-mail: liu_yan122@sina.com

Hybrid Coyote Optimization Algorithm With Grey Wolf Optimizer and Its Application to Clustering Optimization

Funds: Supported by National Natural Science Foundation of China (61901160, U1904123) and Key Research Project of Higher Education Institutions of Henan Province (19A520026)
More Information
    Author Bio:

    ZHANG Xin-Ming Professor at Henan Normal University. His research interest covers intelligence optimization algorithm, image denoising, image enhancement, and image segmentation. Corresponding author of this paper

    JIANG Yun Master student at Henan Normal University. Her research interest covers intelligence optimization algorithm and image segmentation

    LIU Shang-Wang Associate professor at Henan Normal University. His research interest covers image processing and computer vision

    LIU Guo-Qi Associate professor at Henan Normal University. His research interest covers image segmentation and partial differential equation

    DOU Zhi Lecturer at Henan Normal University. His research interest covers algorithms and digital image processing

    LIU Yan Laboratory teacher at Henan Normal University. Her research interest covers optimization algorithm and image segmentation

  • 摘要: 郊狼优化算法(Coyote optimization algorithm, COA)是最近提出的一种新颖且具有较大应用潜力的群智能优化算法, 具有独特的搜索机制和能较好解决全局优化问题等优势, 但在处理复杂优化问题时存在搜索效率低、可操作性差和收敛速度慢等不足. 为弥补其不足, 并借鉴灰狼优化算法(Grey wolf optimizer, GWO)的优势, 提出了一种COA与GWO的混合算法(Hybrid COA with GWO, HCOAG). 首先提出了一种改进的COA (Improved COA, ICOA), 即将一种高斯全局趋优成长算子替换原算法的成长算子以提高搜索效率和收敛速度, 并提出一种动态调整组内郊狼数方案, 使得算法的搜索能力和可操作性都得到增强; 然后提出了一种简化操作的GWO (Simplified GWO, SGWO), 以提高算法的可操作性和降低其计算复杂度; 最后采用正弦交叉策略将ICOA与SGWO二者融合, 进一步获得更好的优化性能. 大量的经典函数和CEC2017复杂函数优化以及K-Means聚类优化的实验结果表明, 与COA相比, HCOAG具有更高的搜索效率、更强的可操作性和更快的收敛速度, 与其他先进的对比算法相比, HCOAG具有更好的优化性能, 能更好地解决聚类优化问题.
  • 在现实世界中, 无时无处无不面临着优化问题. 随着社会的发展, 急需处理的优化问题越来越多样化并越来越复杂. 而诸如牛顿法、梯度下降法等传统的方法不能够很好地处理这些急需解决的优化问题. 因此, 许多研究者建立了各种仿生类的智能计算模型, 提出了许多智能优化算法. 群智能优化算法(Swarm intelligence optimization algorithm, SIOA)是模拟自然界社会群体集体行为的一种智能优化方法[1], 包括粒子群优化(Particle swarm optimization, PSO)算法[2]、灰狼优化算法(Grey wolf optimizer, GWO)[3]、郊狼优化算法(Coyote optimization algorithm, COA)[4]等. SIOA具有易于实现、能有效处理全局优化和大规模优化问题等优势, 广泛应用于多目标优化、数据聚类以及模式识别等诸多领域[5]. 但根据无免费午餐定理[6], 没有任何一种SIOA能独立地解决所有的优化问题, 每种SIOA都有自身的优势和局限性. 因此许多学者提出了大量新奇和改进的SIOA, 其中包括算法的混合改进. 两种或多种算法的混合可以达到优势互补, 以获得最佳的优化性能[7].

    GWO是由Mirjalili等[3]于2014年提出的一种新颖的SIOA, 具有原理简单、开采能力强、可调参数少等优点, 但存在易陷入局部最优、解决复杂优化问题性能差等缺点. 因此许多学者对其进行了研究和改进, 其中包括混合改进. 例如张新明等[7]提出一种GWO与人工蜂群算法的混合算法, 其中在人工蜂群观察蜂阶段自适应融合GWO, 以便增强开采能力和提高优化效率. Zhang等[8]提出一种基于生物地理学优化算法和GWO的混合算法, 将改进的基于生物地理学优化算法和基于反向学习的GWO混合, 使得优化性能最大化. Teng等[9]提出一种PSO与GWO结合的混合算法, 该算法具有更好的寻优能力和更强的鲁棒性. Arora等[10]提出一种乌鸦搜索算法与GWO的混合算法, 更有效地实现了全局优化.

    COA是由Pierezan等[4]于2018年提出的一种模拟郊狼群居生活、成长、生死等现象的新型SIOA. COA具有独特的搜索模型和结构以及出色的优化能力, 尤其在解决复杂优化问题优势明显, 但仍存在搜索效率低、可操作性不强以及收敛速度慢等缺陷, 且由于COA提出的时间较短, 需改进和完善并拓展其应用领域. 鉴于GWO和COA各有优势和不足, 本文将两种算法分别进行改进和简化, 得到改进的COA (Improved COA, ICOA)和简化的GWO (Simplified GWO, SGWO), 然后通过正弦交叉策略将ICOA和SGWO有机融合在一起, 从而获得了一种性能优越且高效的混合COA (Hybrid COA with GWO, HCOAG). 另外, 混合算法的研究一直是优化领域的热点, 因此研究GWO与COA的混合是一项较有意义的工作.

    GWO模拟了自然界中灰狼种群严格的社会等级制度和群体捕食行为. 在其社会等级制度中, 灰狼从高到低依次为$\alpha $, $\beta$, $ \delta $, $\omega $狼. 其捕食行为是追踪和接近猎物、追捕和包围猎物、攻击和捕杀猎物. GWO将狼群中的$\alpha $, $\beta $, $\delta $, $\omega $狼的位置分别代表第一最优解、第二最优解、第三最优解和候选解. 灰狼包围行为的数学模型为

    $${\boldsymbol{Dis}} = \left| {{\boldsymbol{C}} \otimes {{\boldsymbol{X}}_p}\left( t \right) -{\boldsymbol{ X}}\left( t \right)} \right|$$ (1)
    $${\boldsymbol{X}}\left( {t + 1} \right) = {{\boldsymbol{X}}_p}\left( t \right) - {\boldsymbol{A}} \otimes {\boldsymbol{Dis}}$$ (2)
    $${\boldsymbol{A}} = 2a \times {{\boldsymbol{r}}_1} - a$$ (3)
    $${\boldsymbol{C}} = {c_1} \times {{\boldsymbol{r}}_2}$$ (4)
    $$a = 2 - \dfrac{2t}{MaxDT}$$ (5)

    其中, ${\boldsymbol{Dis}} $是灰狼与猎物间的距离, $t $是当前迭代次数, ${\boldsymbol{X}}_p $是猎物的位置向量, ${\boldsymbol{X}} $是灰狼的位置向量. ${\boldsymbol{A}} $${\boldsymbol{C}} $是系数向量. 系数a在迭代过程中从2线性递减到0, ${MaxDT} $是最大迭代次数, ${{\boldsymbol{r}}_1} $${{\boldsymbol{r}}_2} $是[0, 1]中的均匀分布随机向量, c1为可调参数[11], $ \otimes $表示两个向量各个对应的分量相乘. 狩猎行为的数学模型为

    $${\boldsymbol{Dis}}{_{\rm{\alpha}} } = \left| {{{\boldsymbol{C}}_1} \otimes {{\boldsymbol{X}}_{\rm{\alpha}} }\left( t \right) - {\boldsymbol{X}}\left( t \right)} \right|$$ (6)
    $${\boldsymbol{Dis}}{_{\rm{\beta}} } = \left| {{{\boldsymbol{C}}_{{2}}} \otimes {{\boldsymbol{X}}_{\rm{\beta}} }\left( t \right) - {\boldsymbol{X}}\left( t \right)} \right|$$ (7)
    $${\boldsymbol{Dis}}{_{\rm{\delta}} } = \left| {{{\boldsymbol{C}}_{{3}}} \otimes {{\boldsymbol{X}}_{\rm{\delta}} }\left( t \right) - {\boldsymbol{X}}\left( t \right)} \right|$$ (8)
    $${{\boldsymbol{X}}_{{1}}} = {{\boldsymbol{X}}_{\rm{\alpha}} }\left( t \right) - {A_{{1}}} \otimes {\boldsymbol{Dis}}{_{\rm{\alpha}} }$$ (9)
    $${{\boldsymbol{X}}_{{2}}} = {{\boldsymbol{X}}_{\rm{\beta}} }\left( t \right) - {A_{{2}}} \otimes {\boldsymbol{Dis}}{_{\rm{\beta}} }$$ (10)
    $${{\boldsymbol{X}}_{{3}}} = {{\boldsymbol{X}}_{\rm{\delta}} }\left( t \right) - {A_{{3}}} \otimes {\boldsymbol{Dis}}{_{\rm{\delta}} }$$ (11)
    $${\boldsymbol{X}}(t + 1) = \dfrac{ {{{\boldsymbol{X}}_{{1}}} + {{\boldsymbol{X}}_{{2}}} + {{\boldsymbol{X}}_{{3}}}} }{3}$$ (12)

    其中, ${\boldsymbol{Dis}}{_{\rm{\alpha}} } $, ${\boldsymbol{Dis}}{_{\rm{\beta}} } $${\boldsymbol{Dis}}{_{\rm{\delta}} } $分别表示当前狼与3头最优灰狼间的距离. 式(12)代表$\omega$狼在$\alpha $, $\beta $$\delta $狼的引导下移动的新位置, 即GWO产生的新解. GWO的流程图见图1.

    图 1  GWO的流程图
    Fig. 1  Flow chart of GWO

    从上述描述和图1可知, 与PSO等经典的SIOA相比, GWO的主要特点有: 1) GWO采用3头最优狼(最优解)引导$\omega$狼围猎, 有较强的局部搜索能力, 但在解决复杂优化问题时, 容易陷入局部最优; 2) GWO仅有两个参数ac1, 前者采用动态调整方式, 后者c1常取常数2, 调整的参数少, 故可操作性强; 3) 原理简单、易于实现, 但更新是基于维的计算, 需计算式(6)~(12), 故计算复杂度较高; 4)目标函数采用并行计算方式, 故运行速度较快.

    COA包含初始化参数和狼群、组内郊狼成长、郊狼生与死和被组驱离与接纳[4]等4个主要步骤.

    首先设置参数, 如郊狼群规模$N $, 郊狼组数$N_p $, 组内郊狼数$N_c $$MaxDT $等, 其中, $N=N_c \times N_p $. 然后随机初始化郊狼群组, 第$p $组第$c $个郊狼第$j $维的随机化操作如式(13). 最后计算每头郊狼${\boldsymbol{soc}} $的社会适应度值$fit $, 如式(14).

    $${{\boldsymbol{soc}}_{c,}}_j = l{b_j} + r \times (u{b_j} - l{b_j})$$ (13)
    $$fi{t_c} = f({{\boldsymbol{soc}}_c})\qquad\qquad\qquad$$ (14)

    其中, lbjubj分别表示郊狼第j维社会状态因子的下界和上界, j = 1, 2, $\cdots $, D, D为搜索空间的维度, r为[0, 1]内均匀分布的随机数, f表示适应度函数.

    组内最优狼${\boldsymbol{alpha}} $、组文化趋势${\boldsymbol{cult}} $以及随机选取的两头郊狼$cr_1 $$cr_2 $影响组内郊狼的成长过程, 即组内郊狼成长受${{\boldsymbol{\delta}} _1}$${{\boldsymbol{\delta}} _2}$的影响. 其中${\boldsymbol{cult}} $的计算如式(15)所示, 即其每一个因素是组内所有郊狼对应社会因子的中位数(O为排名后的社会因子序列), 故${\boldsymbol{cult}} $又称中值郊狼. ${{\boldsymbol{\delta}} _1}$${{\boldsymbol{\delta}} _2}$计算见式(16)和式(17), 郊狼的成长方式见式(18).

    $${{\boldsymbol{cult}}_j} = \left\{ {\begin{array}{*{20}{l}} {{O_{{\frac{{{N_c} + 1}} { 2}},j}},}&{{N_c}\;{\text{是奇数}}}\\ \dfrac{ {{O_{\frac{{N_c}}{2},j}} + {O_{\frac{{N_c}}{2} + 1,j}}} }{2},&{{N_c}\;{\text{是偶数}}} \end{array}} \right.$$ (15)
    $${{\boldsymbol{\delta}} _{{1}}} = {\boldsymbol{alpha}} - {{\boldsymbol{soc}}_{{{c}}{{{r}}_1}}}\qquad\qquad\qquad\qquad\qquad\;$$ (16)
    $${{\boldsymbol{\delta}} _{{2}}} = {\boldsymbol{cult}} - {{\boldsymbol{soc}}_{{{c}}{{{r}}_2}}}\qquad\qquad\qquad\qquad\qquad\;\;\;\;\;$$ (17)
    $${\boldsymbol{new}}\_{{\boldsymbol{soc}}_c} = {{\boldsymbol{soc}}_c} + {r_3} \times {{\boldsymbol{\delta}} _{{1}}} + {r_4} \times {{\boldsymbol{\delta}} _{{2}}}\qquad\quad$$ (18)

    其中, ${\boldsymbol{new}}\_{{\boldsymbol{soc}}_c} $是组内第c头郊狼成长获得的新解, ${r_3} $${r_4} $是[0, 1]内均匀分布的随机数. 组内的郊狼成长后评估其社会适应能力如式(19)所示, $new\_fi{t_c} $为新适应度值.

    $$new\_fi{t_c} = f({\boldsymbol{new}}\_{{\boldsymbol{soc}}_c})$$ (19)

    最后采用迭代贪心算法进行优胜劣汰(式(20)), 如此新产生的更优郊狼参与组内其余郊狼成长以加快收敛速度.

    $${\boldsymbol{soc}} = \left\{ {\begin{split} & {{\boldsymbol{new}}\_{{\boldsymbol{soc}}_c},\quad new\_fi{t_c} > fi{t_c}} \\ &{{{\boldsymbol{soc}}_c},\;\quad \qquad\;{其他}} \end{split}} \right.$$ (20)

    幼郊狼$(pup )$的诞生受随机选择父母郊狼的遗传基因和环境因素的影响, 见式(21)所示.

    $$pu{p_j} = \left\{ {\begin{split} &{{\boldsymbol{so}}{{\boldsymbol{c}}_{c{r_1},j}},}\quad{{r_j} < {P_s}\;{或}\;j = {j_1}}\\ &{{\boldsymbol{so}}{{\boldsymbol{c}}_{c{r_2},j}},}\quad{{r_j} \ge {P_s} + {P_a}\;{或}\;j = {j_2}}\\ &{{R_j},}\qquad\;\quad{其他} \end{split}} \right.$$ (21)

    其中, $r_j $是均匀分布在[0, 1]内的随机数; $ j_1 $$j_2 $是两个随机选择的维度标号, 以确保两个父郊狼的基因能够遗传给幼狼; $R_j $是在第j维决策变量范围内随机产生的变异值; $P_s $$P_a $分别是分散概率和关联概率, 它们决定着幼狼被遗传和变异的情况, 如式(22)和式(23)所示.

    $${P_s} = \dfrac{1}{D}\qquad$$ (22)
    $${P_a} = \dfrac{{1 - {P_s}}}{2}$$ (23)

    幼狼出生后, 评估其社会适应能力, 并依照其能力决定生与死, 具体描述如下: 在社会适应能力上, 1)组内只有一个郊狼比幼狼差时, 则此郊狼死亡, 幼狼存活, 并设它的年龄为0, 即age = 0; 2)组内有多个郊狼比幼狼差时, 能力差且年龄最大的郊狼死亡, 幼狼存活, 并设age = 0; 3)组内所有郊狼都比幼狼强时, 幼狼死亡.

