2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非平稳间歇过程数据解析与状态监控回顾与展望

赵春晖 余万科 高福荣

郑洪坤, 吕日清, 赵勇, 彭昀, 林子婷, 刘睿杰. 干涉型光纤海洋参数传感器的分布式测量方法研究. 自动化学报, 2023, 49(9): 1941−1950 doi: 10.16383/j.aas.c220682
引用本文: 赵春晖, 余万科, 高福荣. 非平稳间歇过程数据解析与状态监控回顾与展望. 自动化学报, 2020, 46(10): 2072−2091 doi: 10.16383/j.aas.c190586
Zheng Hong-Kun, Lv Ri-Qing, Zhao Yong, Peng Yun, Lin Zi-Ting, Liu Rui-Jie. Research on the distributed measurement method of ocean optical fiber sensor based on interferometer. Acta Automatica Sinica, 2023, 49(9): 1941−1950 doi: 10.16383/j.aas.c220682
Citation: Zhao Chun-Hui, Yu Wan-Ke, Gao Fu-Rong. Data analytics and condition monitoring methods for nonstationary batch processes — current status and future. Acta Automatica Sinica, 2020, 46(10): 2072−2091 doi: 10.16383/j.aas.c190586

非平稳间歇过程数据解析与状态监控回顾与展望

doi: 10.16383/j.aas.c190586
基金项目: NSFC-浙江省两化融合基金(U1709211), 浙江省重点研发计划项目(2019C03100), 浙江省重点研发计划项目(2019C01048)资助
详细信息
    作者简介:

    赵春晖:浙江大学控制科学与工程学院教授. 2003年获得中国东北大学自动化专业学士学位, 2009年获得中国东北大学控制理论与控制工程专业博士学位, 先后在中国香港科技大学、美国加州大学圣塔芭芭拉分校做博士后研究工作. 主要研究方向为机器学习, 工业大数据解析与应用, 包括化工、能源以及医疗领域. 本文通信作者. E-mail: chhzhao@zju.edu.cn

    余万科:浙江大学控制科学与工程学院博士研究生. 2016年获得北京航空航天大学宇航学院硕士学位, 2013年获得东北大学数学系学士学位. 主要研究方向为故障诊断, 过程监测. E-mail: yuwanke@zju.edu.cn

    高福荣:中国香港科技大学化学与生物分子工程学系讲座教授. 1985 年获得中国石油大学自动化专业学士学位, 1989 年和1993 年在加拿大麦吉尔大学获得硕士和博士学位. 主要研究方向为过程检测与故障诊断, 批次过程控制, 高分子材料加工及优化. E-mail: kefgao@ust.hk

Data Analytics and Condition Monitoring Methods for Nonstationary Batch Processes — Current Status and Future

Funds: Supported by NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization (U1709211), Zhejiang Key Research and Development Project (2019C03100), and Zhejiang Key Research and Development Project (2019C01048)
  • 摘要: 间歇过程作为制造业的重要生产方式之一, 其高效运行是智能制造的优先主题. 为了保障生产过程的高效运行, 面向间歇生产的过程数据解析与状态监控算法在最近三十年间得到大家的广泛关注, 发展速度稳步提升. 但由于间歇过程本身的多重时变大范围非平稳运行复杂特性, 以及对状态监控与故障诊断要求的提高, 现有的理论和方法仍面临着挑战. 本文从分析间歇过程的特性出发, 从数据解析的角度, 总结了近三十年来非平稳间歇过程高性能监控研究的发展. 一方面对间歇过程监控领域几种经典的方法体系进行了总结和梳理, 另一方面揭示了尚存在的问题以及未来可能的研究思路和发展脉络.
  • 随着我国综合实力的提高, 海洋在经济发展、军事安全、科学研究等领域的作用也越来越重要, 因而得到了广泛的关注[1-2]. 传感器作为获取信息的一种重要手段, 在海洋监测方面也发挥着越来越大的作用. 光纤传感器作为一种新型的无源传感器件, 具有灵敏度高、体积小、抗电磁干扰等优点[3-4], 已经在很多领域发挥作用. 近年来, 面向海洋监测应用的光纤传感器也得到了快速发展, 大量的海洋参数传感方案被提出, 目前主要涉及到海洋的温度、盐度和深度三个参数的测量[5]. 由于分布式光纤仅对温度和应变敏感, 目前光纤传感器的温度盐度深度测量以点式传感器为主.

