2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰狼与郊狼混合优化算法及其聚类优化

张新明 姜云 刘尚旺 刘国奇 窦智 刘艳

王超, 刘侠, 董迪, 臧丽亚, 刘再毅, 梁长虹, 田捷. 基于影像组学的非小细胞肺癌淋巴结转移预测. 自动化学报, 2019, 45(6): 1087-1093. doi: 10.16383/j.aas.c160794
引用本文: 张新明, 姜云, 刘尚旺, 刘国奇, 窦智, 刘艳. 灰狼与郊狼混合优化算法及其聚类优化. 自动化学报, 2022, 48(11): 2757−2776 doi: 10.16383/j.aas.c190617
WANG Chao, LIU Xia, DONG Di, ZANG Li-Ya, LIU Zai-Yi, LIANG Chang-Hong, TIAN Jie. Radiomics Based Lymph Node Metastasis Prediction in Non-small-cell Lung Cancer. ACTA AUTOMATICA SINICA, 2019, 45(6): 1087-1093. doi: 10.16383/j.aas.c160794
Citation: Zhang Xin-Ming, Jiang Yun, Liu Shang-Wang, Liu Guo-Qi, Dou Zhi, Liu Yan. Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization. Acta Automatica Sinica, 2022, 48(11): 2757−2776 doi: 10.16383/j.aas.c190617

灰狼与郊狼混合优化算法及其聚类优化

doi: 10.16383/j.aas.c190617
基金项目: 国家自然科学基金(61901160, U1904123), 河南省高等学校重点科研项目(19A520026)资助
详细信息
    作者简介:

    张新明:河南师范大学教授. 主要研究方向为智能优化算法, 图像去噪, 图像增强和图像分割. 本文通信作者.E-mail: xinmingzhang@126.com

    姜云:河南师范大学硕士研究生. 主要研究方向为智能优化算法和图像分割.E-mail: jiangyun951120@163.com

    刘尚旺:河南师范大学副教授. 主要研究方向为图像处理和计算机视觉.E-mail: shwl08@126.com

    刘国奇:河南师范大学副教授. 主要研究方向为图像分割和偏微分方程.E-mail: liuguoqi080408@163.com

    窦智:河南师范大学讲师. 主要研究方向为算法及数字图像处理.E-mail: 619534345@163.com

    刘艳:河南师范大学实验师. 主要研究方向为优化算法和图像分割. E-mail: liu_yan122@sina.com

Hybrid Coyote Optimization Algorithm With Grey Wolf Optimizer and Its Application to Clustering Optimization

Funds: Supported by National Natural Science Foundation of China (61901160, U1904123) and Key Research Project of Higher Education Institutions of Henan Province (19A520026)
More Information
    Author Bio:

    ZHANG Xin-Ming Professor at Henan Normal University. His research interest covers intelligence optimization algorithm, image denoising, image enhancement, and image segmentation. Corresponding author of this paper

    JIANG Yun Master student at Henan Normal University. Her research interest covers intelligence optimization algorithm and image segmentation

    LIU Shang-Wang Associate professor at Henan Normal University. His research interest covers image processing and computer vision

    LIU Guo-Qi Associate professor at Henan Normal University. His research interest covers image segmentation and partial differential equation

    DOU Zhi Lecturer at Henan Normal University. His research interest covers algorithms and digital image processing

    LIU Yan Laboratory teacher at Henan Normal University. Her research interest covers optimization algorithm and image segmentation

  • 摘要: 郊狼优化算法(Coyote optimization algorithm, COA)是最近提出的一种新颖且具有较大应用潜力的群智能优化算法, 具有独特的搜索机制和能较好解决全局优化问题等优势, 但在处理复杂优化问题时存在搜索效率低、可操作性差和收敛速度慢等不足. 为弥补其不足, 并借鉴灰狼优化算法(Grey wolf optimizer, GWO)的优势, 提出了一种COA与GWO的混合算法(Hybrid COA with GWO, HCOAG). 首先提出了一种改进的COA (Improved COA, ICOA), 即将一种高斯全局趋优成长算子替换原算法的成长算子以提高搜索效率和收敛速度, 并提出一种动态调整组内郊狼数方案, 使得算法的搜索能力和可操作性都得到增强; 然后提出了一种简化操作的GWO (Simplified GWO, SGWO), 以提高算法的可操作性和降低其计算复杂度; 最后采用正弦交叉策略将ICOA与SGWO二者融合, 进一步获得更好的优化性能. 大量的经典函数和CEC2017复杂函数优化以及K-Means聚类优化的实验结果表明, 与COA相比, HCOAG具有更高的搜索效率、更强的可操作性和更快的收敛速度, 与其他先进的对比算法相比, HCOAG具有更好的优化性能, 能更好地解决聚类优化问题.
  • 肺癌是世界范围内发病率和死亡率最高的疾病之一, 占所有癌症病发症的18 %左右[1].美国癌症社区统计显示, 80 %到85 %的肺癌为非小细胞肺癌[2].在该亚型中, 大多数病人会发生淋巴结转移, 在手术中需对转移的淋巴结进行清扫, 现阶段通常以穿刺活检的方式确定淋巴结的转移情况.因此, 以非侵入性的方式确定淋巴结的转移情况对临床治疗具有一定的指导意义[3-5].然而, 基本的诊断方法在无创淋巴结转移的预测上存在很大挑战.

    影像组学是针对医学影像的兴起的热门方法, 指通过定量医学影像来描述肿瘤的异质性, 构造大量纹理图像特征, 对临床问题进行分析决策[6-7].利用先进机器学习方法实现的影像组学已经大大提高了肿瘤良恶性的预测准确性[8].研究表明, 通过客观定量的描述影像信息, 并结合临床经验, 对肿瘤进行术前预测及预后分析, 将对临床产生更好的指导价值[9].

    本文采用影像组学的方法来解决非小细胞肺癌淋巴结转移预测的问题.通过利用套索逻辑斯特回归(Lasso logistics regression, LLR)[10]模型得出基本的非小细胞肺癌淋巴结的转移预测概率, 并把组学模型的预测概率作为独立的生物标志物, 与患者的临床特征一起构建多元Logistics预测模型并绘制个性化诺模图, 在临床决策中的起重要参考作用.

    我们收集了广东省人民医院2007年5月至2014年6月期间的717例肺癌病例.这些病人在签署知情同意书后, 自愿提供自己的信息作为研究使用.为了充分利用收集到的数据对非小细胞肺癌淋巴结转移预测, 即对$N1-N3$与$N0$进行有效区分, 我们对收集的数据设置了三个入组标准: 1)年龄大于等于18周岁, 此时的肺部已经发育完全, 消除一定的干扰因素; 2)病理诊断为非小细胞肺癌无其他疾病干扰, 并有完整的CT (Computed tomography)增强图像及个人基本信息; 3)有可利用的术前病理组织活检分级用于确定N分期.经筛选, 共564例病例符合进行肺癌淋巴结转移预测研究的要求(如图 1).

    图 1  数据筛选流程图
    Fig. 1  Data filtering flow chart

    为了得到有价值的结果, 考虑到数据的分配问题, 为了保证客观性, 防止挑数据的现象出现, 在数据分配上, 训练集与测试集将按照时间进行划分, 并以2013年1月为划分点.得到训练集: 400例, 其中, 243例正样本$N1-N3$, 157例负样本$N0$; 测试集: 164例, 其中, 93例正样本, 71例负样本.