    在COA中, 郊狼以$P_e $的概率被组驱离和接纳. 郊狼初始被随机分配到组群中, 但有时某些郊狼会离开它所在组群而加入另一组群, 这种随机驱离和接纳用来保证组内郊狼的多样性和组间信息共享, $P_e $的计算方式为

    $${P_e} = 0.005 \times {N_c}^2$$ (24)

    COA的伪代码如算法1所示.

    算法1. COA算法

    1. 设置$N_p $$N_c $等参数, 随机初始化郊狼种群并随机分组, 评估每个郊狼的社会适应能力, 确定全局最优郊狼

    2. For t = 1 To $MaxDT $ Do

    3. For p = 1 To $N_p $ Do

    4. 确定组内最优的${\boldsymbol{alpha}} $

    5. 根据式(15)计算组文化趋势${\boldsymbol{cult}} $

    6. For c = 1 To $N_c $ Do

    7. 根据${\boldsymbol{alpha}} $${\boldsymbol{cult}} $进行郊狼成长, 如式(16)~(18)

    8. 使用贪心算法优胜劣汰保留更优郊狼和全局最优    郊狼

    9. End For

    10. 幼狼出生与死亡, 出生如式(21), 按其社会能力决    定其生死

    11. End For

    12. 郊狼采用如式(24)的概率被组驱离和接纳

    13. 更新郊狼的年龄, $age=age+1 $

    14. End For

    15. 输出全局最优郊狼

    从以上描述可知, 与PSO等经典的SIOA相比, COA的主要优势有: 1)具有很好的搜索框架, 即多组结构, 郊狼随机被组驱离和接纳等使郊狼群具有多样性, 有较强的探索能力, 能够更好地解决复杂优化问题[12]; 2)组内最优郊狼和组内文化趋势引导组内每个郊狼的成长, 增强了局部搜索能力; 3)郊狼组内的生与死受随机选择父郊狼的遗传因子和环境变异因子影响, 郊狼生与死算子使得COA具有一定的全局搜索能力. 其主要不足有: 1)结构复杂, 计算复杂度高; 2)采用迭代贪心算法, 稳定性差, 效率低; 3)需调整的参数多, 如$P_e $, $N_p $$N_c $等需调整, 可操作性差; 4)多组结构等虽然增强了探索能力, 但组与组之间信息共享不足, 导致搜索后期收敛速度慢.

    COA与GWO虽然同属狼群算法, 但二者有许多不同. 如在搜索方式上, 前者模拟郊狼的成长、生与死, 而后者模拟灰狼的等级制度和狩猎模式; 在引导上, 前者仅仅使用一头最好的狼来引导其它狼成长, 而后者使用3头最优狼来引导其它狼搜索; 在结构上, 前者复杂, 后者简单; 在产生新解方式上, 前者有两种方式, 后者只有一种方式等等. 因此, COA和GWO各有优势和不足. 为了弥补二者不足, 本文将COA和GWO两种狼群算法经过改进后进行了有机结合, 从而获得一种性能优越且高效的混合算法(HCOAG).

    ICOA主要包括高斯全局趋优成长算子和动态调整组内郊狼数方案.

    3.2.1   高斯全局趋优成长算子

    为了提高郊狼成长后的社会适应能力、组与组之间的信息共享程度及算法收敛速度, 受Omran等[13]提出的全局最优和声搜索算法中趋优策略及高斯分布的启发, 对其组内郊狼成长方式进行改进, 提出一种高斯全局趋优成长算子. 全局趋优算子充分利用郊狼种群当前全局最优郊狼的状态信息, 使郊狼成长向当前全局最优郊狼趋近, 提高开采能力, 也使得组内信息经全局最优解达到组间共享. 高斯分布又称为正态分布, 与COA的均匀随机分布[0, 1]相比, 可以增加搜索范围, 在一定程度上增强全局搜索能力.

    在组内郊狼成长过程中, 在式(18)中引入趋优算子和高斯分布随机因子, 具体见式(25)和式(26).

    $${{\boldsymbol{\delta}} _3} = {\boldsymbol{GP}} - {{\boldsymbol{soc}}_{{{{cr}}_1}}}\qquad\qquad\qquad\qquad\quad$$ (25)
    $${\boldsymbol{new}}\_{{\boldsymbol{soc}}_1} = {\boldsymbol{soc}} + r{n_1} \times {{\boldsymbol{\delta}} _3} + r{n_2} \times {{\boldsymbol{\delta}} _{{2}}}$$ (26)

    式(25)中, ${\boldsymbol{GP}} $为当前全局最优郊狼的状态, ${{\boldsymbol{\delta}} _3} $表示组内随机选取的一个郊狼状态$(cr_1 )$${\boldsymbol{GP}} $的差值. 式(26)中, $rn_1 $$rn_2 $是均值为0、方差为1的高斯(正态)分布产生的随机数, ${\boldsymbol{new}}\_{\boldsymbol{soc}}_1$表示每头郊狼在${{\boldsymbol{\delta}} _2} $${{\boldsymbol{\delta}} _3} $的共同作用下成长产生的新状态(新解).

    从式(25)和式(26)可以看出, 与COA相比, 在搜索前期, 个体间差异大, 缩放因子(高斯随机数)变化范围大, 故增强了探索能力. 在搜索后期, 虽然还是采用高斯随机数, 但个体间差异小, ${{\boldsymbol{\delta}} _2} $${{\boldsymbol{\delta}} _3} $的值变小, 故搜索范围变小, 强化开采能力. 且由于采用全局最优解引导, 故更增强了开采能力, 同时上一组获得的全局最优解, 会作用于下一组的郊狼成长, 如此形成一种信息共享的正反馈作用, 大幅度加快了收敛速度. 另外, 所有组内郊狼成长后并行计算它们的适应度值和优胜劣汰, 提高了运行速度和稳定性.

    3.2.2   动态调整组内郊狼数方案

    如上文所述, COA有多个参数需要调整, 可操作性差. 对于以上改进的COA, 主要有两个参数$N_c $$N_p $对优化性能影响较大. 在N固定下, 如果$N_c $确定, 则$N_p=N/N_c $, 即$N_p $越大, $N_c $越少, 成长操作少, 但全局解的作用逐组增强, 开采强; 反之, 成长操作多, $N_p $少, 全局解的作用减弱, 开采弱. 为了提高COA的可操作性, 本文对$N_p $$N_c $参数进行动态调整. 设$N=100 $, 则$N_p $$N_c $必须为100的因子, 依据文献[4], 每组郊狼数不能超过14, 所以$N_c $只能为4、5和10. 由于$N_c $不能少于3, 这是因为组内郊狼成长至少需要3头郊狼, 包括随机选取的两头郊狼和组内最优郊狼. 当$N_c=4 $时可选郊狼范围受限制, 所以$N_c $最可能的取值为5和10, 故具体的分配方式如图2所示, 动态调整参数方案如算法2所示.

    图 2  组数$N_p $与组内郊狼数$N_c $的分配图
    Fig. 2  Disposition graph of two parameters $N_c $ and $N_p $

    算法2. 动态调整参数$N_c $$N_p $

    1. If 在搜索后期

    2. $N_c=5 $

    3. Else 在搜索前期

    4. $N_c=10 $

    5. End If

    6. $N_p=N/N_c $和随机分组

    在搜索后期, $N_c=5 $, 则$N_p=20 $, 组数多, 增强全局解的正反馈作用, 局部搜索能力增强; 在搜索前期, $N_c=10 $, 则$N_p=10 $, 组数少, 减弱全局解的正反馈作用, 全局搜索能力增强. 因此, 动态调整组内郊狼数参数不仅提高了可操作性, 而且可以更好地平衡探索与开采能力. 另外, 在动态调整参数之后, 随机分组, 如此可以省去郊狼被组驱离与接纳这个过程, 从而不需要调整参数$P_e $, 因此提高了可操作性.

    为了进一步解决COA存在搜索效率低和易陷入局部最优的问题, 本文引入GWO搜索方式. 首先提出一种精简的GWO搜索方式, 即将式(6)~(11)与COA组内郊狼进行融合并简化, 具体如式(27)~(29).

    $${{\boldsymbol{NX}}_{{1}}} = {\boldsymbol{GP}} - {{\boldsymbol{A}}_{{1}}} \otimes \left| {{\boldsymbol{GP}} - {{\boldsymbol{temp}}_c}} \right|\qquad$$ (27)
    $${{\boldsymbol{NX}}_2} = {\boldsymbol{alpha}} - {A_2} \otimes \left| {{\boldsymbol{alpha}} - {{\boldsymbol{temp}}_c}} \right|$$ (28)
    $${{\boldsymbol{NX}}_3} = {\boldsymbol{cult}} - {A_3} \otimes \left| {{\boldsymbol{cult}} - {{\boldsymbol{temp}}_c}} \right|\qquad$$ (29)

    其中, ${\boldsymbol{temp}}_c $表示当前组第c个郊狼的状态. ${{\boldsymbol{NX}}_{{1}}} $, ${{\boldsymbol{NX}}_{{2}}} $${{\boldsymbol{NX}}_{{3}}} $表示组内郊狼分别在${\boldsymbol{GP}} $, ${\boldsymbol{alpha}} $${\boldsymbol{cult}} $的引导下获得成长的情况. 从式(27)~(29)可以看出, 这3个式子去掉了式(6) ~ (8)中的可调参数向量C, 保留GWO的优势并克服其不足, 即在SGWO中, 去掉C, 无需调整c1, 也省略了向量C的相关计算. 所以, 这种简化的GWO在保证其有较强开采能力的同时, 提高了可操作性并降低了计算复杂度. 为了更进一步简化计算, SGWO直接采用COA中的当前全局最优郊狼、组内最优郊狼和中值郊狼(组内文化趋势)的引导寻找最优解, 无需寻找组内的第二和第三最优郊狼, 如此SGWO与COA达到了一种高效融合. 为方便理解SGWO, 关于GWO中的灰狼等级情况与SGWO中的等级情况的对比见图3所示.

    图 3  GWO与SGWO的等级情况对比
    Fig. 3  Comparison of hierarchies of GWO and SGWO

    为了平衡COA组内郊狼成长的探索与开采能力, 本文采用正弦交叉策略将ICOA与SGWO有机混合. 其中交叉策略是指在一定概率的情况下, 两个解进行交叉得到一个新解. 当概率为零时, 两个解的维值不交换; 当概率为1时, 两个解的维值全部交换, 这两种情况都不能产生新解. 因此只有概率为一个适当的值时, 两个解的交叉效果才会达到最好. 其中使用正弦函数概率模型使得探索和开采都有良好的表现, 即使用正弦函数自适应控制交叉概率CR (在0.5附近前期小幅度波动, 后期大幅度跳动)可以兼顾组内郊狼的多样性和收敛性[14], 其计算式为

    $$\begin{split} CR =\;& 0.5 \times \\ &\left( {\sin \left( {2\pi \times 0.25 \times t + \pi } \right) \times {\dfrac{t}{MaxDT}} + 1} \right) \end{split}$$ (30)

    本文采用的正弦交叉策略见算法3所示, 在rand < CR的概率下, 组内第c个郊狼D维中一些维的值采用SGWO搜索方式获取; 反之, 组郊狼的第c个郊狼D维中的其余维值采用高斯全局趋优成长算子获取. 这种交叉策略具有如下特点: 1)增强了组内各类郊狼的信息交流; 2)交叉两个新解, 二者的信息融合获得有别二者的新解, 增强了新解的多样性, 降低陷入局部最优的概率; 3)前期在CR为0.5的附近小幅度波动, 高斯全局趋优操作和GWO操作以近似等概率的方式产生新解, 多样性强, 强化探索能力; 后期在CR为0.5的附近大幅度跳动, 如此产生的新解以其中一种操作为主, 多样性降低, 强化了开采能力.

    算法3. 正弦交叉策略

    1. 计算正弦交叉概率, 见式(30)

    2. 选定第p组第c个郊狼

    3. For j = 1 To D Do

    4. If rand < CR

    5. 计算式(27)~(29)

    6. ${\boldsymbol{new}}\_{\boldsymbol{c}}_j =({\boldsymbol{NX}}_{1,j}+{\boldsymbol{NX}}_{2,j} +{\boldsymbol{NX}}_{3,j})/3$

    7. Else

    8. 采用高斯全局趋优成长算子的式(26)

    9. End If

    10. End For

    正弦交叉策略有机融合了两种搜索方式, 很好地平衡了成长过程的探索与开采能力. HCOAG的流程图见图4.

    图 4  HCOAG流程图
    Fig. 4  Flow chart of HCOAG

    图4可以看出, 与COA相比, HCOAG主要有如下不同: 1)成长方式采用正弦交叉策略融合高斯全局趋优方式和SGWO方式; 2)组内郊狼的适应度值采用并行计算; 3)动态调整参数方案; 4)丢弃了郊狼被组驱离与接纳的过程.

    为验证HCOAG的有效性, 本文采用经典基准函数和来自CEC2017的复杂函数进行优化实验. CEC2017包括单峰函数(F1~F3)、多峰函数(F4~F10)、混合函数(F11~F20)和复合函数(F21~F30), 详细情况见文献[15]. 实验环境采用主频3.00 GHz的 Inter(R) Core(TM) i5-7400 CPU和内存8 GB的PC机, 操作系统采用64位的Windows 10, 编程语言采用MATLAB2017A. 选取的对比算法包括GWO[3]、COA[4]、MEGWO (Multi-strategy ensemble GWO)[16]、DEBBO (Differential evolution and biogeography-based optimization)[17]、HFPSO (Hybrid firefly with PSO)[18]、SaDE (DE with strategy adaptation)[19]、SE04 (Spherical evolution)[20]、FWA (Fireworks algorithm)[21]和TLBO (Teaching-learning based optimization)[22]. MEGWO是最近提出的GWO改进算法, 文献[16]表明它优于GWO及其改进版以及其他的SIOA. DEBBO是DE与BBO的混合算法, 文献[17]表明它优于DE和BBO及其他优秀的SIOA. HFPSO是PSO和FA的混合算法, 文献[18]表明它优于PSO和FA等SIOA. SaDE具有显著优秀性能, 文献[19]表明SaDE优于DE等SIOA. SE04是球形进化算法的变体之一, 文献[20]表明SE04显著优于GWO等算法. FWA和TLBO也是目前较为新型算法的代表. 总之, 这些对比算法具有较强的竞争性.

    为公平起见, 所有算法的公共参数设置相同. 在CEC2017上, 依据文献[15]的参数最佳推荐, $D = 30 $, 最大函数评价次数10000 × D, 独立运行51次. 在经典函数的$D = 10 $$D = 30 $上, $MaxDT $分别为100和500, 独立运行30次. 依据文献[4]的推荐, COA的最佳参数设置为: $N = 100 $, $N_c= 5 $, $N_p = 20$. HCOAG的N也设置为100, $N_p $$N_c $无需调整, 算法其他参数采用相应文献中推荐的最佳设置.