    光纤光栅(Fiber bragg grating, FBG)通常结合敏感材料实现对海洋温盐深参数的测量, 通过敏感材料实现灵敏度的放大. 中科院半导体所的Wang等[6]通过将FBG固定在毛细不锈钢管中实现了对FBG的温度增敏, 温度分辨力可以达到0.01 ℃; 通过将FBG和弹性膜片增敏结构相结合可以实现1.57 nm/MPa的压力测量灵敏度[7]; 将FBG和水凝胶相结合[8], 利用水凝胶的水分累积和扩散特性将盐度变化转换为FBG栅区的应变变化, 实现了灵敏度为9.5 nm/‰ 的盐度测量. 由于FBG的光谱形状为一个窄带宽的峰值, 光谱的大范围高分辨率解调实现较为方便, 而且可以通过波分复用技术实现多个传感器的级联. 但是基于该原理的传感器灵敏度普遍偏低.

    基于该种情况, 研究者们提出了多种基于干涉原理的高灵敏海水温度盐度测量方案. 2010年, Liao等[9]通过飞秒激光刻蚀技术在光纤上形成Mach-Zehnder干涉仪, 直接将待测介质作为传感臂, 传感器的折射率灵敏度可以达到9148 nm/RIU, 可以实现nm/‰量级的盐度灵敏度. 本课题组提出了一种同一结构中两种干涉效应共存的传感方案[10], 在一个结构中就可以对温度和盐度双参数进行解耦. 之后, 为了方便传感器的布设, 降低外界拉伸对传感器的影响, 将透射式传感结构更改为反射式[11]. 这些基于干涉原理的传感器虽然具有很高的测量灵敏度, 但是传感器的复用比较困难. 基于干涉原理的光纤传感器的光谱在波长域内是准正弦分布的, 传感器的灵敏度和测量范围存在矛盾, 虽然已经通过干涉光谱解调算法解决了基于干涉原理的光纤传感器灵敏度和测量范围之间的矛盾[12-14], 但是同一系统中通过频分复用技术复用的传感器数量也是有限的. 为了解决干涉式光纤传感器的复用问题, 本文提出了一种基于调频连续波(Frequency modulated continuous wave, FMCW)技术的复用方案, 将反射端面返回的光与参考臂的光形成Mach-Zehnder干涉仪, 用于确定传感器的位置; 通过同一传感器不同反射端面间的拍频恢复传感器的光谱. 搭建了用于传感器分布测试的系统, 编写了数据处理软件用于光谱的采集与处理, 通过在系统中接入用于温度盐度测试的级联法布里−珀罗干涉仪(Fabry-Perot interferometer, FPI)探头和用于应变测试的FPI探头, 分别对应海洋环境测试中的温度、盐度、深度这三个基本参数, 并测试了实验系统中传感器的响应特性.

    图1给出了FMCW的技术原理图, FMCW技术利用可调谐激光器(Tunable laser source, TLS)发出频率随时间变化的光, 反射光因在光纤中传输表现出相对于参考光的延时特性, 通过探测器(Photoelectric detector, PD)探测到参考光和传感光形成的干涉光, 通过干涉光的频率反推得到反射端面的位置信息[15-16]. 假设入射光是调频速度为$ \gamma $ Hz/s的线性扫频光, 入射光经过耦合器分到参考臂和传感臂上, 参考臂的电场表达式可以写为:

    $$ \begin{aligned} E_{\rm{ref}} = \sqrt{a}E_{0}{\rm{e}}^{{\rm{j}}(2 \pi f_{0}t+\pi \gamma t^{2})} \end{aligned} $$ (1)

    其中$ f_{0} $表示扫频光的起始频率, $ E_{0} $为入射电场的幅值, $ a $表示耦合器到参考臂的分光比.

    图 1  FMCW原理示意图
    Fig. 1  Schematic graph of FMCW

    当入射光从反射面返回时, 可以表示为一个与入射光存在时间延时的扫频信号:

    $$ E_{\rm{sen}} = \sqrt{(1-a)r}E_{0}{\rm{e}}^{{\rm{j}}[2\pi f_{0}(t-\tau)+\pi \gamma (t-\tau)^{2}]} $$ (2)