    在进行特征提取工作前, 首先要对肿瘤病灶进行分割.医学图像分割的金标准是需要有经验的医生进行手动勾画的结果.但手动分割无法保证每次的分割结果完全一致, 且耗时耗力, 尤其是在数据量很大的情况下.因此, 手动分割不是最理想的做法.在本文中, 使用的自动图像分割算法为基于雪橇的自动区域生长分割算法[11], 该算法首先选定最大切片层的种子点, 这时一般情况下最大切片为中间层的切片, 然后估计肿瘤的大小即直径, 作为一个输入参数, 再自动进行区域生长得到每个切片的肿瘤如图 2(a1), (b1), 之后我们进行雪橇滑动到邻接的上下两个切面, 进行分割, 这样重复上述的区域生长即滑动切片, 最终分割得到多个切片的的肿瘤区域, 我们将肿瘤切面层进行组合, 得到三维肿瘤如图 2(a2), (b2).

    图 2  三维病灶的分割
    Fig. 2  3D tumor segmentation

    利用影像组学处理方法, 从分割得到的肿瘤区域中总共提取出386个特征.这些特征可分为四组:三维形状特征, 表面纹理特征, Gabor特征和小波特征[12-13].形状特征通过肿瘤体积、表面积、体积面积比等特征描述肿瘤在空间和平面上的信息.纹理特征通过统计三维不同方向上像素的规律, 通过不同的分布规律来表示肿瘤的异质性. Gabor特征指根据特定方向, 特定尺度筛选出来的纹理信息.

    小波特征是指原图像经过小波变换滤波器后的纹理特征.在模式识别范畴中, 高维特征会增加计算复杂度, 此外, 高维的特征往往存在冗余性, 容易造成模型过拟合.因此, 本位通过特征筛选方法首先对所有特征进行降维处理.

    本文采用$L$1正则化Lasso进行特征筛选, 对于简单线性回归模型定义为:

    $$ \begin{equation} f(x)=\sum\limits_{j=1}^p {w^jx^j} =w^\mathrm{T}x \end{equation} $$ (1)

    其中, $x$表示样本, $w$表示要拟合的参数, $p$表示特征的维数.

    要进行参数$w$学习, 应用二次损失来表示目标函数, 即:

    $$ \begin{equation} J(w)=\frac{1}{n}\sum\limits_{i=1}^n{(y_i-f(x_i)})^2= \frac{1}{n}\vert\vert\ {{y}-Xw\vert\vert}^2 \end{equation} $$ (2)

    其中, $X$是数据矩阵, $X=(x_1 , \cdots, x_n)^\mathrm{T}\in {\bf R}^{n\times p}$, ${y}$是由标签组成的列向量, ${y}=(y_1, \cdots, y_n )^\mathrm{T}$.

    式(2)的解析解为:

    $$ \begin{equation} \hat{w}=(X^\mathrm{T}X)^{-1}X^\mathrm{T}{y} \end{equation} $$ (3)

    然而, 若$p\gg n$, 即特征维数远远大于数据个数, 矩阵$X^\mathrm{T}X$将不是满秩的, 此时无解.

    通过Lasso正则化, 得到目标函数:

    $$ \begin{equation} J_L(w)=\frac{1}{n} \vert\vert{y}-Xw\vert\vert^2+\lambda\vert\vert w\vert\vert _1 \end{equation} $$ (4)

    目标函数最小化等价为:

    $$ \begin{equation} \mathop {\min }\limits_w \frac{1}{n} \vert\vert{y}-Xw\vert\vert^2, \, \, \, \, \, \, \, \mathrm{s.t.}\, \, \vert \vert w\vert \vert _1 \le C \end{equation} $$ (5)

    为了使部分特征排除, 本文采用$L$1正则方法进行压缩.二维情况下, 在$\mbox{(}w^1, w^2)$平面上可画出目标函数的等高线, 取值范围则为平面上半径为$C$的$L$1范数圆, 等高线与$L$1范数圆的交点为最优解. $L$1范数圆和每个坐标轴相交的地方都有"角''出现, 因此在角的位置将产生稀疏性.而在维数更高的情况下, 等高线与L1范数球的交点除角点之外还可能产生在很多边的轮廓线上, 同样也会产生稀疏性.对于式(5), 本位采用近似梯度下降(Proximal gradient descent)[14]算法进行参数$w$的迭代求解, 所构造的最小化函数为$Jl=\{g(w)+R(w)\}$.在每次迭代中, $Jl(w)$的近似计算方法如下:

    $$ \begin{align} J_L (w^t+d)&\approx \tilde {J}_{w^t} (d)=g(w^t)+\nabla g(w^t)^\mathrm{T}d\, +\nonumber\\ &\frac{1} {2d^\mathrm{T}(\frac{I }{ \alpha })d}+R(w^t+d)=\nonumber\\ &g(w^t)+\nabla g(w^t)^\mathrm{T}d+\frac{{d^\mathrm{T}d} } {2\alpha } +\nonumber\\ &R(w^t+d) \end{align} $$ (6)

    更新迭代$w^{(t+1)}\leftarrow w^t+\mathrm{argmin}_d \tilde {J}_{(w^t)} (d)$, 由于$R(w)$整体不可导, 因而利用子可导引理得:

    $$ \begin{align} w^{(t+1)}&=w^t+\mathop {\mathrm{argmin}} \nabla g(w^t)d^\mathrm{T}d\, +\nonumber\\ &\frac{d^\mathrm{T}d}{2\alpha }+\lambda \vert \vert w^t+d\vert \vert _1=\nonumber\\ &\mathrm{argmin}\frac{1 }{ 2}\vert \vert u-(w^t-\alpha \nabla g(w^t))\vert \vert ^2+\nonumber\\ &\lambda \alpha \vert \vert u\vert \vert _1 \end{align} $$ (7)

    其中, $S$是软阈值算子, 定义如下:

    $$ \begin{equation} S(a, z)=\left\{\begin{array}{ll} a-z, &a>z \\ a+z, &a<-z \\ 0, &a\in [-z, z] \\ \end{array}\right. \end{equation} $$ (8)

    整个迭代求解过程为:

    输入.数据$X\in {\bf R}^{n\times p}, {y}\in {\bf R}^n$, 初始化$w^{(0)}$.

    输出.参数$w^\ast ={\rm argmin}_w\textstyle{1 \over n}\vert \vert Xw-{y}\vert \vert ^2+\\ \lambda \vert\vert w\vert \vert _1 $.

    1) 初始化循环次数$t = 0$;

    2) 计算梯度$\nabla g=X^\mathrm{T}(Xw-{y})$;

    3) 选择一个步长大小$\alpha ^t$;

    4) 更新$w\leftarrow S(w-\alpha ^tg, \alpha ^t\lambda )$;

    5) 判断是否收敛或者达到最大迭代次数, 未收敛$t\leftarrow t+1$, 并循环2)$\sim$5)步.

    通过上述迭代计算, 最终得到最优参数, 而参数大小位于软区间中的, 将被置为零, 即被稀疏掉.

    本文使用LLR对组学特征进行降维并建模, 并使用10折交叉验证, 提高模型的泛化能力, 流程如图 3所示.

    图 3  淋巴结转移预测模型构造图
    Fig. 3  Structure of lymph node metastasis prediction model

    将本文使用的影像组学模型的预测概率(Radscore)作为独立的生物标志物, 并与临床指标中显著的特征结合构建多元Logistics模型, 绘制个性化预测的诺模图, 最后通过校正曲线来观察预测模型的偏移情况.