    一般单峰函数用来考察一个算法的局部搜索能力, 多峰函数考察其全局搜索能力, 混合和复合函数考察其处理复杂问题的能力. 本文采用均值(Mean)和方差(Std)分别评估一个算法的优化性能和稳定性. 在解决极小值问题中, 均值越小表示算法性能越好, 方差越小表示算法稳定性越好. 另外, 还采用了排名(Rank)方法. 其评价标准是先比较算法获得的均值, 均值越小算法名次越好; 在均值相同的情况下, 再比较方差, 方差越小算法名次越好. 结果表中的“Count”表示排名为第一的总次数, “Ave rank”表示平均排名情况, “Total rank”表示在“Ave rank”基础上的总排名情况, 最优者用加粗字体表示.

    为验证每个改进对HCOAG优化性能的贡献, 将HCOAG与其不完全算法HCOAG5 $(N_c=5 $$N_p=20 $的HCOAG)、HCOAG10 ($N_c=10 $$N_p =10 $的HCOAG)、ICOA、SGWO、GWO和COA在CEC2017的30维函数上进行实验, 实验结果如表1所示.

    表 1  HCOAG与其不完全算法的结果对比
    Table 1  Comparison results of HCOAG and its incomplete algorithms
    函数 标准HCOAGCOAGWOHCOAG5HCOAG10ICOASGWO
    F1Mean7.4494×10−41.2099×1031.2813×1094.1072×10−41.9800×10−31.0737×1023.3279×103
    Std1.4801×10−31.2998×1039.6388×1088.5916×10−42.9438×10−31.0569×1024.3271×103
    Rank2571346
    F2Mean1.1941×1012.9013×10213.1831×10324.8580×1031.8078×1018.6764×10153.3582×1014
    Std2.4077×1011.1462×10221.5894×10333.3985×1045.0208×1013.5675×10161.3200×1015
    Rank1673254
    F3Mean9.5410×10−16.0573×1042.8342×1047.6972×10−11.0995×1003.3032×1048.7276×102
    Std1.9288×1001.0177×1049.2323×1039.8032×10−11.6794×1006.8409×1037.2376×102
    Rank2751364
    F4Mean1.8113×1018.4041×1012.0825×1022.0841×1012.8446×1014.8248×1011.0495×102
    Std2.7696×1018.5306×1008.4445×1013.0540×1013.1826×1013.3517×1012.4806×101
    Rank1572346
    F5Mean2.8433×1015.2890×1019.6116×1013.5884×1013.0204×1013.4844×1013.1488×101
    Std6.8886×1001.5025×1013.2690×1011.0115×1018.8983×1001.0983×1019.2242×100
    Rank1675243
    F6Mean1.7483×10−71.6399×10−56.3664×1009.4452×10−71.5005×10−62.8782×10−42.0381×10−2
    Std4.7524×10−79.6428×10−63.1596×1002.4080×10−65.9643×10−61.6254×10−42.7102×10−2
    Rank1472356
    F7Mean6.1055×1017.5148×1011.4460×1026.7082×1015.9300×1016.7675×1016.4025×101
    Std1.0851×1011.3762×1014.6314×1011.1241×1019.4998×1001.1520×1011.1856×101
    Rank2674153
    F8Mean3.2489×1015.6110×1018.4662×1013.6085×1012.9446×1013.6138×1013.1775×101
    Std1.2272×1011.8774×1012.5270×1018.8063×1007.9048×1001.0081×1017.8884×100
    Rank3674152
    F9Mean2.7362×10−15.6225×10−15.5392×1025.2270×10−12.5931×10−18.8559×10−27.4159×100
    Std4.8298×10−11.0209×1003.2695×1028.7374×10−14.6957×10−11.5656×10−16.7112×100
    Rank3574216
    F10Mean2.2671×1032.7575×1033.1862×1032.5574×1032.3435×1032.1380×1032.1424×103
    Std6.1427×1024.6685×1029.7886×1025.3524×1026.0670×1025.6098×1024.0691×102
    Rank3675412
    F11Mean2.1678×1014.1143×1014.9771×1022.9822×1012.6698×1012.2685×1011.0908×102
    Std2.0907×1012.7367×1016.4235×1022.6128×1012.4059×1012.0893×1013.8218×101
    Rank1574326
    F12Mean9.8943×1031.2532×1054.0285×1071.2577×1041.0657×1041.3660×1052.0716×105
    Std6.0932×1031.2555×1057.3849×1076.4424×1036.4606×1039.3092×1041.9967×105
    Rank1473256
    F13Mean1.9749×1032.0357×1042.8073×1063.0265×1033.1829×1033.6293×1021.3271×104
    Std3.8565×1032.6333×1041.6225×1076.2901×1038.0719×1038.9975×1011.5283×104
    Rank2673415
    F14Mean8.6436×1018.0070×1011.3112×1057.7150×1011.0134×1025.6726×1011.4132×104
    Std4.3766×1011.9915×1012.3335×1056.0071×1019.2585×1011.4850×1011.7944×104
    Rank4372516
    F15Mean1.8396×1032.0792×1033.3658×1057.1579×1021.7386×1036.9111×1016.6116×103
    Std2.9044×1037.9984×1037.9125×1051.2272×1032.9477×1031.9083×1018.3961×103
    Rank4572316
    F16Mean3.0243×1027.9869×1028.1416×1023.3715×1023.0883×1024.6416×1025.0252×102
    Std2.0550×1022.8651×1022.6440×1022.1415×1021.8878×1022.6962×1022.4545×102
    Rank1673245
    F17Mean4.7111×1012.2439×1022.7004×1026.4809×1015.3120×1013.7365×1011.3984×102
    Std4.0925×1011.3518×1021.3820×1025.3991×1014.7801×1014.0654×1018.0664×101
    Rank2674315
    F18Mean6.1013×1046.9910×1047.1643×1055.1875×1045.0376×1043.9930×1041.8454×105
    Std5.7031×1041.0210×1058.2799×1053.6270×1043.7592×1042.0034×1041.7045×105
    Rank4573216
    F19Mean3.4042×1014.4886×1034.6400×1053.4163×1013.0105×1022.4678×1015.4815×103
    Std2.0528×1011.3325×1045.4998×1053.9687×1011.1322×1037.1259×1004.9859×103
    Rank2573416
    F20Mean9.6665×1012.4290×1023.6059×1021.0084×1021.1637×1021.0389×1022.0165×102
    Std7.7834×1011.4995×1021.0264×1026.6726×1017.5890×1018.7694×1019.6673×101
    Rank1672435
    F21Mean2.3023×1022.5626×1022.8298×1022.3713×1022.3135×1022.3724×1022.3289×102
    Std8.5095×1001.6800×1012.5684×1011.0815×1019.8453×1001.1261×1019.9428×100
    Rank1674253
    F22Mean1.0010×1021.9999×1038.0434×1021.0005×1021.0005×1021.0005×1021.2974×102
    Std4.8096×10−11.5970×1031.1113×1033.4354×10−13.4444×10−13.4443×10−12.0703×102
    Rank4761325
    F23Mean3.7755×1024.1635×1024.7029×1023.8706×1023.7831×1023.8441×1023.8854×102
    Std1.0911×1011.6898×1012.9324×1011.3271×1018.1817×1001.0543×1011.3692×101
    Rank1674235
    F24Mean4.4827×1025.4044×1025.2489×1024.5484×1024.4530×1024.5862×1024.5671×102
    Std1.0757×1014.5778×1013.3902×1011.1783×1011.1461×1011.2203×1011.1956×101
    Rank2763154
    F25Mean3.8777×1023.8706×1024.7784×1023.8747×1023.8729×1023.8698×1024.0239×102
    Std5.4462×1008.0647×10−12.3819×1011.5625×1001.2735×1005.4095×10−11.5135×101
    Rank5274316
    F26Mean1.2578×1031.6520×1032.0116×1031.3249×1031.2449×1031.3138×1031.5024×103
    Std1.9807×1021.7070×1025.7618×1023.1093×1023.4947×1021.9599×1022.8691×102
    Rank2674135
    F27Mean5.1091×1025.0430×1025.9279×1025.1349×1025.1088×1025.0560×1025.3331×102
    Std7.7116×1008.2707×1003.8462×1018.6401×1008.6837×1007.3827×1001.1175×101
    Rank4175326
    F28Mean3.3558×1024.0555×1025.9941×1023.2930×1023.3793×1023.4828×1024.5710×102
    Std5.3866×1013.6156×1016.9788×1015.1585×1015.1950×1015.3564×1012.3392×101
    Rank2571346
    F29Mean4.5991×1026.6978×1028.5036×1024.8821×1024.6287×1024.5683×1026.2453×102
    Std4.4075×1011.7459×1021.8235×1025.5772×1014.3839×1014.4800×1011.1861×102
    Rank2674315
    F30Mean2.9823×1036.0618×1034.0643×1063.1036×1032.9323×1031.9586×1046.1880×103
    Std6.1135×1024.7022×1033.1688×1068.4665×1025.9332×1027.3086×1032.8250×103
    Rank2473165
    Count101045100
    Ave rank2.205.236.873.102.603.074.93
    Total rank1674235
    下载: 导出CSV 
    | 显示表格

    表1中可以看出, HCOAG5在单峰函数上获得最好的结果次数最多, 表明Np增大, 在提高郊狼生与死的全局搜索能力的同时, 大幅度提高了COA的开采能力, 即HCOAG5中高斯趋优成长和GWO搜索都采用当前全局最优郊狼引导, 不仅获得更好的全局最优解, 这种全局最优解又作用于下一组郊狼的成长过程, 如此形成正反馈机制: Np越大, 开采越强, 收敛速度越快. 但容易陷入局部最优, 如在多峰函数上的表现不尽人意. HCOAG10在多峰函数上表现出了良好的优化性能, 表明Np变少, 在提高组内郊狼成长的局部搜索能力的同时, 正反馈减弱, 开采能力降低, 即陷入局部最优的概率也降低了. ICOA中没有精简的GWO, 整体来说优于COA, 表明对COA的改进是有效的. SGWO在整体上优于GWO, 表明SGWO提高了GWO搜索能力. 与GWO相比, COA的优化性能更好, 即COA能更好地处理复杂优化问题. 在7个算法中, HCOAG的平均排名为2.20, COA、GWO、HCOAG5、HCOAG10、ICOA和SGWO的平均排名分别为5.23、6.87、3.10、2.60、3.07和4.93, 总排名的名次分别为6、7、4、2、3和5. 在HCOAG与6种对比算法中, HCOAG获得了最好的优化性能, 这也说明本文提出的算法是有效的.

    为验证HCOAG的性能, 首先将其用于经典函数的优化实验, 并将其结果与COA、GWO、HFPSO和DEBBO的结果进行对比, 实验结果见表2.

    表 2  在6个经典函数上的实验结果对比
    Table 2  Comparison results on the 6 classic functions
    函数 标准D = 10
    HCOAGCOAGWOHFPSODEBBO
    f1Mean6.0684×10−91.7833×1029.0799×10−153.4157×10−56.7086×10−2
    Std4.8458×10−96.3524×1012.4849×10−142.4485×10−53.1056×10−2
    Rank25134
    f2Mean8.4133×10−62.3737×1001.3222×10−91.3703×10−32.8483×10−2
    Std3.7531×10−64.0964×10−11.1382×10−96.5582×10−47.0993×10−3
    Rank25134
    f3Mean01.6180×1021.0000×10−100
    Std05.0787×1013.0513×10−100
    Rank15411
    f4Mean1.2498×10−104.0253×1001.5325×10−63.5760×10−71.8575×10−3
    Std2.0501×10−101.6104×1009.4192×10−74.1539×10−71.0158×10−3
    Rank15324
    f5Mean2.0046×10−87.1619×1022.4093×10−54.6770×10−62.6132×10−2
    Std5.9686×10−81.5819×1031.4121×10−55.6661×10−61.0613×10−2
    Rank15324
    f6Mean4.1921×10−101.7228×1001.2593×10−24.9377×10−73.5149×10−3
    Std4.3501×10−105.1829×10−16.8779×10−24.8665×10−71.5826×10−3
    Rank15423
    D = 30
    f1Mean1.3966×10−173.2554×1015.4432×10−417.2595×10−92.7076×10−4
    Std3.2255×10−175.9567×1007.1605×10−417.3446×10−91.1010×10−4
    Rank25134
    f2Mean2.8862×10−101.3998×1006.0158×10−245.3463×10−51.3264×10−3
    Std4.6435×10−101.9835×10−16.2049×10−243.9178×10−52.3103×10−4
    Rank25134
    f3Mean03.3700×1013.3333×10−200
    Std07.9877×1001.8257×10−100
    Rank15411
    f4Mean1.0451×10−173.8002×1001.5129×10−21.7278×10−26.4886×10−5
    Std3.0738×10−171.3163×1001.0471×10−23.9296×10−22.7878×10−5
    Rank15342
    f5Mean5.3309×10−171.8376×1011.6587×10−13.2962×10−35.0150×10−4
    Std1.5184×10−165.8919×1001.1940×10−15.1211×10−32.1237×10−4
    Rank15432
    f6Mean1.2484×10−181.8049×1007.9738×10−18.2480×10−38.5930×10−5
    Std1.7135×10−184.9152×10−17.4565×10−14.5176×10−23.9292×10−5
    Rank15432
    Count80422
    Ave rank1.335.002.752.502.92
    Total rank15324
    下载: 导出CSV 
    | 显示表格

    为了能说明问题, 选择6个经典的、具有代表性的基准函数的实验结果作为示例进行分析和讨论, 这6个函数的信息如表3所示, 其中f1 ~ f3f4 ~ f6分别作为单峰函数和多峰函数的代表. 在此实验中, 由于HCOAG是COA和GWO的混合算法, 故选择COA和GWO作为对比算法. HFPSO和DEBBO是目前两种较为优秀的混合算法, 故选为HCOAG的对比算法.

