[1]
|
胡云峰, 曲婷, 刘俊, 施竹清, 朱冰, 曹东璞. 智能汽车人机协同控制的研究现状与展望. 自动化学报, 2019, 45 (7): 1261-1280Hu Yun-Feng, Qu Ting, Liu Jun, Shi Zhu-Qing, Zhu Bing, Cao Dong-Pu. Human-machine cooperative control of intelligent vehicle: recent developments and future perspectives. Acta Automatica Sinica, 2019, 45 (7): 1261-1280 (in Chinese)
|
[2]
|
Yong S Z, Yershov D, Frazzoli E, Paden B, Michal C. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33-55 doi: 10.1109/TIV.2016.2578706
|
[3]
|
李柏, 张友民, 邵之江. 自动驾驶车辆运动规划方法综述. 控制与信息技术, 2018, 456(6): 7-12Li Bai, Zhang You-Min, Shao Zhi-Jiang. Motion planning methodologies for automated vehicles: a critical review. Control and Information Technology, 2018, 456(6): 7-12 (in Chinese)
|
[4]
|
Kawabata K, Ma L, Xue J, Zhu C, Zheng N. A path generation for automated vehicle based on Bezier curve and via-points. Robotics and Autonomous Systems, 2015, 74(A): 243-252
|
[5]
|
Li X, Sun Z, Cao D, Liu D, He H. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mechanical Systems and Signal Processing, 2017, 87(B): 118-137
|
[6]
|
Oliveira R, Cirillo M, Jonas M, Wahlberg B. Combining lattice-based planning and path optimization in autonomous heavy duty vehicle applications. In: Proceedings of the 2018 IEEE Intelligent Vehicles Symposium. Changshu, China: IEEE, 2018. 2090−2097
|
[7]
|
Bounini F, Gingras D, Pollart H, Gruyer D. Modified artificial potential field method for online path planning applications. In: Proceedings of the 2017 IEEE Intelligent Vehicles Symposium. Los Angeles, CA, USA: IEEE, 2017. 180−185
|
[8]
|
Ma L, Xue J, Kawabata K. Efficient sampling-based motion planning for on-road autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4) : 1961-1976 doi: 10.1109/TITS.2015.2389215
|
[9]
|
韩月起, 张凯, 宾洋, 秦闯, 徐云霄, 李小川, 等. 基于凸近似的避障原理及无人驾驶车辆路径规划模型预测算法. 自动化学报, 2020, 46(1): 153-167Han Yue-Qi, Zhang Kai, Bin Yang, Qin Chuang, Xu Yun-Xiao, Li Xiao-Chuan, et al. Convex approximation based avoidance theory and path planning MPC for driver-less vehicles. Acta Automatica Sinica, , 2020, 46(1): 153-167 (in Chinese)
|
[10]
|
吴伟, 刘洋, 刘威, 吴国弘, 马万经. 自动驾驶环境下交叉口车辆路径规划与最优控制模型. 自动化学报, 2020, 46(9): 1971-1985Wu Wei, Liu Yang, Liu Wei, Wu Guo-Hong, Ma Wan-Jing. A novel autonomous vehicle trajectory planning and control model for connected-and-autonomous intersections. Acta Automatica Sinica, 2020, 46(9): 1971-1985 (in Chinese)
|
[11]
|
Qureshi A H, Miao Y L, Simeonov A, Yip M C. Motion planning networks: Bridging the gap between learning-based and classical motion planners. IEEE Transactions on Robotics, 2020, 37(1): 48-66
|
[12]
|
Ye F, Zhang S, Wang P, Chan C Y. A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles. In: Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV). Nagoya, Japan: IEEE, 2021. 1073−1080
|
[13]
|
Kavraki L E, Svestka P, Latombe J C, Overmars M H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 2002, 12(4): 566-580
|
[14]
|
Janson L, Schmerling E, Clark A, Pavone M. Fast marching tree?: a fast marching sampling-based method for optimal motion planning in many dimensions. The International Journal of Robotics Research, 2015, 34(7): 883-921 doi: 10.1177/0278364915577958
|
[15]
|
LaValle S M. Rapidly-exploring Random Trees: A New Tool for Path Planning. Technical Report, TR98-11, Ames, USA: Department of Computer Science, Iowa State University, 1998.
|
[16]
|
Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 2011, 30(7): 846−894
|
[17]
|
宋晓琳, 周南, 黄正瑜, 曹昊天. 改进RRT在汽车避障局部路径规划中的应用. 湖南大学学报(自然科学版), 2017, 44: 30-37Song Xiao-Lin, Zhou Nan, Huang Zheng-Yu, Cao Hao-Tian. An improved RRT algorithm of local path planning for vehicle collision avoidance. Journal of Hunan University (Natural Sciences), 2017, 44: 30-37 (in Chinese)
|
[18]
|
贺伊琳, 高奇, 赵丹, 刘伟. 基于改进RRT算法的无人驾驶汽车轨迹规划. 西北大学学报(自然科学版), 2018, 48: 651-658He Yi-Lin, Gao Qi, Zhao Dan, Liu Wei. The trajectory planning of autonomous vehicle based on improved RRT algorithm. Journal of Northwest University (Natural Science Edition), 2018, 48: 651-658 (in Chinese)
|
[19]
|
Yoon S, Lee D, Jung J, Hyunchul D. Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. Journal of Intelligent & Robotic Systems, 2015, 34(7): 883-921
|
[20]
|
Yoshiaki K, Justin T, Sertac K, Gaston F, Emilio F, Jonathan P H. Motion planning in complex environments using closed-loop prediction. In: Proceedings of the 2008 AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii, USA: AIAA, 2008.
|
[21]
|
Gong H, Yin C, Zhang F, Hou Z, Member S, Zhang R. A path planning algorithm for unmanned vehicles based on target-oriented rapidly-exploring random tree. In: Proceedings of the 11th Asian Control Conference. Gold Coast Convention Centre, Australia: IEEE, 2017.
|
[22]
|
陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述. 兵工学报, 2017, 38(6): 1203-1214 doi: 10.3969/j.issn.1000-1093.2017.06.021Chen Hui-Yan, Chen Shu-Ping, Gong Jian-Wei. A review on the research of lateral control for intelligent vehicles. Acta Armamentarii, 2017, 38(6): 1203-1214 (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.06.021
|
[23]
|
李耀宇, 朱一凡, 李群. 基于Legendre伪谱法的UGV避障路径规划. 指挥控制与仿真, 2012, 34(4): 124-127Li Yao-Yu, Zhu Yi-Fan, Li Qun. Legendre pseudospectral path planning method for UGV obstacle avoidance. Command Control & Simulation, 2012, 34(4): 124-127 (in Chinese)
|
[24]
|
王炳琪, 杨明, 王春香, 王冰. 一种基于最优状态点的无人车路径跟踪横向控制方法. 自动化学报, 2019, 45(10): 1883-1892Wang Bing-Qi, Yang Ming, Wang Chun-Xiang, Wang Bing. Path tracking lateral control of self-driving vehicles based on the optimal state point. Acta Automatica Sinica, 2019, 45(10): 1883-1892 (in Chinese)
|