    我们分别在训练集和验证集上计算各个临床指标与淋巴结转移的单因素P值, 计算方式为卡方检验, 结果见表 1, 发现吸烟与否和EGFR (Epidermal growth factor receptor)基因突变状态与淋巴结转移显著相关.

    表 1  训练集和测试集病人的基本情况
    Table 1  Basic information of patients in the training set and test set
    基本项训练集($N=400$) $P$值测试集($N=164$) $P$值
    性别144 (36 %)0.89678 (47.6 %)0.585
    256 (64 %)86 (52.4 %)
    吸烟126 (31.5 %)0.030*45 (27.4 %)0.081
    274 (68.5 %)119 (72.6 %)
    EGFR缺失36 (9 %)4 (2.4 %)
    突变138 (34.5 %)$ < $0.001*67 (40.9 %)0.112
    正常226 (56.5 %)93 (56.7 %)
    下载: 导出CSV 
    | 显示表格

    影像组学得分是每个病人最后通过模型预测后的输出值, 随着特征数的动态变化, 模型输出的AUC (Area under curve)值也随之变化, 如图 4所示, 使用R语言的Glmnet库可获得模型的参数$\lambda $的变化图.图中直观显示了参数$\lambda $的变化对模型性能的影响, 这次实验中模型选择了3个变量.如图 5所示, 横坐标表示$\lambda $的变化, 纵坐标表示变量的系数变化, 当$\lambda $逐渐变大时, 变量的系数逐渐减少为零, 表示变量选择的过程, 当$\lambda $越大表示模型的压缩程度越大.

    图 4  $\lambda $与变量数目对应走势
    Fig. 4  The trend of the parameters and the number of variables
    图 5  系数随$\lambda $参数变化图
    Fig. 5  The coefficient changes with the parameters

    通过套索回归方法, 自动的将变量压缩为3个, 其性能从图 4中也可发现, 模型的AUC值为最佳, 最终的特征如表 2所示. $V0$为截距项; $V179$为横向小波分解90度共生矩阵Contrast特征; $V230$为横向小波分解90度共生矩阵Entropy特征.

    表 2  Lasso选择得到的参数
    Table 2  Parameters selected by Lasso
    Lasso选择的参数含义数值$P$值
    $V0$截距项2.079115
    $V179$横向小波分解90度共生矩阵Contrast特征(Contrast_2_90)0.0000087< 0.001***
    $V230$横向小波分解90度共生矩阵Entropy特征(Entropy_3_180)$-$3.573315< 0.001***
    $V591$表面积与体积的比例(Surface to volume ratio)$-$1.411426< 0.001***
    下载: 导出CSV 
    | 显示表格

    $V591$为表面积与体积的比例; 将三个组学特征与$N$分期进行单因素分析, 其$P$值都是小于0.05, 表示与淋巴结转移有显著相关性.根据Lasso选择后的三个变量建立Logistics模型并计算出Rad-score, 详见式(9).并且同时建立SVM (Support vector machine)模型.

    NB (Naive Bayesian)模型, 进行训练与预测, LLR模型训练集AUC为0.710, 测试集为0.712, 表现较优; 如表 3所示.将实验中使用的三个机器学习模型的结果进行对比, 可以发现, LLR的实验结果是最好的.

    表 3  不同方法对比结果
    Table 3  Comparison results of different methods
    方法训练集(AUC)测试集(AUC)召回率
    LLR0.7100.7120.75
    SVM0.6980.6540.75
    NB0.7180.6810.74
    下载: 导出CSV 
    | 显示表格
    $$ \begin{equation} \begin{aligned} &\text{Rad-score}=2.328373+{\rm Contrast}\_2\_90\times\\ &\qquad 0.0000106 -{\rm entropy}\_3\_180\times 3.838207 +\\ &\qquad\text{Maximum 3D diameter}\times 0.0000002 -\\ &\qquad\text{Surface to volume ratio}\times 1.897416 \\ \end{aligned} \end{equation} $$ (9)

    为了体现诺模图的临床意义, 融合Rad-score, 吸烟情况和EGFR基因因素等有意义的变量进行分析, 绘制出个性化预测的诺模图, 如图 7所示.为了给每个病人在最后得到一个得分, 需要将其对应变量的得分进行相加, 然后在概率线找到对应得分的概率, 从而实现非小细胞肺癌淋巴结转移的个性化预测.我们通过一致性指数(Concordance index, $C$-index)对模型进行了衡量, 其对应的$C$-index为0.724.

    图 6  测试集ROC曲线
    Fig. 6  ROC curve of test set
    图 7  验证诺模图
    Fig. 7  Verifies the nomogram

    本文中使用校正曲线来验证诺模图的预测效果, 如图 8所示, 由校正曲线可以看出, 预测结果基本上没有偏离真实标签的结果, 表现良好, 因此, 该模型具有可靠的预测性能[15].

    图 8  一致性曲线
    Fig. 8  Consistency curves

    在构建非小细胞肺癌淋巴结转移的预测模型中, 使用LLR筛选组学特征并构建组学标签, 并与显著的临床特征构建多元Logistics模型, 绘制个性化预测的诺模图.其中LLR模型在训练集上的AUC值为0.710, 在测试集上的AUC值为0.712, 利用多元Logistics模型绘制个性化预测的诺模图, 得到模型表现能力$C$-index为0.724 (95 % CI: 0.678 $\sim$ 0.770), 并且在校正曲线上表现良好, 所以个性化预测的诺模图在临床决策上可起重要参考意义.[16].

  • 图  1  GWO的流程图

    Fig.  1  Flow chart of GWO

    图  2  组数$N_p $与组内郊狼数$N_c $的分配图

    Fig.  2  Disposition graph of two parameters $N_c $ and $N_p $

    图  3  GWO与SGWO的等级情况对比

    Fig.  3  Comparison of hierarchies of GWO and SGWO

    图  4  HCOAG流程图

    Fig.  4  Flow chart of HCOAG

    图  5  HCOAG与对比算法在4个经典函数上的收敛图

    Fig.  5  Convergence curves of HCOAG and the comparison algorithms on the 4 classical benchmark functions

    图  6  HCOAG、COA、MEGWO、DEBBO、TLBO和HFPSO的收敛图

    Fig.  6  Convergence curves of HCOAG, COA, MEGWO, DEBBO, TLBO, and HFPSO

    图  7  HCOAG与COA、GWO在不同类别函数上的平均时间对比图

    Fig.  7  Comparison bars of average time of HCOAG, COA, and GWO on different kinds of functions