    表 3  6个经典函数的情况
    Table 3  Details of 6 classical benchmark functions
    类型函数名称函数表达式搜索范围最小值
    单峰函数Sphere${f_1}(x) = \displaystyle\sum_{i = 1}^D {x_i^2}$ [−100, 100]0
    Schwefel 2.22${f_2}(x) = \displaystyle\sum_{i = 1}^D {\left| { {x_i} } \right|} + \prod_{i = 1}^D {\left| { {x_i} } \right|}$ [−10, 10]0
    Step${f_3}(x) = \displaystyle\sum_{i = 1}^D { { {\left( {\left\lfloor { {x_i} + 0.5} \right\rfloor } \right)}^2} }$ [−100, 100]0
    多峰函数Penalized 1${f_4}(x) = \dfrac{\pi}{D}\bigg\{ {10{ {\sin }^2}\left( {\pi {y_i} } \right)} +$
        $\displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {y_i} - 1} \right)}^2}\left[ {1 + 10{ {\sin }^2}\left( {\pi {y_{i + 1} } } \right)} \right]} { + { {\left( { {y_D} - 1} \right)}^2} } \bigg\} +$
        $\displaystyle\sum_{i = 1}^D {u\left( { {x_i},10,100,4} \right)}$
        ${y_i} = 1 + \dfrac{1}{4}\left( { {x_i} + 1} \right)$
        $u\left( { {x_i},a,k,m} \right) = $$\left\{ \begin{aligned}&k{\left( { {x_i} - a} \right)^m},\quad\;\; {x_i} > a\\&0, \quad \quad \quad \quad \quad\quad\;\; - a \le {x_i} \le a\\&k{\left( { - {x_i} - a} \right)^m},\quad {x_i} < - a \end{aligned} \right.$
    [−50, 50]0
    Penalized 2${f_5}(x) = 0.1\bigg\{ { { {\sin }^2} } \left( {\pi {x_1} } \right) + \displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {x_i} - 1} \right)}^2} } \left[ {1 + { {\sin }^2}\left( {3\pi {x_{i + 1} } } \right)} \right] +$
        $\left( { {x_D} - 1} \right) {\Big[ {1 + { {\sin }^2}\left( {2\pi {x_D} } \right)} \Big]} \bigg\} + \displaystyle\sum_{i = 1}^D {u\left( { {x_i},5,100,4} \right)}$
    [−50, 50]0
    Levy${f_6}(x) = \displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {x_i} - 1} \right)}^2} } \left[ {1 + { {\sin }^2}\left( {3\pi {x_{i + 1} } } \right)} \right] +$
        ${\sin ^2}\left( {3\pi {x_1} } \right) + \left| { {x_D} - 1} \right|\Big[ {1 + { {\sin }^2}\left( {3\pi {x_D} } \right)} \Big]$
    [−10, 10]0
    下载: 导出CSV 
    | 显示表格

    表2可以看出, 在D = 10和D = 30上, COA无论是在单峰还是在多峰函数上优化性能最差, 说明COA在处理这些经典函数优化问题上无优势. 在单峰函数的均值和方差上, 除了f3外, GWO均优于HCOAG以及其他3种对比算法, 证明了GWO具有较好的开采能力. 在多峰函数上, HCOAG的性能最佳, 说明GWO与全局搜索能力强的COA混合有效.

    从整体上看, 在D = 10和D = 30上, HCOAG的总体平均排名为1.33, 其他算法的平均排名依次为: HFPSO (2.50)、GWO (2.75)、DEBBO (2.92)和COA (5.00). 这些结果表明, HCOAG不是对所有优化问题都有绝对优势, 在单峰函数上优化性能稍差. 而GWO在单峰函数上具有优势, 对HCOAG的性能具有一定的贡献. 从整体上看, HCOAG在经典函数上具有较好的优化性能.

    为直观显示HCOAG、COA、GWO、HFPSO和DEBBO的收敛性能, 给出了这5个算法的收敛图. 限于篇幅, 本节在D = 30上选取2个单峰函数(f1f2)和2个多峰函数(f5f6), 如图5所示. 在单峰函数上, 与HCOAG、COA、HFPSO和DEBBO算法相比, GWO收敛速度更快, 表现出更好的收敛性能. 在多峰函数上, 与COA、GWO、HFPSO和DEBBO算法相比, HCOAG表现出了更好的收敛性能. 综上所述, 表2图5说明了GWO具有较好的局部搜索能力和收敛性能, 也部分证明了利用GWO局部搜索能力强的优势对COA的混合改进是必要和可行的.

    图 5  HCOAG与对比算法在4个经典函数上的收敛图
    Fig. 5  Convergence curves of HCOAG and the comparison algorithms on the 4 classical benchmark functions

    为了进一步验证HCOAG的搜索能力, 将其用在CEC2017复杂函数上实验, 并将其结果与9个代表性的先进算法COA、GWO、MEGWO、HFPSO、DEBBO、SaDE、SE04、FWA和TLBO的实验结果进行比较, 其结果见表4, 其中SaDE和SE04的实验数据直接来自文献[20].

    表 4  在30维CEC2017复杂函数上的优化结果对比
    Table 4  Comparison results on the 30-dimensional complex functions from CEC2017
    函数 标准HCOAGCOAGWOMEGWOHFPSODEBBOSaDESE04FWATLBO
    F1Mean7.4494×10−41.2099×1031.2813×1094.5517×1033.9338×1032.7849×1033.0714×1033.2930×1034.3987×1062.9846×103
    Std1.4801×10−31.2998×1039.6388×1081.0677×1035.3689×1034.0364×1033.5072×1034.2328×1031.4055×1063.1471×103
    Rank12108735694
    F2Mean1.1941×1012.9013×10213.1831×10322.8884×1085.3485×1041.5057×10178.6275×10−13.0802×10134.1397×10151.0448×1016
    Std2.4077×1011.1462×10221.5894×10338.0571×1083.2847×1053.5179×10174.9357×1001.1694×10141.5680×10164.7082×1016
    Rank29104381567
    F3Mean9.5410×10−16.0573×1042.8342×1042.2633×1021.5595×10−73.6772×1043.0045×1029.7974×1032.4748×1044.0488×10−4
    Std1.9288×1001.0177×1049.2323×1031.7031×1022.3334×10−75.8394×1037.3017×1023.4377×1036.3467×1031.6647×10−3
    Rank31084195672
    F4Mean1.8113×1018.4041×1012.0825×1022.4815×1016.9386×1018.4851×1016.0423×1018.5881×1011.1370×1025.9054×101
    Std2.7696×1018.5306×1008.4445×1012.8995×1012.1364×1012.2848×10−12.9825×1011.1251×1011.7315×1013.0429×101
    Rank16102574893
    F5Mean2.8433×1015.2890×1019.6116×1015.6912×1018.5624×1015.8216×1015.6192×1014.1688×1011.8456×1028.5717×101
    Std6.8886×1001.5025×1013.2690×1011.0725×1011.7427×1016.5957×1001.4216×1018.1545×1003.3933×1011.8601×101
    Rank13957642108
    F6Mean1.7483×10−71.6399×10−56.3664×1002.4470×10−11.0170×1001.1369×10−138.9317×10−27.5481×10−65.1770×1007.2903×100
    Std4.7524×10−79.6428×10−63.1596×1008.1620×10−22.3644×10001.3955×10−13.9880×10−53.1351×1004.4538×100
    Rank24967153810
    F7Mean6.1055×1017.5148×1011.4460×1028.9106×1011.0407×1029.9725×1019.4945×1017.2448×1012.0998×1021.3661×102
    Std1.0851×1011.3762×1014.6314×1011.0935×1011.9791×1016.4285×1001.9879×1017.3495×1004.4817×1012.4846×101
    Rank13947652108
    F8Mean3.2489×1015.6110×1018.4662×1015.9398×1017.2842×1015.9299×1015.3942×1014.4194×1011.4508×1027.1339×101
    Std1.2272×1011.8774×1012.5270×1011.0663×1011.7967×1016.0788×1001.2792×1016.5834×1002.1470×1011.4852×101
    Rank14968532107
    F9Mean2.7362×10−15.6225×10−15.5392×1027.8267×1003.2733×1014.0125×10−148.3556×1013.0839×10−13.5295×1032.4197×102
    Std4.8298×10−11.0209×1003.2695×1021.1815×1011.3249×1025.4870×10−146.2643×1018.4139×10−19.5511×1021.4491×102
    Rank24956173108
    F10Mean2.2671×1032.7575×1033.1862×1032.4369×1032.9908×1033.2911×1032.3253×1032.3267×1033.7800×1036.0667×103
    Std6.1427×1024.6685×1029.7886×1024.4542×1025.9210×1022.7284×1024.9247×1022.8457×1025.9660×1021.0625×103
    Rank15746823910
    F11Mean2.1678×1014.1143×1014.9771×1022.9612×1011.1553×1023.7430×1011.0032×1024.1343×1011.6164×1021.2672×102
    Std2.0907×1012.7367×1016.4235×1021.0347×1013.9628×1012.3672×1014.3101×1012.7994×1014.5263×1014.5717×101
    Rank14102736598
    F12Mean9.8943×1031.2532×1054.0285×1071.5983×1049.9670×1041.3866×1056.8629×1041.1143×1064.6351×1063.3042×104
    Std6.0932×1031.2555×1057.3849×1074.0434×1031.0658×1059.2097×1043.8252×1048.1422×1053.1121×1062.8646×104
    Rank16102574893
    F13Mean1.9749×1032.0357×1042.8073×1062.0450×1023.0927×1048.1265×1031.1211×1044.6063×1033.7320×1041.4857×104
    Std3.8565×1032.6333×1041.6225×1072.7028×1012.7301×1047.8066×1031.0535×1044.8590×1032.6480×1041.7072×104
    Rank27101845396
    F14Mean8.6436×1018.0070×1011.3112×1056.1985×1016.7377×1034.9240×1034.3238×1037.1204×1042.6955×1053.5454×103
    Std4.3766×1011.9915×1012.3335×1058.6647×1005.5695×1033.2902×1035.7159×1035.9323×1042.4525×1054.1276×103
    Rank32917658104
    F15Mean1.8396×1032.0792×1033.3658×1055.1634×1019.7487×1034.9944×1032.1676×1032.2013×1033.2784×1033.9091×103
    Std2.9044×1037.9984×1037.9125×1051.0713×1011.2114×1046.6468×1033.0178×1031.9756×1031.9819×1034.3347×103
    Rank23101984567
    F16Mean3.0243×1027.9869×1028.1416×1024.4823×1027.7229×1023.9643×1025.6072×1024.9392×1021.2266×1035.0039×102
    Std2.0550×1022.8651×1022.6440×1021.3443×1022.2590×1021.1932×1022.0850×1021.7309×1023.0034×1022.7575×102
    Rank18937264105
    F17Mean4.7111×1012.2439×1022.7004×1026.9544×1012.5591×1028.1642×1018.7684×1011.4116×1025.5825×1022.3994×102
    Std4.0925×1011.3518×1021.3820×1021.7296×1011.2971×1022.2037×1019.1289×1018.5026×1012.3401×1028.8703×101
    Rank16928345107
    F18Mean6.1013×1046.9910×1047.1643×1052.0505×1021.1409×1053.2225×1051.0034×1052.1361×1059.8409×1052.0609×105
    Std5.7031×1041.0210×1058.2799×1054.7536×1011.1535×1051.2197×1051.1019×1051.3261×1051.1184×1061.5131×105
    Rank23915847106
    F19Mean3.4042×1014.4886×1034.6400×1052.9977×1018.6631×1038.3686×1035.9612×1032.0723×1035.2207×1036.3203×103
    Std2.0528×1011.3325×1045.4998×1053.3897×1001.9974×1049.2795×1037.1112×1032.1685×1033.9175×1031.0793×104
    Rank24101986357
    F20Mean9.6665×1012.4290×1023.6059×1021.1363×1022.6516×1025.5205×1011.2989×1021.7303×1024.6345×1022.4392×102
    Std7.7834×1011.4995×1021.0264×1025.2411×1011.1737×1023.5413×1017.0970×1017.2015×1011.7129×1028.4432×101
    Rank26938145107
    F21Mean2.3023×1022.5626×1022.8298×1022.5458×1022.7446×1022.5950×1022.4896×1022.5047×1023.7768×1022.6988×102
    Std8.5095×1001.6800×1012.5686×1013.3247×1011.9517×1017.6690×1001.3195×1018.4442×1007.9462×1011.9589×101
    Rank15948623107
    F22Mean1.0010×1021.9999×1038.0434×1021.0022×1021.4532×1031.0000×1021.0228×1021.0211×1032.1380×1031.0232×102
    Std4.8096×10−11.5970×1031.1113×1034.3917×10−21.8286×1032.3100×10−133.2279×1001.2872×1032.2149×1034.0114×100
    Rank29638147105
    F23Mean3.7755×1024.1635×1024.7029×1023.8959×1024.8447×1024.0323×1024.1472×1024.0247×1025.8963×1024.5003×102
    Std1.0911×1011.6898×1012.9324×1016.8787×1014.4709×1015.6348×1001.8742×1018.1687×1008.8792×1013.0546×101
    Rank16829453107
    F24Mean4.4827×1025.4044×1025.2489×1024.8972×1025.6079×1024.7430×1024.8169×1024.9840×1027.9489×1025.0152×102
    Std1.0757×1014.5778×1013.3902×1011.6597×1015.7847×1016.0055×1002.0610×1011.3899×1018.6391×1012.3700×101
    Rank18749235106
    F25Mean3.8777×1023.8706×1024.7784×1023.8374×1023.8818×1023.8691×1024.0124×1023.8779×1024.1099×1024.0877×102
    Std5.4462×1008.0647×10−12.3819×1011.8246×10−13.4076×1007.5524×10−21.9489×1011.1319×1002.1657×1012.2401×101
    Rank43101627598
    F26Mean1.2578×1031.6520×1032.0116×1032.5051×1021.4922×1031.4821×1031.7344×1031.5337×1032.2418×1031.8645×103
    Std1.9807×1021.7070×1025.7618×1024.1112×1019.6940×1027.2015×1017.1347×1021.9051×1021.7373×1031.0276×103
    Rank26914375108
    F27Mean5.1091×1025.0430×1025.9279×1025.1286×1025.3523×1024.9807×1025.4289×1025.0744×1025.7919×1025.3827×102
    Std7.7116×1008.2707×1003.8462×1016.1632×1002.1095×1014.7270×1001.7086×1013.6242×1003.5317×1011.6907×101
    Rank42105618397
    F28Mean3.3558×1024.0555×1025.9941×1023.6492×1023.5331×1023.2281×1023.3257×1024.1364×1024.6256×1023.6806×102
    Std5.3866×1013.6156×1016.9788×1013.2477×1015.9179×1013.7880×1015.2165×1012.5577×1012.3601×1015.3388×101
    Rank37105412896
    F29Mean4.5991×1026.6978×1028.5036×1025.4385×1026.7006×1025.1851×1025.5826×1025.4778×1021.0120×1037.8922×102
    Std4.4075×1011.7459×1021.8235×1025.4241×1011.4475×1023.4859×1011.0040×1028.1960×1012.1872×1021.3560×102
    Rank16937254108
    F30Mean2.9823×1036.0618×1034.0643×1063.6855×1031.8733×1045.9405×1035.0147×1034.9671×1031.5965×1045.9572×103
    Std6.1135×1024.7022×1033.1688×1063.3042×1023.4470×1042.3158×1031.9712×1032.0934×1038.7877×1033.9139×103
    Rank17102954386
    Count15007161000
    Ave rank1.735.279.103.176.674.374.534.639.036.50
    Total rank16102834597
    下载: 导出CSV 
    | 显示表格

    在均值和方差上, 与MEGWO相比, HCOAG优于23次. 与同为混合算法的HFPSO和DEBBO相比, HCOAG分别优于29次和23次. 与SaDE和SE04相比, HCOAG分别优于28次和29次. 与FWA和TLBO相比, HCOAG分别优于30次和29次. 在总排名上, HCOAG排名第一, 接下来依次为MEGWO、DEBBO、SaDE、SE04、COA、TLBO、HFPSO、FWA、GWO. 因此, HCOAG的性能优于9个先进对比算法的性能.

    为了验证HCOAG的收敛性能, 给出HCOAG与COA、MEGWO、DEBBO、TLBO和HFPSO在CEC2017测试集中30维函数的收敛图. 受篇幅所限, 本文仅选取有代表性的函数作为示例进行对比分析. 在F1 ~ F3中选取1个单峰函数, 即F1, 在F4 ~ F10中选取F5, F7, F8这3个多峰函数, 在F11 ~ F20中选取F11, F12, F16, F17这4个混合函数, 在F21 ~ F30中选取F21, F23, F24, F29这4个复合函数, 其收敛图见图6.

    图 6  HCOAG、COA、MEGWO、DEBBO、TLBO和HFPSO的收敛图
    Fig. 6  Convergence curves of HCOAG, COA, MEGWO, DEBBO, TLBO, and HFPSO

    图6中可以看出, 在3个函数F1, F5和F8上, 随着函数评价次数的增加, 在收敛速度上, HCOAG较对比算法要快得多, 优势明显. 在其余9个函数上, 虽然HCOAG的收敛速度优势不是很明显, 但在收敛性能上也优于其他对比算法. 总之, 无论在单峰函数和多峰函数上, 还是在混合函数和复合函数上, HCOAG的收敛速度都比其他对比算法的收敛速度快, 表明HCOAG具有更优秀的收敛性能. 这些都说明, 本文提出的高斯全局趋优成长算子、动态调整组内郊狼数方案以及简化操作的GWO搜索算子等的采用都为收敛速度的提升做出了贡献, 这些策略的融合使用是有效可行的.

    为了考察HCOAG的运行时间, 直接采用第4.4节的实验. 因为HCOAG是COA和GWO的混合算法, 故仅记录HCOAG、COA和GWO在30维CEC2017函数上的耗时, 它们在独立运行30次获得不同函数类型的平均耗时结果见图7. 横坐标为不同的函数类型, 纵坐标为平均时间(s).

    图 7  HCOAG与COA、GWO在不同类别函数上的平均时间对比图
    Fig. 7  Comparison bars of average time of HCOAG, COA, and GWO on different kinds of functions

    图7可以看出, 在单峰函数上, HCOAG耗时(2.4443 s)是COA耗时(2.9988 s)的81.51%, GWO耗时(2.4222 s)是HCOAG耗时(2.4443 s)的99.10%; 在多峰函数上, HCOAG耗时(2.9211 s)分别是COA(3.5503 s)和GWO(2.9233 s)耗时的84.25%和99.92%; 在混合函数上, HCOAG耗时(3.6246 s)是COA耗时(4.2034 s)的86.23%, GWO耗时(3.4981 s)是HCOAG耗时(3.6246 s)的96.51%; 在复合函数上, HCOAG耗时(6.1480 s)是COA耗时(7.0897 s)的86.72%, GWO耗时(6.0822 s)是HCOAG耗时(6.1480 s)的98.93%. 故无论是单峰函数和多峰函数, 还是混合函数和复合函数, HCOAG的耗时都与GWO耗时大致持平. 其主要原因是: 1) HCOAG与GWO都采用并行计算模式, 但GWO结构简单, 而其产生新解的计算复杂度(见式(12))较高; 2) HCOAG虽然采用精简GWO, 但需要分组并在组内寻优, 结构复杂, 故二者耗时大致持平(HCOAG耗时稍多于GWO的耗时). 在耗时上, HCOAG较COA少, 主要原因是: 1)在成长过程的目标函数评价上, 后者采用串行计算, 前者采用并行计算减少了运行时间; 2)虽然在成长过程中嵌入了GWO搜索, 但采用精简的GWO搜索方式并未增加多少计算成本; 3)前者没有郊狼被驱离和接纳操作, 节省了运行时间; 4)动态调整方案减少了生与死操作次数.

    综合第4.3 ~ 4.6节, HCOAG在较短的时间内能获得最好的优化性能, 说明了其优化效率高.

    为了能够更充分地评价HCOAG的性能, 本节对其进行上下界分析, 即在一个优化问题上, 独立运行一定次数后考察其最坏结果和最优结果.

    因为本文将HCOAG应用于CEC2017复杂函数集上, 此函数集有30个不同的优化问题, 其全局最优解对应的最优值不同, 故其获得的上下界也不同. 限于篇幅, 在CEC2017四类函数上分别选取了同样的一个函数(F1, F5, F11, F29)进行上下界讨论, 即在51次的运行结果中选择最好值和最差值分别作为本文提出算法在该函数上的上下界, 并与对比算法中结果最好的算法(在F1和F5上选用COA; 在F11和F29上选用DEBBO)获得的上下界进行对比.

    为了直观和方便对比, 对3个算法获得的结果进行了统一的处理: 即将每个算法每次独立运行结果减去理想的最优函数值作为最终结果, 让每个函数的理想最优值为0. 在4个函数上的上下界结果见表5.

    表 5  在30维CEC2017复杂函数上的上下界结果对比
    Table 5  Comparison of upper and lower bounds on the 30-dimensional complex functions from CEC2017
    函数HCOAGCOA/DEBBO
    下界上界下界上界
    F13.8942×10-97.8898×10-33.5001×1005.0055×103
    F51.2935×1014.1788×1012.6865×1019.2083×101
    F114.0954×1007.5899×1011.3819×1018.8108×101
    F293.7200×1026.0977×1024.4500×1026.2345×102
    下载: 导出CSV 
    | 显示表格

    表5可以看出, 在4个函数上, 无论上界还是下界, HCOAG都比对比算法小, 说明本文提出的算法比对比算法好, 也证明了本文提出算法的有效性.

    依据文献[23]的随机泛函分析方法原理, 本节对HCOAG的收敛性进行分析. 从算法3的描述和HCOAG流程图(图4)可以看出, HCOAG由3个算子完成新解的产生, 即高斯全局趋优成长算子、简化GWO搜索算子以及生与死算子. 高斯全局趋优成长算子类似DE (Differential evolution)中的DE/rand-to-best/1/bin变异算子; 简化GWO搜索算子类似DE中的DE/best/1/bin变异算子; 生与死算子相当于遗传算法中的变异算子. 3个算子产生的新解都采用贪心算法严格基于优胜劣汰策略, 通过淘汰新解与原解中较差者产生更优的新一代个体. 故对于最小优化问题, HCOAG评价函数序列为单调非递增序列. 为了证明HCOAG的渐近收敛性, 首先做如下定义.

    定义1. 设${\boldsymbol{Q}}(t) $表示${\boldsymbol{X}}(t) $的中间群体, ${\boldsymbol{V}}_{c,j}(t+ 1) \in {\boldsymbol{Q}}(t+1) $, 则HCOAG搜索算子定义如下:

    高斯全局趋优成长与简化GWO搜索混合算子定义为

    $$\begin{split} & {{\boldsymbol{V}}_{c,j}}\left( {t + 1} \right) = \\ & \left\{ {\begin{aligned} &\dfrac{ {{\boldsymbol{N}}{{\boldsymbol{X}}_{1,j}} + {\boldsymbol{N}}{{\boldsymbol{X}}_{2,j}} + {\boldsymbol{N}}{{\boldsymbol{X}}_{3,j}}} }{3},&rand < CR\\ &{{\boldsymbol{X}}_{c,j}} + r{n_1} \times {{\boldsymbol{\delta }}_{3,j}} + r{n_2} \times {{\boldsymbol{\delta }}_{{{2}},j}},&rand \ge CR \end{aligned}} \right.\end{split} $$ (31)

    生与死算子定义为

    $${{\boldsymbol{V}}_j}(t + 1) = \left\{ {\begin{split} &{{{\boldsymbol{X}}_{c{r_1},j}},}\quad{{r_j} < {P_s}\;or\;j = {j_1}}\\ &{{{\boldsymbol{X}}_{c{r_2},j}},}\quad{{r_j} \ge {P_s} + {P_a}\;{或}\;j = {j_2}}\\ &{{R_j},}\quad\quad\;\;{其他} \end{split}} \right.$$ (32)

    假设$f({\boldsymbol{X}}) $为最小优化函数, 解空间${\boldsymbol{S}}={\boldsymbol{X}}|{\boldsymbol{X}}= \{x_1, x_2, \cdots, x_D\}$$L_j \le x_j \le U_j $, $j=1, 2, \cdots, D $}为D维欧氏空间${\bf{R}}^D $的有界子空间. 为了在进行数值计算时不受计算精度的限制, 设定HCOAG的计算精度保留到小数点后第k位数字.

    定义2. 两种算子的混合策略是一种按照概率$CR/D $和($1-CR/D $)对群体中个体向量的每一维分量分别采用简化GWO搜索算子和高斯全局趋优成长算子以及在每一组中最差郊狼上采用生与死算子进行重组变换的过程, 它是解空间上的一种随机映射${\boldsymbol{\psi}} : {{\varOmega}} \times {\boldsymbol{S}}→{\boldsymbol{S}}^2$, 可定义为

    $$\begin{split} & \mu \left\{ {\omega \left| {{\boldsymbol{\psi}} \left( {\omega ,{\boldsymbol{X}}} \right) = \left\langle {{\boldsymbol{X}},{\boldsymbol{V}}} \right\rangle } \right.} \right\} = \\ & \quad\quad\quad \mu \left\{ {{\boldsymbol{V}} = F\left( {{\boldsymbol{X}},{{\boldsymbol{X}}_c},{{\boldsymbol{X}}_j},{{\boldsymbol{X}}_k},{{\boldsymbol{X}}_{\rm mod}}} \right)} \right\} \\ \end{split} $$ (33)

    其中, $(\varOmega$, $M $, $\mu ) $是完全概率测度空间, $\varOmega$是非空抽象集合, 其元素$\omega $为基本事件, $M $$\varOmega$的某些子集所构成的$\sigma $代数, $\mu $M上的概率测度. $X_{\rm mod} $表示郊狼为${\boldsymbol{GP}} $, ${\boldsymbol{alpha}} $${\boldsymbol{cult}} $, $F({\boldsymbol{X}}, {\boldsymbol{X}}_c, {\boldsymbol{X}}_j, {\boldsymbol{X}}_k, {\boldsymbol{X}}_{\rm mod})$由式(31)和式(32)确定.

    由于HCOAG与DE一样采用贪心算法更新种群, 因此在每次迭代过程中相当于3种算子所对应的随机映射$ {\boldsymbol{\psi}} $和贪心选择所对应的映射逆序$ {\boldsymbol{\psi}} _2 $合成的映射$ {\boldsymbol{\psi}} ' $作用于当前群体, 即${\boldsymbol{X}}(t+1)= {\boldsymbol{\psi}} '(\omega , {\boldsymbol{X}}(t))= {\boldsymbol{\psi}} _2( {\boldsymbol{\psi}} (\omega , {\boldsymbol{X}}(t)))$. 这样在映射${\boldsymbol{\psi}}' $的作用下, HCOAG每次迭代种群产生的${\boldsymbol{GP}} $的适应度值构成的序列$\{f (X_{GP}(t))\}_{1 \,\le \,t \,\le\, MaxDT}$是一个单调非递增序列. 同样, ${\boldsymbol{\psi}}' $可重新定义为 ${\boldsymbol{B}}_{t+1}= {\boldsymbol{\psi}}' (\omega , {\boldsymbol{B}}_t)={\boldsymbol{\psi}}_2({\boldsymbol{\psi}}(\omega, {\boldsymbol{B}}_t)), {\boldsymbol{B}}_{t+1}$${\boldsymbol{B}}_t $分别为${\boldsymbol{X}}(t+1) $${\boldsymbol{X}}(t) $的最优个体. 因此类似于文献[23]中的定理1, 可得到如下定理.

    定理1. HCOAG的一次迭代所形成的随机映射${\boldsymbol{\psi}}' $是一个随机压缩算子.

    再依据文献[23]引理2, 即可得到HCOAG渐进收敛的结论, 即定理2.

    定理2. 设${\boldsymbol{\psi}}' $为HCOAG形成的随机压缩算子, 则${\boldsymbol{\psi}}' $具有唯一的随机不动点, 即HCOAG是渐进收敛的.

    Wilcoxon符号秩检验方法[24]是一种非参数统计性检验方法, 目的在于检验两个样本均值之间的显著差异. 其中$p $值由$R^+ $R计算可得, $R^+ $表示正秩总和, $R^-$表示负秩总和, 具体见式(34)和式(35), $d_i $为两种算法在$n $个问题中第$i $个问题上的性能分数的差值. 当HCOAG算法与对比算法性能相同时, 对应的秩平分给$R^+ $$R^- $. 为检验HCOAG与表4中对比算法的显著性差异, 在软件IBM SPSS Statistics 24上实现Wilcoxon检验, 结果如表6所示. 表6中, n/w/t/l表示在n个函数上HCOAG分别优于对比算法w次, 与对比算法相等t次, 劣于对比算法l次.

    表 6  Wilcoxon符号秩检验结果
    Table 6  Wilcoxon sign rank test results
    $p $$a=0.05 $$R^+ $$R^- $$n/w/t/l $
    HCOAG vs COA1.3039×10−7YES4531230/27/0/3
    HCOAG vs GWO1.8626×10−9YES465030/30/0/0
    HCOAG vs MEGWO2.7741×10−2YES33912630/23/0/7
    HCOAG vs HFPSO5.5879×10−9YES463230/29/0/1
    HCOAG vs DEBBO9.0000×10−6YES4293630/23/0/7
    HCOAG vs SaDE3.5390×10−8YES458730/28/0/2
    HCOAG vs SE041.3039×10−8YES461430/29/0/1
    HCOAG vs FWA1.8626×10−9YES465030/30/0/0
    HCOAG vs TLBO3.7253×10−9YES464130/29/0/1
    下载: 导出CSV 
    | 显示表格
    $${R^ + } = \sum\limits_{{d_i} > 0} {{\rm{rank}}\left( {{d_i}} \right)} + \frac{1}{2}\sum\limits_{{d_i} = 0} {{\rm{rank}}\left( {{d_i}} \right)} $$ (34)
    $${R^ - } = \sum\limits_{{d_i} < 0} {{\rm{rank}}\left( {{d_i}} \right)} + \frac{1}{2}\sum\limits_{{d_i} = 0} {{\rm{rank}}\left( {{d_i}} \right)} $$ (35)

    表6可以看出, 与COA和GWO相比, p值分别为1.3039×10−7和1.8626×10−9, 均小于0.05, 表明HCOAG显著优于COA和GWO, 再一次说明COA和GWO二者的改进与混合是有效的. HCOAG与MEGWO、HFPSO、DEBBO、SaDE、SE04、FWA和TLBO相比的p值均小于0.05, 表明HCOAG也显著优于这些对比算法.

    Friedman检验是一种非参数双向方差分析方法[24], 目的在于检测两个或多个观测数据之间的显著性差异. 具体实现过程分为3步: 1)收集每个算法或者问题的观测结果; 2)对于每个问题$i $的从1 (最好结果)到$k $(最差结果)的排名值, 定义为$ r_i^j $ (1 ≤ jk); 3)在所有问题中求出每个算法的平均排名, 得到最后排名${R_j} = \dfrac{1}{n}\mathop \sum \nolimits_{i = 1}^n r_i^j$. 在零假设下所有算法的行为相似(它们的秩$R_j $相等), Friedman统计值$F_f $的计算方式如式(36), 当$n $$k $足够大时(根据经验n > 10, k > 5), 它是按照$k-1 $自由度的$x^2 $分布的. 为了再次验证HCOAG的显著性, 依据表4对HCOAG和对比算法在软件IBM SPSS Statistics 24上实现Friedman检验, 其结果如表7所示.