    表  1  HCOAG与其不完全算法的结果对比

    Table  1  Comparison results of HCOAG and its incomplete algorithms

    函数 标准HCOAGCOAGWOHCOAG5HCOAG10ICOASGWO
    F1Mean7.4494×10−41.2099×1031.2813×1094.1072×10−41.9800×10−31.0737×1023.3279×103
    Std1.4801×10−31.2998×1039.6388×1088.5916×10−42.9438×10−31.0569×1024.3271×103
    Rank2571346
    F2Mean1.1941×1012.9013×10213.1831×10324.8580×1031.8078×1018.6764×10153.3582×1014
    Std2.4077×1011.1462×10221.5894×10333.3985×1045.0208×1013.5675×10161.3200×1015
    Rank1673254
    F3Mean9.5410×10−16.0573×1042.8342×1047.6972×10−11.0995×1003.3032×1048.7276×102
    Std1.9288×1001.0177×1049.2323×1039.8032×10−11.6794×1006.8409×1037.2376×102
    Rank2751364
    F4Mean1.8113×1018.4041×1012.0825×1022.0841×1012.8446×1014.8248×1011.0495×102
    Std2.7696×1018.5306×1008.4445×1013.0540×1013.1826×1013.3517×1012.4806×101
    Rank1572346
    F5Mean2.8433×1015.2890×1019.6116×1013.5884×1013.0204×1013.4844×1013.1488×101
    Std6.8886×1001.5025×1013.2690×1011.0115×1018.8983×1001.0983×1019.2242×100
    Rank1675243
    F6Mean1.7483×10−71.6399×10−56.3664×1009.4452×10−71.5005×10−62.8782×10−42.0381×10−2
    Std4.7524×10−79.6428×10−63.1596×1002.4080×10−65.9643×10−61.6254×10−42.7102×10−2
    Rank1472356
    F7Mean6.1055×1017.5148×1011.4460×1026.7082×1015.9300×1016.7675×1016.4025×101
    Std1.0851×1011.3762×1014.6314×1011.1241×1019.4998×1001.1520×1011.1856×101
    Rank2674153
    F8Mean3.2489×1015.6110×1018.4662×1013.6085×1012.9446×1013.6138×1013.1775×101
    Std1.2272×1011.8774×1012.5270×1018.8063×1007.9048×1001.0081×1017.8884×100
    Rank3674152
    F9Mean2.7362×10−15.6225×10−15.5392×1025.2270×10−12.5931×10−18.8559×10−27.4159×100
    Std4.8298×10−11.0209×1003.2695×1028.7374×10−14.6957×10−11.5656×10−16.7112×100
    Rank3574216
    F10Mean2.2671×1032.7575×1033.1862×1032.5574×1032.3435×1032.1380×1032.1424×103
    Std6.1427×1024.6685×1029.7886×1025.3524×1026.0670×1025.6098×1024.0691×102
    Rank3675412
    F11Mean2.1678×1014.1143×1014.9771×1022.9822×1012.6698×1012.2685×1011.0908×102
    Std2.0907×1012.7367×1016.4235×1022.6128×1012.4059×1012.0893×1013.8218×101
    Rank1574326
    F12Mean9.8943×1031.2532×1054.0285×1071.2577×1041.0657×1041.3660×1052.0716×105
    Std6.0932×1031.2555×1057.3849×1076.4424×1036.4606×1039.3092×1041.9967×105
    Rank1473256
    F13Mean1.9749×1032.0357×1042.8073×1063.0265×1033.1829×1033.6293×1021.3271×104
    Std3.8565×1032.6333×1041.6225×1076.2901×1038.0719×1038.9975×1011.5283×104
    Rank2673415
    F14Mean8.6436×1018.0070×1011.3112×1057.7150×1011.0134×1025.6726×1011.4132×104
    Std4.3766×1011.9915×1012.3335×1056.0071×1019.2585×1011.4850×1011.7944×104
    Rank4372516
    F15Mean1.8396×1032.0792×1033.3658×1057.1579×1021.7386×1036.9111×1016.6116×103
    Std2.9044×1037.9984×1037.9125×1051.2272×1032.9477×1031.9083×1018.3961×103
    Rank4572316
    F16Mean3.0243×1027.9869×1028.1416×1023.3715×1023.0883×1024.6416×1025.0252×102
    Std2.0550×1022.8651×1022.6440×1022.1415×1021.8878×1022.6962×1022.4545×102
    Rank1673245
    F17Mean4.7111×1012.2439×1022.7004×1026.4809×1015.3120×1013.7365×1011.3984×102
    Std4.0925×1011.3518×1021.3820×1025.3991×1014.7801×1014.0654×1018.0664×101
    Rank2674315
    F18Mean6.1013×1046.9910×1047.1643×1055.1875×1045.0376×1043.9930×1041.8454×105
    Std5.7031×1041.0210×1058.2799×1053.6270×1043.7592×1042.0034×1041.7045×105
    Rank4573216
    F19Mean3.4042×1014.4886×1034.6400×1053.4163×1013.0105×1022.4678×1015.4815×103
    Std2.0528×1011.3325×1045.4998×1053.9687×1011.1322×1037.1259×1004.9859×103
    Rank2573416
    F20Mean9.6665×1012.4290×1023.6059×1021.0084×1021.1637×1021.0389×1022.0165×102
    Std7.7834×1011.4995×1021.0264×1026.6726×1017.5890×1018.7694×1019.6673×101
    Rank1672435
    F21Mean2.3023×1022.5626×1022.8298×1022.3713×1022.3135×1022.3724×1022.3289×102
    Std8.5095×1001.6800×1012.5684×1011.0815×1019.8453×1001.1261×1019.9428×100
    Rank1674253
    F22Mean1.0010×1021.9999×1038.0434×1021.0005×1021.0005×1021.0005×1021.2974×102
    Std4.8096×10−11.5970×1031.1113×1033.4354×10−13.4444×10−13.4443×10−12.0703×102
    Rank4761325
    F23Mean3.7755×1024.1635×1024.7029×1023.8706×1023.7831×1023.8441×1023.8854×102
    Std1.0911×1011.6898×1012.9324×1011.3271×1018.1817×1001.0543×1011.3692×101
    Rank1674235
    F24Mean4.4827×1025.4044×1025.2489×1024.5484×1024.4530×1024.5862×1024.5671×102
    Std1.0757×1014.5778×1013.3902×1011.1783×1011.1461×1011.2203×1011.1956×101
    Rank2763154
    F25Mean3.8777×1023.8706×1024.7784×1023.8747×1023.8729×1023.8698×1024.0239×102
    Std5.4462×1008.0647×10−12.3819×1011.5625×1001.2735×1005.4095×10−11.5135×101
    Rank5274316
    F26Mean1.2578×1031.6520×1032.0116×1031.3249×1031.2449×1031.3138×1031.5024×103
    Std1.9807×1021.7070×1025.7618×1023.1093×1023.4947×1021.9599×1022.8691×102
    Rank2674135
    F27Mean5.1091×1025.0430×1025.9279×1025.1349×1025.1088×1025.0560×1025.3331×102
    Std7.7116×1008.2707×1003.8462×1018.6401×1008.6837×1007.3827×1001.1175×101
    Rank4175326
    F28Mean3.3558×1024.0555×1025.9941×1023.2930×1023.3793×1023.4828×1024.5710×102
    Std5.3866×1013.6156×1016.9788×1015.1585×1015.1950×1015.3564×1012.3392×101
    Rank2571346
    F29Mean4.5991×1026.6978×1028.5036×1024.8821×1024.6287×1024.5683×1026.2453×102
    Std4.4075×1011.7459×1021.8235×1025.5772×1014.3839×1014.4800×1011.1861×102
    Rank2674315
    F30Mean2.9823×1036.0618×1034.0643×1063.1036×1032.9323×1031.9586×1046.1880×103
    Std6.1135×1024.7022×1033.1688×1068.4665×1025.9332×1027.3086×1032.8250×103
    Rank2473165
    Count101045100
    Ave rank2.205.236.873.102.603.074.93
    Total rank1674235
    下载: 导出CSV

    表  2  在6个经典函数上的实验结果对比

    Table  2  Comparison results on the 6 classic functions

    函数 标准D = 10
    HCOAGCOAGWOHFPSODEBBO
    f1Mean6.0684×10−91.7833×1029.0799×10−153.4157×10−56.7086×10−2
    Std4.8458×10−96.3524×1012.4849×10−142.4485×10−53.1056×10−2
    Rank25134
    f2Mean8.4133×10−62.3737×1001.3222×10−91.3703×10−32.8483×10−2
    Std3.7531×10−64.0964×10−11.1382×10−96.5582×10−47.0993×10−3
    Rank25134
    f3Mean01.6180×1021.0000×10−100
    Std05.0787×1013.0513×10−100
    Rank15411
    f4Mean1.2498×10−104.0253×1001.5325×10−63.5760×10−71.8575×10−3
    Std2.0501×10−101.6104×1009.4192×10−74.1539×10−71.0158×10−3
    Rank15324
    f5Mean2.0046×10−87.1619×1022.4093×10−54.6770×10−62.6132×10−2
    Std5.9686×10−81.5819×1031.4121×10−55.6661×10−61.0613×10−2
    Rank15324
    f6Mean4.1921×10−101.7228×1001.2593×10−24.9377×10−73.5149×10−3
    Std4.3501×10−105.1829×10−16.8779×10−24.8665×10−71.5826×10−3
    Rank15423
    D = 30
    f1Mean1.3966×10−173.2554×1015.4432×10−417.2595×10−92.7076×10−4
    Std3.2255×10−175.9567×1007.1605×10−417.3446×10−91.1010×10−4
    Rank25134
    f2Mean2.8862×10−101.3998×1006.0158×10−245.3463×10−51.3264×10−3
    Std4.6435×10−101.9835×10−16.2049×10−243.9178×10−52.3103×10−4
    Rank25134
    f3Mean03.3700×1013.3333×10−200
    Std07.9877×1001.8257×10−100
    Rank15411
    f4Mean1.0451×10−173.8002×1001.5129×10−21.7278×10−26.4886×10−5
    Std3.0738×10−171.3163×1001.0471×10−23.9296×10−22.7878×10−5
    Rank15342
    f5Mean5.3309×10−171.8376×1011.6587×10−13.2962×10−35.0150×10−4
    Std1.5184×10−165.8919×1001.1940×10−15.1211×10−32.1237×10−4
    Rank15432
    f6Mean1.2484×10−181.8049×1007.9738×10−18.2480×10−38.5930×10−5
    Std1.7135×10−184.9152×10−17.4565×10−14.5176×10−23.9292×10−5
    Rank15432
    Count80422
    Ave rank1.335.002.752.502.92
    Total rank15324
    下载: 导出CSV

    表  3  6个经典函数的情况

    Table  3  Details of 6 classical benchmark functions

    类型函数名称函数表达式搜索范围最小值
    单峰函数Sphere${f_1}(x) = \displaystyle\sum_{i = 1}^D {x_i^2}$ [−100, 100]0
    Schwefel 2.22${f_2}(x) = \displaystyle\sum_{i = 1}^D {\left| { {x_i} } \right|} + \prod_{i = 1}^D {\left| { {x_i} } \right|}$ [−10, 10]0
    Step${f_3}(x) = \displaystyle\sum_{i = 1}^D { { {\left( {\left\lfloor { {x_i} + 0.5} \right\rfloor } \right)}^2} }$ [−100, 100]0
    多峰函数Penalized 1${f_4}(x) = \dfrac{\pi}{D}\bigg\{ {10{ {\sin }^2}\left( {\pi {y_i} } \right)} +$
        $\displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {y_i} - 1} \right)}^2}\left[ {1 + 10{ {\sin }^2}\left( {\pi {y_{i + 1} } } \right)} \right]} { + { {\left( { {y_D} - 1} \right)}^2} } \bigg\} +$
        $\displaystyle\sum_{i = 1}^D {u\left( { {x_i},10,100,4} \right)}$
        ${y_i} = 1 + \dfrac{1}{4}\left( { {x_i} + 1} \right)$
        $u\left( { {x_i},a,k,m} \right) = $$\left\{ \begin{aligned}&k{\left( { {x_i} - a} \right)^m},\quad\;\; {x_i} > a\\&0, \quad \quad \quad \quad \quad\quad\;\; - a \le {x_i} \le a\\&k{\left( { - {x_i} - a} \right)^m},\quad {x_i} < - a \end{aligned} \right.$
    [−50, 50]0
    Penalized 2${f_5}(x) = 0.1\bigg\{ { { {\sin }^2} } \left( {\pi {x_1} } \right) + \displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {x_i} - 1} \right)}^2} } \left[ {1 + { {\sin }^2}\left( {3\pi {x_{i + 1} } } \right)} \right] +$
        $\left( { {x_D} - 1} \right) {\Big[ {1 + { {\sin }^2}\left( {2\pi {x_D} } \right)} \Big]} \bigg\} + \displaystyle\sum_{i = 1}^D {u\left( { {x_i},5,100,4} \right)}$
    [−50, 50]0
    Levy${f_6}(x) = \displaystyle\sum_{i = 1}^{D - 1} { { {\left( { {x_i} - 1} \right)}^2} } \left[ {1 + { {\sin }^2}\left( {3\pi {x_{i + 1} } } \right)} \right] +$
        ${\sin ^2}\left( {3\pi {x_1} } \right) + \left| { {x_D} - 1} \right|\Big[ {1 + { {\sin }^2}\left( {3\pi {x_D} } \right)} \Big]$
    [−10, 10]0
    下载: 导出CSV

    表  4  在30维CEC2017复杂函数上的优化结果对比

    Table  4  Comparison results on the 30-dimensional complex functions from CEC2017