    表 7  Friedman检验结果
    Table 7  Friedman test results
    DpHCOAGCOAGWOMEGWOHFPSODEBBOSaDESE04FWATLBO
    306.3128×10-311.735.279.103.176.674.374.534.639.036.50
    下载: 导出CSV 
    | 显示表格
    $${F_f} = \frac{{12n}}{{k\left( {k + 1} \right)}}\left[ {\sum\nolimits_j {R_j^2} -\frac{ k{\left( {k + 1} \right)}^2}{{4}}} \right]$$ (36)

    表7可以看出, 在30维复杂函数上, 通过Friedman检验获得的渐进显著性p值为6.3128×10−31, 由于得到的渐进显著性小于0.01, 所以在30维上HCOAG与对比算法之间存在显著性的差异. HCOAG算法的秩均值(1.73)最小, 随后依次是MEGWO、DEBBO、SaDE、SE04、COA、TLBO、HFPSO、FWA和GWO, 表明HCOAG的优化性能最好. 结合Wilcoxon符号秩检验和Friedman检验结果可以得出, HCOAG总体上明显优于先进的对比算法.

    聚类在数据挖掘领域发挥着十分重要的作用, 通过对聚类的数据分析可以得到数据的具体分布情况以及掌握数据类型的特点[25]. 其中, 最常用的聚类方法是K-Means方法[26], 其在n个样本数据中的具体实现过程如下: 首先随机产生K个初始聚类中心, 然后计算每个样本与各聚类中心的距离, 接着将样本与距离最近的聚类中心划分到一个组内, 形成K个组, 最后重新计算每个组内所有样本的均值作为新聚类中心并进行下一次划分, 如此迭代执行划分过程直到满足终止条件为止. K-Means方法具有原理简单、可伸缩性好以及效率高等优势, 但存在对初始点敏感和易陷于局部最优等问题. 目前已有研究将SIOA运用到K-Means聚类中, 很好地解决了K-Means算法存在的一些问题[25, 27]. 本节采用HCOAG优化K-Means聚类以解决其对初始点敏感等问题, 其中, 目标函数的定义为

    $$E = \sum_{k = 1}^K {\sum_{{x_i} \in {C_k}} {{{\left\| {{{\boldsymbol{x}}_i} - {{\boldsymbol{c}}_k}} \right\|}^2}} } $$ (37)

    其中, $E $是数据集中所有数据点到所属聚类的聚类中心的距离和, $K $是聚类中心个数, ${\boldsymbol{c}}_k $是第$k $个聚类中心位置, $C_k $是第$k $个聚类簇, ${\boldsymbol{x}}_i $是聚类族$C_k $中第$i $个数据点. 将HCOAG应用到K-Means上, 首先假设每头郊狼由$k $个聚类中心组成, 则解向量的维数应等于$k $× 数据样本的特征数, 目标函数采用式(37); 接着执行HCOAG, 直到满足算法的终止条件, 输出最优聚类中心.

    实验采用UCI数据库(http://archive.ics.uci.edu/ml/datasets.php)中7个标准数据集(见表8第1列)来验证HCOAG在K-Means聚类优化上的有效性, 数据集名称后的括号内的数字为样本数、属性数和聚类数. 选取的5个对比算法包括: COA、MEGWO、HFPSO、擅长聚类优化的改进的粒子群优化算法(Improved PSO, IPSO)和改进的遗传算法(Improved genetic algorithm, IGA). 其中, IPSO和IGA来自“http://yarpizcom/64/ypml101-evolutionary-clustering”. 所有算法的公共参数设置相同: $N=50 $, $MaxDT=200 $, $Num=30 $. 表8是6种算法独立运行30次获得的均值、方差和排名结果.

    表 8  6种算法在K-Means聚类优化上的结果对比
    Table 8  Comparison results of the 6 algorithms on K-Means clustering optimization
    数据集HCOAGCOAMEGWOHFPSOIPSOIGA
    Wine (178, 13, 3)Mean88.6271116.730791.591693.62289.861789.564
    Std3.4479×10−22.9398×1002.5237×1006.7353×1003.9148×1002.0321×100
    Rank164532
    Heart (270, 13, 2)Mean283.7680295.3786284.5731284.7653285.0072284.4112
    Std3.9989×10−32.3404×1002.3896×10−12.3804×1005.2425×1002.1715×100
    Rank163452
    Iris (150, 4, 3)Mean29.205331.051129.265929.357829.357829.2607
    Std8.8033×10−25.7768×10−11.3448×10−11.0048×1001.0048×1009.2414×10−2
    Rank163442
    Glass (214, 9, 6)Mean55.025575.462168.881662.711457.310260.8651
    Std2.2242×1002.1402×1002.8975×1003.7975×1003.5444×1003.5855×100
    Rank165423
    Newthyroid (215, 5, 3)Mean40.053842.003340.473641.808740.821341.9155
    Std9.8154×10−37.6493×10−14.0104×10−12.8501×1002.0086×1002.8122×100
    Rank162435
    Liver disorders (345, 6, 2)Mean90.344393.534490.384991.024690.336590.3698
    Std3.8530×10−41.0160×1002.8148×10−22.6310×1002.1424×10−22.0447×10−2
    Rank264513
    Balance (625, 4, 3)Mean356.1247357.6041356.502356.0165356.0802356.4092
    Std2.3618×10−14.0943×10−13.3785×10−11.5930×10−12.0303×10−11.4966×10−1
    Rank365124
    Count500110
    Ave rank1.436.003.713.862.863.00
    Total rank164523
    下载: 导出CSV 
    | 显示表格

    表8可知, HCOAG在7个数据集上的均值和方差得到排名第一5次, 其次是HFPSO和IPSO均为1次, COA、MEGWO和IGA均获得0次第一. HCOAG的平均排名为1.43, 其他算法的平均排名顺序依次为: IPSO、IGA、MEGWO、HFPSO和COA. 以上结果都表明HCOAG在K-Means聚类上的优化性能最好. 总之, HCOAG在K-Means聚类优化中获得竞争性的优化性能, 能够更好地处理聚类优化问题.

    针对COA存在的不足, 本文提出了一种COA与GWO的混合算法(HCOAG). 首先, 改进COA (ICOA). 1)在成长过程中, 提出一种高斯全局趋优成长算子, 提高了搜索能力; 2)提出一种动态调整组数方案, 搜索前期采用较少组数, 减弱全局最优解的正反馈作用, 强化探索能力, 后期采用较多组数, 增强全局最优解的正反馈作用, 强化开采能力, 并提高可操作性. 然后, 对GWO进行改进, 提出了一种精简的GWO (SGWO), 在发挥其局部搜索能力强的优势同时, 提高了可操作性. 最后, 采用正弦交叉策略将ICOA与SGWO有机融合, 很好地平衡了组内郊狼的探索与开采能力, 从而获得了最佳优化性能. 大量经典函数与CEC2017复杂函数优化的实验结果表明, 在经典函数上, COA不及GWO; 在复杂函数上, GWO不及COA; 而HCOAG在两类优化问题上都有更好的性能, 说明二者混合有必要和有效; 与其他先进的对比算法相比, HCOAG具有更好的优化性能. K-Means聚类优化结果表明, 与对比算法相比, HCOAG获得了竞争性的优化性能.

    总之, 与COA相比, HCOAG具有如下优势: 1)普适性强, 经典函数和复杂函数优化以及聚类优化3组实验结果表明, HCOAG都有更好的表现; 2)耗时少, 因此有更好的搜索效率; 3)更好的收敛质量; 4)更强的稳定性和鲁棒性, 5)可操作性更强.

    COA是最近提出的一种SIOA, 尚有许多地方需要探讨和完善, 本文仅是一种混合改进研究的尝试. 未来将进一步改进COA, 对其进行深入的理论研究, 并拓展其应用领域.

  • 图  1  GWO的流程图

    Fig.  1  Flow chart of GWO

    图  2  组数$N_p $与组内郊狼数$N_c $的分配图

    Fig.  2  Disposition graph of two parameters $N_c $ and $N_p $

    图  3  GWO与SGWO的等级情况对比

    Fig.  3  Comparison of hierarchies of GWO and SGWO

    图  4  HCOAG流程图

    Fig.  4  Flow chart of HCOAG

    图  5  HCOAG与对比算法在4个经典函数上的收敛图

    Fig.  5  Convergence curves of HCOAG and the comparison algorithms on the 4 classical benchmark functions

    图  6  HCOAG、COA、MEGWO、DEBBO、TLBO和HFPSO的收敛图

    Fig.  6  Convergence curves of HCOAG, COA, MEGWO, DEBBO, TLBO, and HFPSO

    图  7  HCOAG与COA、GWO在不同类别函数上的平均时间对比图

    Fig.  7  Comparison bars of average time of HCOAG, COA, and GWO on different kinds of functions

    表  1  HCOAG与其不完全算法的结果对比

    Table  1  Comparison results of HCOAG and its incomplete algorithms

    函数 标准HCOAGCOAGWOHCOAG5HCOAG10ICOASGWO
    F1Mean7.4494×10−41.2099×1031.2813×1094.1072×10−41.9800×10−31.0737×1023.3279×103
    Std1.4801×10−31.2998×1039.6388×1088.5916×10−42.9438×10−31.0569×1024.3271×103
    Rank2571346
    F2Mean1.1941×1012.9013×10213.1831×10324.8580×1031.8078×1018.6764×10153.3582×1014
    Std2.4077×1011.1462×10221.5894×10333.3985×1045.0208×1013.5675×10161.3200×1015
    Rank1673254
    F3Mean9.5410×10−16.0573×1042.8342×1047.6972×10−11.0995×1003.3032×1048.7276×102
    Std1.9288×1001.0177×1049.2323×1039.8032×10−11.6794×1006.8409×1037.2376×102
    Rank2751364
    F4Mean1.8113×1018.4041×1012.0825×1022.0841×1012.8446×1014.8248×1011.0495×102
    Std2.7696×1018.5306×1008.4445×1013.0540×1013.1826×1013.3517×1012.4806×101
    Rank1572346
    F5Mean2.8433×1015.2890×1019.6116×1013.5884×1013.0204×1013.4844×1013.1488×101
    Std6.8886×1001.5025×1013.2690×1011.0115×1018.8983×1001.0983×1019.2242×100
    Rank1675243
    F6Mean1.7483×10−71.6399×10−56.3664×1009.4452×10−71.5005×10−62.8782×10−42.0381×10−2
    Std4.7524×10−79.6428×10−63.1596×1002.4080×10−65.9643×10−61.6254×10−42.7102×10−2
    Rank1472356
    F7Mean6.1055×1017.5148×1011.4460×1026.7082×1015.9300×1016.7675×1016.4025×101
    Std1.0851×1011.3762×1014.6314×1011.1241×1019.4998×1001.1520×1011.1856×101
    Rank2674153
    F8Mean3.2489×1015.6110×1018.4662×1013.6085×1012.9446×1013.6138×1013.1775×101
    Std1.2272×1011.8774×1012.5270×1018.8063×1007.9048×1001.0081×1017.8884×100
    Rank3674152
    F9Mean2.7362×10−15.6225×10−15.5392×1025.2270×10−12.5931×10−18.8559×10−27.4159×100
    Std4.8298×10−11.0209×1003.2695×1028.7374×10−14.6957×10−11.5656×10−16.7112×100
    Rank3574216
    F10Mean2.2671×1032.7575×1033.1862×1032.5574×1032.3435×1032.1380×1032.1424×103
    Std6.1427×1024.6685×1029.7886×1025.3524×1026.0670×1025.6098×1024.0691×102
    Rank3675412
    F11Mean2.1678×1014.1143×1014.9771×1022.9822×1012.6698×1012.2685×1011.0908×102
    Std2.0907×1012.7367×1016.4235×1022.6128×1012.4059×1012.0893×1013.8218×101
    Rank1574326
    F12Mean9.8943×1031.2532×1054.0285×1071.2577×1041.0657×1041.3660×1052.0716×105
    Std6.0932×1031.2555×1057.3849×1076.4424×1036.4606×1039.3092×1041.9967×105
    Rank1473256
    F13Mean1.9749×1032.0357×1042.8073×1063.0265×1033.1829×1033.6293×1021.3271×104
    Std3.8565×1032.6333×1041.6225×1076.2901×1038.0719×1038.9975×1011.5283×104
    Rank2673415
    F14Mean8.6436×1018.0070×1011.3112×1057.7150×1011.0134×1025.6726×1011.4132×104
    Std4.3766×1011.9915×1012.3335×1056.0071×1019.2585×1011.4850×1011.7944×104
    Rank4372516
    F15Mean1.8396×1032.0792×1033.3658×1057.1579×1021.7386×1036.9111×1016.6116×103
    Std2.9044×1037.9984×1037.9125×1051.2272×1032.9477×1031.9083×1018.3961×103
    Rank4572316
    F16Mean3.0243×1027.9869×1028.1416×1023.3715×1023.0883×1024.6416×1025.0252×102
    Std2.0550×1022.8651×1022.6440×1022.1415×1021.8878×1022.6962×1022.4545×102
    Rank1673245
    F17Mean4.7111×1012.2439×1022.7004×1026.4809×1015.3120×1013.7365×1011.3984×102
    Std4.0925×1011.3518×1021.3820×1025.3991×1014.7801×1014.0654×1018.0664×101
    Rank2674315
    F18Mean6.1013×1046.9910×1047.1643×1055.1875×1045.0376×1043.9930×1041.8454×105
    Std5.7031×1041.0210×1058.2799×1053.6270×1043.7592×1042.0034×1041.7045×105
    Rank4573216
    F19Mean3.4042×1014.4886×1034.6400×1053.4163×1013.0105×1022.4678×1015.4815×103
    Std2.0528×1011.3325×1045.4998×1053.9687×1011.1322×1037.1259×1004.9859×103
    Rank2573416
    F20Mean9.6665×1012.4290×1023.6059×1021.0084×1021.1637×1021.0389×1022.0165×102
    Std7.7834×1011.4995×1021.0264×1026.6726×1017.5890×1018.7694×1019.6673×101
    Rank1672435
    F21Mean2.3023×1022.5626×1022.8298×1022.3713×1022.3135×1022.3724×1022.3289×102
    Std8.5095×1001.6800×1012.5684×1011.0815×1019.8453×1001.1261×1019.9428×100
    Rank1674253
    F22Mean1.0010×1021.9999×1038.0434×1021.0005×1021.0005×1021.0005×1021.2974×102
    Std4.8096×10−11.5970×1031.1113×1033.4354×10−13.4444×10−13.4443×10−12.0703×102
    Rank4761325
    F23Mean3.7755×1024.1635×1024.7029×1023.8706×1023.7831×1023.8441×1023.8854×102
    Std1.0911×1011.6898×1012.9324×1011.3271×1018.1817×1001.0543×1011.3692×101
    Rank1674235
    F24Mean4.4827×1025.4044×1025.2489×1024.5484×1024.4530×1024.5862×1024.5671×102
    Std1.0757×1014.5778×1013.3902×1011.1783×1011.1461×1011.2203×1011.1956×101
    Rank2763154
    F25Mean3.8777×1023.8706×1024.7784×1023.8747×1023.8729×1023.8698×1024.0239×102
    Std5.4462×1008.0647×10−12.3819×1011.5625×1001.2735×1005.4095×10−11.5135×101
    Rank5274316
    F26Mean1.2578×1031.6520×1032.0116×1031.3249×1031.2449×1031.3138×1031.5024×103
    Std1.9807×1021.7070×1025.7618×1023.1093×1023.4947×1021.9599×1022.8691×102
    Rank2674135
    F27Mean5.1091×1025.0430×1025.9279×1025.1349×1025.1088×1025.0560×1025.3331×102
    Std7.7116×1008.2707×1003.8462×1018.6401×1008.6837×1007.3827×1001.1175×101
    Rank4175326
    F28Mean3.3558×1024.0555×1025.9941×1023.2930×1023.3793×1023.4828×1024.5710×102
    Std5.3866×1013.6156×1016.9788×1015.1585×1015.1950×1015.3564×1012.3392×101
    Rank2571346
    F29Mean4.5991×1026.6978×1028.5036×1024.8821×1024.6287×1024.5683×1026.2453×102
    Std4.4075×1011.7459×1021.8235×1025.5772×1014.3839×1014.4800×1011.1861×102
    Rank2674315
    F30Mean2.9823×1036.0618×1034.0643×1063.1036×1032.9323×1031.9586×1046.1880×103
    Std6.1135×1024.7022×1033.1688×1068.4665×1025.9332×1027.3086×1032.8250×103
    Rank2473165
    Count101045100
    Ave rank2.205.236.873.102.603.074.93
    Total rank1674235
    下载: 导出CSV