    函数 标准HCOAGCOAGWOMEGWOHFPSODEBBOSaDESE04FWATLBO
    F1Mean7.4494×10−41.2099×1031.2813×1094.5517×1033.9338×1032.7849×1033.0714×1033.2930×1034.3987×1062.9846×103
    Std1.4801×10−31.2998×1039.6388×1081.0677×1035.3689×1034.0364×1033.5072×1034.2328×1031.4055×1063.1471×103
    Rank12108735694
    F2Mean1.1941×1012.9013×10213.1831×10322.8884×1085.3485×1041.5057×10178.6275×10−13.0802×10134.1397×10151.0448×1016
    Std2.4077×1011.1462×10221.5894×10338.0571×1083.2847×1053.5179×10174.9357×1001.1694×10141.5680×10164.7082×1016
    Rank29104381567
    F3Mean9.5410×10−16.0573×1042.8342×1042.2633×1021.5595×10−73.6772×1043.0045×1029.7974×1032.4748×1044.0488×10−4
    Std1.9288×1001.0177×1049.2323×1031.7031×1022.3334×10−75.8394×1037.3017×1023.4377×1036.3467×1031.6647×10−3
    Rank31084195672
    F4Mean1.8113×1018.4041×1012.0825×1022.4815×1016.9386×1018.4851×1016.0423×1018.5881×1011.1370×1025.9054×101
    Std2.7696×1018.5306×1008.4445×1012.8995×1012.1364×1012.2848×10−12.9825×1011.1251×1011.7315×1013.0429×101
    Rank16102574893
    F5Mean2.8433×1015.2890×1019.6116×1015.6912×1018.5624×1015.8216×1015.6192×1014.1688×1011.8456×1028.5717×101
    Std6.8886×1001.5025×1013.2690×1011.0725×1011.7427×1016.5957×1001.4216×1018.1545×1003.3933×1011.8601×101
    Rank13957642108
    F6Mean1.7483×10−71.6399×10−56.3664×1002.4470×10−11.0170×1001.1369×10−138.9317×10−27.5481×10−65.1770×1007.2903×100
    Std4.7524×10−79.6428×10−63.1596×1008.1620×10−22.3644×10001.3955×10−13.9880×10−53.1351×1004.4538×100
    Rank24967153810
    F7Mean6.1055×1017.5148×1011.4460×1028.9106×1011.0407×1029.9725×1019.4945×1017.2448×1012.0998×1021.3661×102
    Std1.0851×1011.3762×1014.6314×1011.0935×1011.9791×1016.4285×1001.9879×1017.3495×1004.4817×1012.4846×101
    Rank13947652108
    F8Mean3.2489×1015.6110×1018.4662×1015.9398×1017.2842×1015.9299×1015.3942×1014.4194×1011.4508×1027.1339×101
    Std1.2272×1011.8774×1012.5270×1011.0663×1011.7967×1016.0788×1001.2792×1016.5834×1002.1470×1011.4852×101
    Rank14968532107
    F9Mean2.7362×10−15.6225×10−15.5392×1027.8267×1003.2733×1014.0125×10−148.3556×1013.0839×10−13.5295×1032.4197×102
    Std4.8298×10−11.0209×1003.2695×1021.1815×1011.3249×1025.4870×10−146.2643×1018.4139×10−19.5511×1021.4491×102
    Rank24956173108
    F10Mean2.2671×1032.7575×1033.1862×1032.4369×1032.9908×1033.2911×1032.3253×1032.3267×1033.7800×1036.0667×103
    Std6.1427×1024.6685×1029.7886×1024.4542×1025.9210×1022.7284×1024.9247×1022.8457×1025.9660×1021.0625×103
    Rank15746823910
    F11Mean2.1678×1014.1143×1014.9771×1022.9612×1011.1553×1023.7430×1011.0032×1024.1343×1011.6164×1021.2672×102
    Std2.0907×1012.7367×1016.4235×1021.0347×1013.9628×1012.3672×1014.3101×1012.7994×1014.5263×1014.5717×101
    Rank14102736598
    F12Mean9.8943×1031.2532×1054.0285×1071.5983×1049.9670×1041.3866×1056.8629×1041.1143×1064.6351×1063.3042×104
    Std6.0932×1031.2555×1057.3849×1074.0434×1031.0658×1059.2097×1043.8252×1048.1422×1053.1121×1062.8646×104
    Rank16102574893
    F13Mean1.9749×1032.0357×1042.8073×1062.0450×1023.0927×1048.1265×1031.1211×1044.6063×1033.7320×1041.4857×104
    Std3.8565×1032.6333×1041.6225×1072.7028×1012.7301×1047.8066×1031.0535×1044.8590×1032.6480×1041.7072×104
    Rank27101845396
    F14Mean8.6436×1018.0070×1011.3112×1056.1985×1016.7377×1034.9240×1034.3238×1037.1204×1042.6955×1053.5454×103
    Std4.3766×1011.9915×1012.3335×1058.6647×1005.5695×1033.2902×1035.7159×1035.9323×1042.4525×1054.1276×103
    Rank32917658104
    F15Mean1.8396×1032.0792×1033.3658×1055.1634×1019.7487×1034.9944×1032.1676×1032.2013×1033.2784×1033.9091×103
    Std2.9044×1037.9984×1037.9125×1051.0713×1011.2114×1046.6468×1033.0178×1031.9756×1031.9819×1034.3347×103
    Rank23101984567
    F16Mean3.0243×1027.9869×1028.1416×1024.4823×1027.7229×1023.9643×1025.6072×1024.9392×1021.2266×1035.0039×102
    Std2.0550×1022.8651×1022.6440×1021.3443×1022.2590×1021.1932×1022.0850×1021.7309×1023.0034×1022.7575×102
    Rank18937264105
    F17Mean4.7111×1012.2439×1022.7004×1026.9544×1012.5591×1028.1642×1018.7684×1011.4116×1025.5825×1022.3994×102
    Std4.0925×1011.3518×1021.3820×1021.7296×1011.2971×1022.2037×1019.1289×1018.5026×1012.3401×1028.8703×101
    Rank16928345107
    F18Mean6.1013×1046.9910×1047.1643×1052.0505×1021.1409×1053.2225×1051.0034×1052.1361×1059.8409×1052.0609×105
    Std5.7031×1041.0210×1058.2799×1054.7536×1011.1535×1051.2197×1051.1019×1051.3261×1051.1184×1061.5131×105
    Rank23915847106
    F19Mean3.4042×1014.4886×1034.6400×1052.9977×1018.6631×1038.3686×1035.9612×1032.0723×1035.2207×1036.3203×103
    Std2.0528×1011.3325×1045.4998×1053.3897×1001.9974×1049.2795×1037.1112×1032.1685×1033.9175×1031.0793×104
    Rank24101986357
    F20Mean9.6665×1012.4290×1023.6059×1021.1363×1022.6516×1025.5205×1011.2989×1021.7303×1024.6345×1022.4392×102
    Std7.7834×1011.4995×1021.0264×1025.2411×1011.1737×1023.5413×1017.0970×1017.2015×1011.7129×1028.4432×101
    Rank26938145107
    F21Mean2.3023×1022.5626×1022.8298×1022.5458×1022.7446×1022.5950×1022.4896×1022.5047×1023.7768×1022.6988×102
    Std8.5095×1001.6800×1012.5686×1013.3247×1011.9517×1017.6690×1001.3195×1018.4442×1007.9462×1011.9589×101
    Rank15948623107
    F22Mean1.0010×1021.9999×1038.0434×1021.0022×1021.4532×1031.0000×1021.0228×1021.0211×1032.1380×1031.0232×102
    Std4.8096×10−11.5970×1031.1113×1034.3917×10−21.8286×1032.3100×10−133.2279×1001.2872×1032.2149×1034.0114×100
    Rank29638147105
    F23Mean3.7755×1024.1635×1024.7029×1023.8959×1024.8447×1024.0323×1024.1472×1024.0247×1025.8963×1024.5003×102
    Std1.0911×1011.6898×1012.9324×1016.8787×1014.4709×1015.6348×1001.8742×1018.1687×1008.8792×1013.0546×101
    Rank16829453107
    F24Mean4.4827×1025.4044×1025.2489×1024.8972×1025.6079×1024.7430×1024.8169×1024.9840×1027.9489×1025.0152×102
    Std1.0757×1014.5778×1013.3902×1011.6597×1015.7847×1016.0055×1002.0610×1011.3899×1018.6391×1012.3700×101
    Rank18749235106
    F25Mean3.8777×1023.8706×1024.7784×1023.8374×1023.8818×1023.8691×1024.0124×1023.8779×1024.1099×1024.0877×102
    Std5.4462×1008.0647×10−12.3819×1011.8246×10−13.4076×1007.5524×10−21.9489×1011.1319×1002.1657×1012.2401×101
    Rank43101627598
    F26Mean1.2578×1031.6520×1032.0116×1032.5051×1021.4922×1031.4821×1031.7344×1031.5337×1032.2418×1031.8645×103
    Std1.9807×1021.7070×1025.7618×1024.1112×1019.6940×1027.2015×1017.1347×1021.9051×1021.7373×1031.0276×103
    Rank26914375108
    F27Mean5.1091×1025.0430×1025.9279×1025.1286×1025.3523×1024.9807×1025.4289×1025.0744×1025.7919×1025.3827×102
    Std7.7116×1008.2707×1003.8462×1016.1632×1002.1095×1014.7270×1001.7086×1013.6242×1003.5317×1011.6907×101
    Rank42105618397
    F28Mean3.3558×1024.0555×1025.9941×1023.6492×1023.5331×1023.2281×1023.3257×1024.1364×1024.6256×1023.6806×102
    Std5.3866×1013.6156×1016.9788×1013.2477×1015.9179×1013.7880×1015.2165×1012.5577×1012.3601×1015.3388×101
    Rank37105412896
    F29Mean4.5991×1026.6978×1028.5036×1025.4385×1026.7006×1025.1851×1025.5826×1025.4778×1021.0120×1037.8922×102
    Std4.4075×1011.7459×1021.8235×1025.4241×1011.4475×1023.4859×1011.0040×1028.1960×1012.1872×1021.3560×102
    Rank16937254108
    F30Mean2.9823×1036.0618×1034.0643×1063.6855×1031.8733×1045.9405×1035.0147×1034.9671×1031.5965×1045.9572×103
    Std6.1135×1024.7022×1033.1688×1063.3042×1023.4470×1042.3158×1031.9712×1032.0934×1038.7877×1033.9139×103
    Rank17102954386
    Count15007161000
    Ave rank1.735.279.103.176.674.374.534.639.036.50
    Total rank16102834597
    下载: 导出CSV