    表  2  在6个经典函数上的实验结果对比

    Table  2  Comparison results on the 6 classic functions

    函数 标准D = 10
    HCOAGCOAGWOHFPSODEBBO
    f1Mean6.0684×10−91.7833×1029.0799×10−153.4157×10−56.7086×10−2
    Std4.8458×10−96.3524×1012.4849×10−142.4485×10−53.1056×10−2
    Rank25134
    f2Mean8.4133×10−62.3737×1001.3222×10−91.3703×10−32.8483×10−2
    Std3.7531×10−64.0964×10−11.1382×10−96.5582×10−47.0993×10−3
    Rank25134
    f3Mean01.6180×1021.0000×10−100
    Std05.0787×1013.0513×10−100
    Rank15411
    f4Mean1.2498×10−104.0253×1001.5325×10−63.5760×10−71.8575×10−3
    Std2.0501×10−101.6104×1009.4192×10−74.1539×10−71.0158×10−3
    Rank15324
    f5Mean2.0046×10−87.1619×1022.4093×10−54.6770×10−62.6132×10−2
    Std5.9686×10−81.5819×1031.4121×10−55.6661×10−61.0613×10−2
    Rank15324
    f6Mean4.1921×10−101.7228×1001.2593×10−24.9377×10−73.5149×10−3
    Std4.3501×10−105.1829×10−16.8779×10−24.8665×10−71.5826×10−3
    Rank15423
    D = 30
    f1Mean1.3966×10−173.2554×1015.4432×10−417.2595×10−92.7076×10−4
    Std3.2255×10−175.9567×1007.1605×10−417.3446×10−91.1010×10−4
    Rank25134
    f2Mean2.8862×10−101.3998×1006.0158×10−245.3463×10−51.3264×10−3
    Std4.6435×10−101.9835×10−16.2049×10−243.9178×10−52.3103×10−4
    Rank25134
    f3Mean03.3700×1013.3333×10−200
    Std07.9877×1001.8257×10−100
    Rank15411
    f4Mean1.0451×10−173.8002×1001.5129×10−21.7278×10−26.4886×10−5
    Std3.0738×10−171.3163×1001.0471×10−23.9296×10−22.7878×10−5
    Rank15342
    f5Mean5.3309×10−171.8376×1011.6587×10−13.2962×10−35.0150×10−4
    Std1.5184×10−165.8919×1001.1940×10−15.1211×10−32.1237×10−4
    Rank15432
    f6Mean1.2484×10−181.8049×1007.9738×10−18.2480×10−38.5930×10−5
    Std1.7135×10−184.9152×10−17.4565×10−14.5176×10−23.9292×10−5
    Rank15432
    Count80422
    Ave rank1.335.002.752.502.92
    Total rank15324
    下载: 导出CSV

    表  3  6个经典函数的情况

    Table  3  Details of 6 classical benchmark functions

    类型函数名称函数表达式搜索范围最小值
    单峰函数Sphere${f_1}(x) = \displaystyle\sum_{i = 1}^D {x_i^2}$ [−100, 100]0
    Schwefel 2.22${f_2}(x) = \displaystyle\sum_{i = 1}^D {\left| { {x_i} } \right|} + \prod_{i = 1}^D {\left| { {x_i} } \right|}$ [−10, 10]0
    Step${f_3}(x) = \displaystyle\sum_{i = 1}^D { { {\left( {\left\lfloor { {x_i} + 0.5} \right\rfloor } \right)}^2} }$ [−100, 100]0
    多峰函数Penalized 1${f_4}(x) = \dfrac{\pi}{D}\bigg\{ {10{ {\sin }^2}\left( {\pi {y_i} } \right)} +$
        $\displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {y_i} - 1} \right)}^2}\left[ {1 + 10{ {\sin }^2}\left( {\pi {y_{i + 1} } } \right)} \right]} { + { {\left( { {y_D} - 1} \right)}^2} } \bigg\} +$
        $\displaystyle\sum_{i = 1}^D {u\left( { {x_i},10,100,4} \right)}$
        ${y_i} = 1 + \dfrac{1}{4}\left( { {x_i} + 1} \right)$
        $u\left( { {x_i},a,k,m} \right) = $$\left\{ \begin{aligned}&k{\left( { {x_i} - a} \right)^m},\quad\;\; {x_i} > a\\&0, \quad \quad \quad \quad \quad\quad\;\; - a \le {x_i} \le a\\&k{\left( { - {x_i} - a} \right)^m},\quad {x_i} < - a \end{aligned} \right.$
    [−50, 50]0
    Penalized 2${f_5}(x) = 0.1\bigg\{ { { {\sin }^2} } \left( {\pi {x_1} } \right) + \displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {x_i} - 1} \right)}^2} } \left[ {1 + { {\sin }^2}\left( {3\pi {x_{i + 1} } } \right)} \right] +$
        $\left( { {x_D} - 1} \right) {\Big[ {1 + { {\sin }^2}\left( {2\pi {x_D} } \right)} \Big]} \bigg\} + \displaystyle\sum_{i = 1}^D {u\left( { {x_i},5,100,4} \right)}$
    [−50, 50]0
    Levy${f_6}(x) = \displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {x_i} - 1} \right)}^2} } \left[ {1 + { {\sin }^2}\left( {3\pi {x_{i + 1} } } \right)} \right] +$
        ${\sin ^2}\left( {3\pi {x_1} } \right) + \left| { {x_D} - 1} \right|\Big[ {1 + { {\sin }^2}\left( {3\pi {x_D} } \right)} \Big]$
    [−10, 10]0
    下载: 导出CSV

    表  4  在30维CEC2017复杂函数上的优化结果对比

    Table  4  Comparison results on the 30-dimensional complex functions from CEC2017

    函数 标准HCOAGCOAGWOMEGWOHFPSODEBBOSaDESE04FWATLBO
    F1Mean7.4494×10−41.2099×1031.2813×1094.5517×1033.9338×1032.7849×1033.0714×1033.2930×1034.3987×1062.9846×103
    Std1.4801×10−31.2998×1039.6388×1081.0677×1035.3689×1034.0364×1033.5072×1034.2328×1031.4055×1063.1471×103
    Rank12108735694
    F2Mean1.1941×1012.9013×10213.1831×10322.8884×1085.3485×1041.5057×10178.6275×10−13.0802×10134.1397×10151.0448×1016
    Std2.4077×1011.1462×10221.5894×10338.0571×1083.2847×1053.5179×10174.9357×1001.1694×10141.5680×10164.7082×1016
    Rank29104381567
    F3Mean9.5410×10−16.0573×1042.8342×1042.2633×1021.5595×10−73.6772×1043.0045×1029.7974×1032.4748×1044.0488×10−4
    Std1.9288×1001.0177×1049.2323×1031.7031×1022.3334×10−75.8394×1037.3017×1023.4377×1036.3467×1031.6647×10−3
    Rank31084195672
    F4Mean1.8113×1018.4041×1012.0825×1022.4815×1016.9386×1018.4851×1016.0423×1018.5881×1011.1370×1025.9054×101
    Std2.7696×1018.5306×1008.4445×1012.8995×1012.1364×1012.2848×10−12.9825×1011.1251×1011.7315×1013.0429×101
    Rank16102574893
    F5Mean2.8433×1015.2890×1019.6116×1015.6912×1018.5624×1015.8216×1015.6192×1014.1688×1011.8456×1028.5717×101
    Std6.8886×1001.5025×1013.2690×1011.0725×1011.7427×1016.5957×1001.4216×1018.1545×1003.3933×1011.8601×101
    Rank13957642108
    F6Mean1.7483×10−71.6399×10−56.3664×1002.4470×10−11.0170×1001.1369×10−138.9317×10−27.5481×10−65.1770×1007.2903×100
    Std4.7524×10−79.6428×10−63.1596×1008.1620×10−22.3644×10001.3955×10−13.9880×10−53.1351×1004.4538×100
    Rank24967153810
    F7Mean6.1055×1017.5148×1011.4460×1028.9106×1011.0407×1029.9725×1019.4945×1017.2448×1012.0998×1021.3661×102
    Std1.0851×1011.3762×1014.6314×1011.0935×1011.9791×1016.4285×1001.9879×1017.3495×1004.4817×1012.4846×101
    Rank13947652108
    F8Mean3.2489×1015.6110×1018.4662×1015.9398×1017.2842×1015.9299×1015.3942×1014.4194×1011.4508×1027.1339×101
    Std1.2272×1011.8774×1012.5270×1011.0663×1011.7967×1016.0788×1001.2792×1016.5834×1002.1470×1011.4852×101
    Rank14968532107
    F9Mean2.7362×10−15.6225×10−15.5392×1027.8267×1003.2733×1014.0125×10−148.3556×1013.0839×10−13.5295×1032.4197×102
    Std4.8298×10−11.0209×1003.2695×1021.1815×1011.3249×1025.4870×10−146.2643×1018.4139×10−19.5511×1021.4491×102
    Rank24956173108
    F10Mean2.2671×1032.7575×1033.1862×1032.4369×1032.9908×1033.2911×1032.3253×1032.3267×1033.7800×1036.0667×103
    Std6.1427×1024.6685×1029.7886×1024.4542×1025.9210×1022.7284×1024.9247×1022.8457×1025.9660×1021.0625×103
    Rank15746823910
    F11Mean2.1678×1014.1143×1014.9771×1022.9612×1011.1553×1023.7430×1011.0032×1024.1343×1011.6164×1021.2672×102
    Std2.0907×1012.7367×1016.4235×1021.0347×1013.9628×1012.3672×1014.3101×1012.7994×1014.5263×1014.5717×101
    Rank14102736598
    F12Mean9.8943×1031.2532×1054.0285×1071.5983×1049.9670×1041.3866×1056.8629×1041.1143×1064.6351×1063.3042×104
    Std6.0932×1031.2555×1057.3849×1074.0434×1031.0658×1059.2097×1043.8252×1048.1422×1053.1121×1062.8646×104
    Rank16102574893
    F13Mean1.9749×1032.0357×1042.8073×1062.0450×1023.0927×1048.1265×1031.1211×1044.6063×1033.7320×1041.4857×104
    Std3.8565×1032.6333×1041.6225×1072.7028×1012.7301×1047.8066×1031.0535×1044.8590×1032.6480×1041.7072×104
    Rank27101845396
    F14Mean8.6436×1018.0070×1011.3112×1056.1985×1016.7377×1034.9240×1034.3238×1037.1204×1042.6955×1053.5454×103
    Std4.3766×1011.9915×1012.3335×1058.6647×1005.5695×1033.2902×1035.7159×1035.9323×1042.4525×1054.1276×103
    Rank32917658104
    F15Mean1.8396×1032.0792×1033.3658×1055.1634×1019.7487×1034.9944×1032.1676×1032.2013×1033.2784×1033.9091×103
    Std2.9044×1037.9984×1037.9125×1051.0713×1011.2114×1046.6468×1033.0178×1031.9756×1031.9819×1034.3347×103
    Rank23101984567
    F16Mean3.0243×1027.9869×1028.1416×1024.4823×1027.7229×1023.9643×1025.6072×1024.9392×1021.2266×1035.0039×102
    Std2.0550×1022.8651×1022.6440×1021.3443×1022.2590×1021.1932×1022.0850×1021.7309×1023.0034×1022.7575×102
    Rank18937264105
    F17Mean4.7111×1012.2439×1022.7004×1026.9544×1012.5591×1028.1642×1018.7684×1011.4116×1025.5825×1022.3994×102
    Std4.0925×1011.3518×1021.3820×1021.7296×1011.2971×1022.2037×1019.1289×1018.5026×1012.3401×1028.8703×101
    Rank16928345107
    F18Mean6.1013×1046.9910×1047.1643×1052.0505×1021.1409×1053.2225×1051.0034×1052.1361×1059.8409×1052.0609×105
    Std5.7031×1041.0210×1058.2799×1054.7536×1011.1535×1051.2197×1051.1019×1051.3261×1051.1184×1061.5131×105
    Rank23915847106
    F19Mean3.4042×1014.4886×1034.6400×1052.9977×1018.6631×1038.3686×1035.9612×1032.0723×1035.2207×1036.3203×103
    Std2.0528×1011.3325×1045.4998×1053.3897×1001.9974×1049.2795×1037.1112×1032.1685×1033.9175×1031.0793×104
    Rank24101986357
    F20Mean9.6665×1012.4290×1023.6059×1021.1363×1022.6516×1025.5205×1011.2989×1021.7303×1024.6345×1022.4392×102
    Std7.7834×1011.4995×1021.0264×1025.2411×1011.1737×1023.5413×1017.0970×1017.2015×1011.7129×1028.4432×101
    Rank26938145107
    F21Mean2.3023×1022.5626×1022.8298×1022.5458×1022.7446×1022.5950×1022.4896×1022.5047×1023.7768×1022.6988×102
    Std8.5095×1001.6800×1012.5686×1013.3247×1011.9517×1017.6690×1001.3195×1018.4442×1007.9462×1011.9589×101
    Rank15948623107
    F22Mean1.0010×1021.9999×1038.0434×1021.0022×1021.4532×1031.0000×1021.0228×1021.0211×1032.1380×1031.0232×102
    Std4.8096×10−11.5970×1031.1113×1034.3917×10−21.8286×1032.3100×10−133.2279×1001.2872×1032.2149×1034.0114×100
    Rank29638147105
    F23Mean3.7755×1024.1635×1024.7029×1023.8959×1024.8447×1024.0323×1024.1472×1024.0247×1025.8963×1024.5003×102
    Std1.0911×1011.6898×1012.9324×1016.8787×1014.4709×1015.6348×1001.8742×1018.1687×1008.8792×1013.0546×101
    Rank16829453107
    F24Mean4.4827×1025.4044×1025.2489×1024.8972×1025.6079×1024.7430×1024.8169×1024.9840×1027.9489×1025.0152×102
    Std1.0757×1014.5778×1013.3902×1011.6597×1015.7847×1016.0055×1002.0610×1011.3899×1018.6391×1012.3700×101
    Rank18749235106
    F25Mean3.8777×1023.8706×1024.7784×1023.8374×1023.8818×1023.8691×1024.0124×1023.8779×1024.1099×1024.0877×102
    Std5.4462×1008.0647×10−12.3819×1011.8246×10−13.4076×1007.5524×10−21.9489×1011.1319×1002.1657×1012.2401×101
    Rank43101627598
    F26Mean1.2578×1031.6520×1032.0116×1032.5051×1021.4922×1031.4821×1031.7344×1031.5337×1032.2418×1031.8645×103
    Std1.9807×1021.7070×1025.7618×1024.1112×1019.6940×1027.2015×1017.1347×1021.9051×1021.7373×1031.0276×103
    Rank26914375108
    F27Mean5.1091×1025.0430×1025.9279×1025.1286×1025.3523×1024.9807×1025.4289×1025.0744×1025.7919×1025.3827×102
    Std7.7116×1008.2707×1003.8462×1016.1632×1002.1095×1014.7270×1001.7086×1013.6242×1003.5317×1011.6907×101
    Rank42105618397
    F28Mean3.3558×1024.0555×1025.9941×1023.6492×1023.5331×1023.2281×1023.3257×1024.1364×1024.6256×1023.6806×102
    Std5.3866×1013.6156×1016.9788×1013.2477×1015.9179×1013.7880×1015.2165×1012.5577×1012.3601×1015.3388×101
    Rank37105412896
    F29Mean4.5991×1026.6978×1028.5036×1025.4385×1026.7006×1025.1851×1025.5826×1025.4778×1021.0120×1037.8922×102
    Std4.4075×1011.7459×1021.8235×1025.4241×1011.4475×1023.4859×1011.0040×1028.1960×1012.1872×1021.3560×102
    Rank16937254108
    F30Mean2.9823×1036.0618×1034.0643×1063.6855×1031.8733×1045.9405×1035.0147×1034.9671×1031.5965×1045.9572×103
    Std6.1135×1024.7022×1033.1688×1063.3042×1023.4470×1042.3158×1031.9712×1032.0934×1038.7877×1033.9139×103
    Rank17102954386
    Count15007161000
    Ave rank1.735.279.103.176.674.374.534.639.036.50
    Total rank16102834597
    下载: 导出CSV

    表  5  在30维CEC2017复杂函数上的上下界结果对比

    Table  5  Comparison of upper and lower bounds on the 30-dimensional complex functions from CEC2017

    函数HCOAGCOA/DEBBO
    下界上界下界上界
    F13.8942×10-97.8898×10-33.5001×1005.0055×103
    F51.2935×1014.1788×1012.6865×1019.2083×101
    F114.0954×1007.5899×1011.3819×1018.8108×101
    F293.7200×1026.0977×1024.4500×1026.2345×102
    下载: 导出CSV

    表  6  Wilcoxon符号秩检验结果

    Table  6  Wilcoxon sign rank test results

    $p $$a=0.05 $$R^+ $$R^- $$n/w/t/l $
    HCOAG vs COA1.3039×10−7YES4531230/27/0/3
    HCOAG vs GWO1.8626×10−9YES465030/30/0/0
    HCOAG vs MEGWO2.7741×10−2YES33912630/23/0/7
    HCOAG vs HFPSO5.5879×10−9YES463230/29/0/1
    HCOAG vs DEBBO9.0000×10−6YES4293630/23/0/7
    HCOAG vs SaDE3.5390×10−8YES458730/28/0/2
    HCOAG vs SE041.3039×10−8YES461430/29/0/1
    HCOAG vs FWA1.8626×10−9YES465030/30/0/0
    HCOAG vs TLBO3.7253×10−9YES464130/29/0/1
    下载: 导出CSV

    表  7  Friedman检验结果

    Table  7  Friedman test results

    DpHCOAGCOAGWOMEGWOHFPSODEBBOSaDESE04FWATLBO
    306.3128×10-311.735.279.103.176.674.374.534.639.036.50
    下载: 导出CSV

    表  8  6种算法在K-Means聚类优化上的结果对比

    Table  8  Comparison results of the 6 algorithms on K-Means clustering optimization

    数据集HCOAGCOAMEGWOHFPSOIPSOIGA
    Wine (178, 13, 3)Mean88.6271116.730791.591693.62289.861789.564
    Std3.4479×10−22.9398×1002.5237×1006.7353×1003.9148×1002.0321×100
    Rank164532
    Heart (270, 13, 2)Mean283.7680295.3786284.5731284.7653285.0072284.4112
    Std3.9989×10−32.3404×1002.3896×10−12.3804×1005.2425×1002.1715×100
    Rank163452
    Iris (150, 4, 3)Mean29.205331.051129.265929.357829.357829.2607
    Std8.8033×10−25.7768×10−11.3448×10−11.0048×1001.0048×1009.2414×10−2
    Rank163442
    Glass (214, 9, 6)Mean55.025575.462168.881662.711457.310260.8651
    Std2.2242×1002.1402×1002.8975×1003.7975×1003.5444×1003.5855×100
    Rank165423
    Newthyroid (215, 5, 3)Mean40.053842.003340.473641.808740.821341.9155
    Std9.8154×10−37.6493×10−14.0104×10−12.8501×1002.0086×1002.8122×100
    Rank162435
    Liver disorders (345, 6, 2)Mean90.344393.534490.384991.024690.336590.3698
    Std3.8530×10−41.0160×1002.8148×10−22.6310×1002.1424×10−22.0447×10−2
    Rank264513
    Balance (625, 4, 3)Mean356.1247357.6041356.502356.0165356.0802356.4092
    Std2.3618×10−14.0943×10−13.3785×10−11.5930×10−12.0303×10−11.4966×10−1
    Rank365124
    Count500110
    Ave rank1.436.003.713.862.863.00
    Total rank164523
    下载: 导出CSV
  • [1] 刘三阳, 靳安钊. 求解约束优化问题的协同进化教与学优化算法. 自动化学报, 2018, 44(9): 1690-1697

    Liu San-Yang, JIN An-Zhao. A Co-evolutionary teaching- learning-based optimization algorithm for constrained optimization problems. Acta Automatica Sinica, 2018, 44(9): 1690-1697
    [2] 吕柏权, 张静静, 李占培, 刘廷章. 基于变换函数与填充函数的模糊粒子群优化算法. 自动化学报, 2018, 44(1): 74-86

    Lv Bai-Quan, Zhang Jing-Jing, Li Zhan-Pei, Liu Ting-Zhang. Fuzzy particle swarm optimization based on filled function and transformation function. Acta Automatica Sinica, 2018, 44(1): 74-86
    [3] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69: 46-61 doi: 10.1016/j.advengsoft.2013.12.007
    [4] Pierezan J, Coelho L D S. Coyote optimization algorithm: A new metaheuristic for global optimization problems. In: Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC). Rio de Janeiro, Brazil, USA: IEEE, 2018.
    [5] 彭喜元, 彭宇, 戴毓丰. 群智能理论及应用. 电子学报, 2003, 12A(31): 1982-1988

    Peng Xi-yuan, Peng Yu, Dai Yu-feng. Swarm intelligence theory and applications. Acta Electronica Sinica, 2003, 12A(31): 1982-1988
    [6] Wolpert D H, Macready W G. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82 doi: 10.1109/4235.585893
    [7] 张新明, 王霞, 康强, 程金凤. GWO与ABC的混合优化算法及其聚类优化. 电子学报, 2018, 46(10): 2430-2442 doi: 10.3969/j.issn.0372-2112.2018.10.017

    Zhang Xin-ming, Wang Xia, Kang Qiang, Cheng Jin-feng. Hybrid grey wolf optimizer with artificial bee colony and its application to clustering optimization. Acta Electronica Sinica, 2018, 46(10): 2430-2442 doi: 10.3969/j.issn.0372-2112.2018.10.017
    [8] Zhang X M, Kang Q, Cheng J F, Wang X. A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. Applied Soft Computing, 2018, 67: 197-214 doi: 10.1016/j.asoc.2018.02.049
    [9] Teng Z, Lv J, Guo L. An improved hybrid grey wolf optimization algorithm. Soft Computing, 2019, 23(15): 6617-6631 doi: 10.1007/s00500-018-3310-y
    [10] Arora S, Singh H, Sharma M, Sharma S, Anand P. A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. IEEE Access, 2019, 7: 26343-26361 doi: 10.1109/ACCESS.2019.2897325
    [11] 龙文, 伍铁斌, 唐明珠, 徐明, 蔡绍洪. 基于透镜成像学习策略的灰狼优化算法. 自动化学报, 2020, 46(10): 2148−2164

    Long Wen, Wu Tie-Bin, Tang Ming-Zhu, Xu Ming, Cai Shao-hong. Grey wolf optimizer algorithm based on lens imaging learning strategy. Acta Automatica Sinica, 2020, 46(10): 2148−2164
    [12] 张新明, 王豆豆, 陈海燕, 毛文涛, 窦智, 刘尚旺. 强化最优和最差狼的郊狼优化算法及其QAP应用. 计算机应用, 2019, 39(10): 2985-2991

    Zhang Xin-ming, Wang Dou-dou, Chen Hai-yan, Mao Wen-tao, Dou Zhi, Liu Shang-wang. Best and worst coyotes strengthened coyote optimization algorithm and its application to QAP. Journal of Computer Applications, 2019, 39(10): 2985-2991
    [13] Omran M G H, Mahdavi M. Global-best harmony search. Applied Mathematics and Computation, 2008, 198(2): 643-656 doi: 10.1016/j.amc.2007.09.004
    [14] Draa A, Bouzoubia S, Boukhalfa I. A sinusoidal differential evolution algorithm for numerical optimization. Applied Soft Computing, 2015, 27: 99-126 doi: 10.1016/j.asoc.2014.11.003
    [15] Awad N H, Ali M Z, Liang J J, Qu B Y, Suganthan P N. Problem definitions and evaluation criteria for the CEC 2016 special session and competition on single objective bound constrained real-parameter numerical optimization. In: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore, 2016.
    [16] Tu Q, Chen X C, Liu X. Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Applied Soft Computing, 2019, 76: 16-30 doi: 10.1016/j.asoc.2018.11.047
    [17] Gong W, Cai Z, Ling C. DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Computing, 2010, 15(4): 645-665 doi: 10.1007/s00500-010-0591-1
    [18] Avdilek I B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Applied Soft Computing, 2018, 66: 232-249 doi: 10.1016/j.asoc.2018.02.025
    [19] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417 doi: 10.1109/TEVC.2008.927706
    [20] Tang D. Spherical evolution for solving continuous optimization problems. Applied Soft Computing, 2019, 81: 1-20
    [21] Tan Y, Zhu Y C. Fireworks algorithm for optimization. International Conference in Swarm Intelligence, 2010, 355-364
    [22] Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 2011, 43(3): 303-315 doi: 10.1016/j.cad.2010.12.015
    [23] 贺毅朝, 王熙照, 刘坤起, 王彦祺. 差分演化的收敛性分析与算法改进. 软件学报, 2010, 21(5): 875-885 doi: 10.3724/SP.J.1001.2010.03486

    He Yi-chao, Wang Xi-zhao, Liu Kun-qi, Wang Yan-qi. Convergent analysis and algorithmic improvement of differential evolution. Journal of Software, 2010, 21(5): 875-885 doi: 10.3724/SP.J.1001.2010.03486
    [24] Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 2011, 1(1): 3-18 doi: 10.1016/j.swevo.2011.02.002
    [25] Das P, Das D K, Dey S. A modified bee colony optimization (MBCO) and its hybridization with k-means for an application to data clustering. Applied Soft Computing, 2018, 70: 590-603 doi: 10.1016/j.asoc.2018.05.045
    [26] Jain A K. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 2010, 31(8): 651-666 doi: 10.1016/j.patrec.2009.09.011
    [27] 罗可, 李莲, 周博翔. 基于变异精密搜索的蜂群聚类算法. 控制与决策, 2014, 29(5): 838-842

    Luo Ke, Li Lian, Zhou Bo-xiang. Artificial bee colony rough clustering algorithm based on mutative precision search. Control and Decision, 2014, 29(5): 838-842
  • 期刊类型引用(18)

    1. 许家昌,郭佳,苏树智. 基于扩展型活性膜系统的彩色图像分割方法. 深圳大学学报(理工版). 2025(01): 59-67 . 百度学术
    2. 葛泉波,程惠茹,张明川,郑瑞娟,朱军龙,吴庆涛. 基于PCA和ICA模式融合的非高斯特征检测识别. 自动化学报. 2024(01): 169-180 . 本站查看
    3. 李大海,李鑫,王振东. 融合小生境机制的增强麻雀搜索算法及其应用. 计算机应用研究. 2024(04): 1077-1085 . 百度学术
    4. 李大海,刘晓峰,王振东. 基于动态双种群的黏菌和花粉混合算法. 计算机应用研究. 2024(07): 2052-2060 . 百度学术
    5. 李大海,詹美欣,王振东. 混合策略改进的麻雀搜索算法及其应用. 计算机应用研究. 2023(02): 404-412 . 百度学术
    6. 刘威,郭直清,姜丰,刘光伟,靳宝,王东. 协同围攻策略改进的灰狼算法及其PID参数优化. 计算机科学与探索. 2023(03): 620-634 . 百度学术
    7. 陶新民,郭文杰,李向可,陈玮,吴永康. 基于密度峰值的依维度重置多种群粒子群算法. 软件学报. 2023(04): 1850-1869 . 百度学术
    8. 王钦甜,沈艳军. 多阶段的郊狼优化算法. 广西师范大学学报(自然科学版). 2023(03): 105-117 . 百度学术
    9. 李大海,詹美欣,王振东. 基于多个改进策略的增强麻雀搜索算法. 计算机应用. 2023(09): 2845-2854 . 百度学术
    10. 李大海,李鑫,王振东. 融合多策略的增强麻雀搜索算法及其应用. 计算机应用研究. 2023(10): 3032-3039 . 百度学术
    11. 卢磊,贺智明,黄志成. 基于多策略改进的麻雀搜索算法. 计算机与现代化. 2023(10): 23-31 . 百度学术
    12. 史国宏,刘钊. 联合黏菌—乌鸦算法及其在机械设计中的应用. 工程机械. 2023(12): 48-62+8-9 . 百度学术
    13. 张新明,陈海燕,窦育强,王善侠,刘国奇,窦智,张贝. 改进的堆优化算法及其宫颈细胞数据聚类优化. 计算机应用研究. 2023(12): 3584-3591 . 百度学术
    14. 张新明,杨方圆,刘国奇. 多策略的郊狼优化算法. 计算机应用研究. 2022(04): 1124-1131 . 百度学术
    15. 李大海,詹美欣,王振东. 求解多峰目标函数的改进阴阳对算法. 计算机应用研究. 2022(05): 1402-1409 . 百度学术
    16. 石彪,王海燕,焦品博. 基于改进GWO-LSTM的船舶主机性能预测模型. 上海海事大学学报. 2022(02): 96-102 . 百度学术
    17. 赵金金,鲁海燕,徐杰,卢梦蝶,侯新宇. 双策略学习和自适应混沌变异的郊狼优化算法. 计算机应用研究. 2022(07): 2000-2006 . 百度学术
    18. 李大海,刘庆腾,艾志刚,王振东. 基于动态D向分割和混沌扰动的阴阳对优化算法. 计算机应用. 2022(09): 2788-2799 . 百度学术

    其他类型引用(23)

  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  2678
  • HTML全文浏览量:  815
  • PDF下载量:  374
  • 被引次数: 41
出版历程
  • 收稿日期:  2019-09-02
  • 录用日期:  2020-03-11
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2022-11-22

目录

/

返回文章
返回