    表  5  在30维CEC2017复杂函数上的上下界结果对比

    Table  5  Comparison of upper and lower bounds on the 30-dimensional complex functions from CEC2017

    函数HCOAGCOA/DEBBO
    下界上界下界上界
    F13.8942×10-97.8898×10-33.5001×1005.0055×103
    F51.2935×1014.1788×1012.6865×1019.2083×101
    F114.0954×1007.5899×1011.3819×1018.8108×101
    F293.7200×1026.0977×1024.4500×1026.2345×102
    下载: 导出CSV

    表  6  Wilcoxon符号秩检验结果

    Table  6  Wilcoxon sign rank test results

    $p $$a=0.05 $$R^+ $$R^- $$n/w/t/l $
    HCOAG vs COA1.3039×10−7YES4531230/27/0/3
    HCOAG vs GWO1.8626×10−9YES465030/30/0/0
    HCOAG vs MEGWO2.7741×10−2YES33912630/23/0/7
    HCOAG vs HFPSO5.5879×10−9YES463230/29/0/1
    HCOAG vs DEBBO9.0000×10−6YES4293630/23/0/7
    HCOAG vs SaDE3.5390×10−8YES458730/28/0/2
    HCOAG vs SE041.3039×10−8YES461430/29/0/1
    HCOAG vs FWA1.8626×10−9YES465030/30/0/0
    HCOAG vs TLBO3.7253×10−9YES464130/29/0/1
    下载: 导出CSV

    表  7  Friedman检验结果

    Table  7  Friedman test results

    DpHCOAGCOAGWOMEGWOHFPSODEBBOSaDESE04FWATLBO
    306.3128×10-311.735.279.103.176.674.374.534.639.036.50
    下载: 导出CSV

    表  8  6种算法在K-Means聚类优化上的结果对比

    Table  8  Comparison results of the 6 algorithms on K-Means clustering optimization

    数据集HCOAGCOAMEGWOHFPSOIPSOIGA
    Wine (178, 13, 3)Mean88.6271116.730791.591693.62289.861789.564
    Std3.4479×10−22.9398×1002.5237×1006.7353×1003.9148×1002.0321×100
    Rank164532
    Heart (270, 13, 2)Mean283.7680295.3786284.5731284.7653285.0072284.4112
    Std3.9989×10−32.3404×1002.3896×10−12.3804×1005.2425×1002.1715×100
    Rank163452
    Iris (150, 4, 3)Mean29.205331.051129.265929.357829.357829.2607
    Std8.8033×10−25.7768×10−11.3448×10−11.0048×1001.0048×1009.2414×10−2
    Rank163442
    Glass (214, 9, 6)Mean55.025575.462168.881662.711457.310260.8651
    Std2.2242×1002.1402×1002.8975×1003.7975×1003.5444×1003.5855×100
    Rank165423
    Newthyroid (215, 5, 3)Mean40.053842.003340.473641.808740.821341.9155
    Std9.8154×10−37.6493×10−14.0104×10−12.8501×1002.0086×1002.8122×100
    Rank162435
    Liver disorders (345, 6, 2)Mean90.344393.534490.384991.024690.336590.3698
    Std3.8530×10−41.0160×1002.8148×10−22.6310×1002.1424×10−22.0447×10−2
    Rank264513
    Balance (625, 4, 3)Mean356.1247357.6041356.502356.0165356.0802356.4092
    Std2.3618×10−14.0943×10−13.3785×10−11.5930×10−12.0303×10−11.4966×10−1
    Rank365124
    Count500110
    Ave rank1.436.003.713.862.863.00
    Total rank164523
    下载: 导出CSV
  • [1] 刘三阳, 靳安钊. 求解约束优化问题的协同进化教与学优化算法. 自动化学报, 2018, 44(9): 1690-1697

    Liu San-Yang, JIN An-Zhao. A Co-evolutionary teaching- learning-based optimization algorithm for constrained optimization problems. Acta Automatica Sinica, 2018, 44(9): 1690-1697
    [2] 吕柏权, 张静静, 李占培, 刘廷章. 基于变换函数与填充函数的模糊粒子群优化算法. 自动化学报, 2018, 44(1): 74-86

    Lv Bai-Quan, Zhang Jing-Jing, Li Zhan-Pei, Liu Ting-Zhang. Fuzzy particle swarm optimization based on filled function and transformation function. Acta Automatica Sinica, 2018, 44(1): 74-86
    [3] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69: 46-61 doi: 10.1016/j.advengsoft.2013.12.007
    [4] Pierezan J, Coelho L D S. Coyote optimization algorithm: A new metaheuristic for global optimization problems. In: Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC). Rio de Janeiro, Brazil, USA: IEEE, 2018.
    [5] 彭喜元, 彭宇, 戴毓丰. 群智能理论及应用. 电子学报, 2003, 12A(31): 1982-1988

    Peng Xi-yuan, Peng Yu, Dai Yu-feng. Swarm intelligence theory and applications. Acta Electronica Sinica, 2003, 12A(31): 1982-1988
    [6] Wolpert D H, Macready W G. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82 doi: 10.1109/4235.585893
    [7] 张新明, 王霞, 康强, 程金凤. GWO与ABC的混合优化算法及其聚类优化. 电子学报, 2018, 46(10): 2430-2442 doi: 10.3969/j.issn.0372-2112.2018.10.017

    Zhang Xin-ming, Wang Xia, Kang Qiang, Cheng Jin-feng. Hybrid grey wolf optimizer with artificial bee colony and its application to clustering optimization. Acta Electronica Sinica, 2018, 46(10): 2430-2442 doi: 10.3969/j.issn.0372-2112.2018.10.017
    [8] Zhang X M, Kang Q, Cheng J F, Wang X. A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer. Applied Soft Computing, 2018, 67: 197-214 doi: 10.1016/j.asoc.2018.02.049
    [9] Teng Z, Lv J, Guo L. An improved hybrid grey wolf optimization algorithm. Soft Computing, 2019, 23(15): 6617-6631 doi: 10.1007/s00500-018-3310-y
    [10] Arora S, Singh H, Sharma M, Sharma S, Anand P. A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. IEEE Access, 2019, 7: 26343-26361 doi: 10.1109/ACCESS.2019.2897325
    [11] 龙文, 伍铁斌, 唐明珠, 徐明, 蔡绍洪. 基于透镜成像学习策略的灰狼优化算法. 自动化学报, 2020, 46(10): 2148−2164

    Long Wen, Wu Tie-Bin, Tang Ming-Zhu, Xu Ming, Cai Shao-hong. Grey wolf optimizer algorithm based on lens imaging learning strategy. Acta Automatica Sinica, 2020, 46(10): 2148−2164
    [12] 张新明, 王豆豆, 陈海燕, 毛文涛, 窦智, 刘尚旺. 强化最优和最差狼的郊狼优化算法及其QAP应用. 计算机应用, 2019, 39(10): 2985-2991

    Zhang Xin-ming, Wang Dou-dou, Chen Hai-yan, Mao Wen-tao, Dou Zhi, Liu Shang-wang. Best and worst coyotes strengthened coyote optimization algorithm and its application to QAP. Journal of Computer Applications, 2019, 39(10): 2985-2991
    [13] Omran M G H, Mahdavi M. Global-best harmony search. Applied Mathematics and Computation, 2008, 198(2): 643-656 doi: 10.1016/j.amc.2007.09.004
    [14] Draa A, Bouzoubia S, Boukhalfa I. A sinusoidal differential evolution algorithm for numerical optimization. Applied Soft Computing, 2015, 27: 99-126 doi: 10.1016/j.asoc.2014.11.003
    [15] Awad N H, Ali M Z, Liang J J, Qu B Y, Suganthan P N. Problem definitions and evaluation criteria for the CEC 2016 special session and competition on single objective bound constrained real-parameter numerical optimization. In: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore, 2016.
    [16] Tu Q, Chen X C, Liu X. Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Applied Soft Computing, 2019, 76: 16-30 doi: 10.1016/j.asoc.2018.11.047
    [17] Gong W, Cai Z, Ling C. DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Computing, 2010, 15(4): 645-665 doi: 10.1007/s00500-010-0591-1
    [18] Avdilek I B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Applied Soft Computing, 2018, 66: 232-249 doi: 10.1016/j.asoc.2018.02.025
    [19] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398-417 doi: 10.1109/TEVC.2008.927706
    [20] Tang D. Spherical evolution for solving continuous optimization problems. Applied Soft Computing, 2019, 81: 1-20
    [21] Tan Y, Zhu Y C. Fireworks algorithm for optimization. International Conference in Swarm Intelligence, 2010, 355-364
    [22] Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 2011, 43(3): 303-315 doi: 10.1016/j.cad.2010.12.015
    [23] 贺毅朝, 王熙照, 刘坤起, 王彦祺. 差分演化的收敛性分析与算法改进. 软件学报, 2010, 21(5): 875-885 doi: 10.3724/SP.J.1001.2010.03486

    He Yi-chao, Wang Xi-zhao, Liu Kun-qi, Wang Yan-qi. Convergent analysis and algorithmic improvement of differential evolution. Journal of Software, 2010, 21(5): 875-885 doi: 10.3724/SP.J.1001.2010.03486
    [24] Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 2011, 1(1): 3-18 doi: 10.1016/j.swevo.2011.02.002
    [25] Das P, Das D K, Dey S. A modified bee colony optimization (MBCO) and its hybridization with k-means for an application to data clustering. Applied Soft Computing, 2018, 70: 590-603 doi: 10.1016/j.asoc.2018.05.045
    [26] Jain A K. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 2010, 31(8): 651-666 doi: 10.1016/j.patrec.2009.09.011
    [27] 罗可, 李莲, 周博翔. 基于变异精密搜索的蜂群聚类算法. 控制与决策, 2014, 29(5): 838-842

    Luo Ke, Li Lian, Zhou Bo-xiang. Artificial bee colony rough clustering algorithm based on mutative precision search. Control and Decision, 2014, 29(5): 838-842
  • 期刊类型引用(20)

    1. 许家昌,郭佳,苏树智. 基于扩展型活性膜系统的彩色图像分割方法. 深圳大学学报(理工版). 2025(01): 59-67 . 百度学术
    2. 姜煜. 基于混合算法OLPSOG的负载均衡优化分析. 集成电路应用. 2025(02): 104-106 . 百度学术
    3. 葛泉波,程惠茹,张明川,郑瑞娟,朱军龙,吴庆涛. 基于PCA和ICA模式融合的非高斯特征检测识别. 自动化学报. 2024(01): 169-180 . 本站查看
    4. 李大海,李鑫,王振东. 融合小生境机制的增强麻雀搜索算法及其应用. 计算机应用研究. 2024(04): 1077-1085 . 百度学术
    5. 李大海,刘晓峰,王振东. 基于动态双种群的黏菌和花粉混合算法. 计算机应用研究. 2024(07): 2052-2060 . 百度学术
    6. 李大海,詹美欣,王振东. 混合策略改进的麻雀搜索算法及其应用. 计算机应用研究. 2023(02): 404-412 . 百度学术
    7. 刘威,郭直清,姜丰,刘光伟,靳宝,王东. 协同围攻策略改进的灰狼算法及其PID参数优化. 计算机科学与探索. 2023(03): 620-634 . 百度学术
    8. 陶新民,郭文杰,李向可,陈玮,吴永康. 基于密度峰值的依维度重置多种群粒子群算法. 软件学报. 2023(04): 1850-1869 . 百度学术
    9. 王钦甜,沈艳军. 多阶段的郊狼优化算法. 广西师范大学学报(自然科学版). 2023(03): 105-117 . 百度学术
    10. 李大海,詹美欣,王振东. 基于多个改进策略的增强麻雀搜索算法. 计算机应用. 2023(09): 2845-2854 . 百度学术
    11. 李大海,李鑫,王振东. 融合多策略的增强麻雀搜索算法及其应用. 计算机应用研究. 2023(10): 3032-3039 . 百度学术
    12. 卢磊,贺智明,黄志成. 基于多策略改进的麻雀搜索算法. 计算机与现代化. 2023(10): 23-31 . 百度学术
    13. 史国宏,刘钊. 联合黏菌—乌鸦算法及其在机械设计中的应用. 工程机械. 2023(12): 48-62+8-9 . 百度学术
    14. 张新明,陈海燕,窦育强,王善侠,刘国奇,窦智,张贝. 改进的堆优化算法及其宫颈细胞数据聚类优化. 计算机应用研究. 2023(12): 3584-3591 . 百度学术
    15. 张新明,杨方圆,刘国奇. 多策略的郊狼优化算法. 计算机应用研究. 2022(04): 1124-1131 . 百度学术
    16. 李大海,詹美欣,王振东. 求解多峰目标函数的改进阴阳对算法. 计算机应用研究. 2022(05): 1402-1409 . 百度学术
    17. 石彪,王海燕,焦品博. 基于改进GWO-LSTM的船舶主机性能预测模型. 上海海事大学学报. 2022(02): 96-102 . 百度学术
    18. 赵金金,鲁海燕,徐杰,卢梦蝶,侯新宇. 双策略学习和自适应混沌变异的郊狼优化算法. 计算机应用研究. 2022(07): 2000-2006 . 百度学术
    19. 刘宇凇,刘升. 成败历史存档的融合龙格库塔-黏菌算法. 计算机工程与应用. 2022(17): 61-71 . 百度学术
    20. 李大海,刘庆腾,艾志刚,王振东. 基于动态D向分割和混沌扰动的阴阳对优化算法. 计算机应用. 2022(09): 2788-2799 . 百度学术

    其他类型引用(23)

  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  2683
  • HTML全文浏览量:  820
  • PDF下载量:  374
  • 被引次数: 43
出版历程
  • 收稿日期:  2019-09-02
  • 录用日期:  2020-03-11
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2022-11-22

目录

/

返回文章
返回