    其中$ \tau $表示由于参考臂与传感臂臂长差造成的时延差, 具体可以计算为$ \tau = 2n\Delta l/c $. $ r $表示传感器端面的反射率. 两束光相干之后通过探测器对相干光进行探测, 探测得到的光强可以表示为:

    $$ \begin{split} I=\;& (E_{\rm{ref}}+E_{\rm{sen}})(E_{\rm{ref}}+E_{\rm{sen}})^{*} = \\ &[a+r(1-a)]E_{0}^{2}\;+ \\ &2\sqrt{ar(1-a)}\cos(2\pi \gamma \tau t+2\pi f_{0}\tau-\pi\gamma\tau^{2}) \end{split} $$ (3)

    可以看出, 拍频信号与参考光和传感臂间的时延存在线性对应关系, 进而可以通过该方法确定传感臂与参考臂的长度差. 图2给出了参考臂和传感臂光频率的变化情况, 两束具有时延的光形成了一个具有固定频率差的干涉信号, 这与式(3)是相同的. 当系统中的传感臂中存在多个反射面时, 会形成多个与参考臂具有不同光程差的干涉信号, 根据光程差可以确定反射面所处的位置, 通过不同反射端面与参考臂形成的干涉光谱间的拍频, 可以反推得到干涉光谱的信息, 进而可以实现单个传感器干涉光谱的还原.

    图 2  参考臂和传感臂频率随时间的变化
    Fig. 2  Frequency changing of reference beam and sensing arm with time

    本文编写了MATLAB代码对基于FMCW技术的传感器复用系统进行了仿真, 仿真中采用的系统如图3所示, 仿真中设置可调谐激光器的波长扫描范围为1530 nm ~ 1570 nm, 扫频速度大致为10 THz/s, 将99%注入到传感系统的传感臂中用于得到较强的反射光. 环形器将光注入到复用在传感臂上的传感器中并收集传感器的反射光. 用于传感器分光的耦合器分光比为95 : 5, 并在系统的4 m、5 m和6 m位置处设置三个FPI传感器, 通过平衡探测器(Balanced photoelectric detector, BPD)对相干光进行探测.

    图 3  分布式传感仿真系统图
    Fig. 3  Simulation configuration of the distributed sensing system

    图4给出了系统的仿真光谱, 仿真光谱包含了不同位置处反射面的光谱叠加情况, 从时域光谱上很难区分不同反射面, 采用快速傅里叶变换(Fast Fourier transform, FFT)对叠加光谱进行了频谱分析, 可以得到不同反射端面的位置信息. 图5(a)给出了傅里叶分析的结果, 可以看出, 在频谱的4 m、5 m、6 m位置处出现了3个特征频率, 频谱中的1 m和2 m处的特征频率则是由于3个FPI传感器之间拍频形成的. 由于传感臂的反射光很弱, 因而传感器间拍频信号的强度也会很弱, 可以通过提高参考臂信号强度的方法进一步提高参考光与传感光拍频信号强度, 降低传感器之间光谱拍频对光谱恢复的影响. 由于每个FPI都是由相邻很近的两个反射面构成的, 为了实现对干涉光谱的恢复, 对4 m处的频谱进行了放大, 由图5(b)给出, 发现两个端面在频域是可以区分的, 因而可以实现对传感器光谱的还原.

    图 4  仿真得到的系统光谱
    Fig. 4  Simulated spectrum of the system
    图 5  仿真光谱的频谱特性图((a)仿真光谱频谱特性图; (b)仿真光谱频谱特性分析放大图)
    Fig. 5  Frequency spectrum of the simulated spectrum ((a) Frequency spectrum of the simulated spectrum; (b) Partial enlarged drawing of the frequency spectrum)

    之后对FPI光谱的恢复方法进行了研究, 利用矩形窗将传感器特征频谱处的复频谱信号截取出来, 补零后对其进行反傅里叶变换, 得到还原光谱, 如图6所示. 信号通过带通滤波器后会产生延时, 延时的大小与滤波器设置的参数有关, 通过将滤波后数据延时点删除可以消除滤波延时的影响. 由于恢复的传感器光谱为同一传感器两个反射面与参考臂形成的干涉光谱间的拍频, 两个信号的延时特性一致, 因而对恢复信号的影响可以忽略. 此外, 由于系统中同一传感器的延时参数是统一的, 即使带通滤波对系统响应光谱有微小影响也是可以忽略的.

    图 6  还原光谱与真实光谱对比((a)周期不匹配的情况; (b)周期匹配的情况)
    Fig. 6  Comparison between the retrieved and real spectrum ((a) Mismatch phenomenon; (b) Match phenomenon)

    虽然真实光谱和还原光谱具有近似的谱形, 但是还原光谱的谷值处较为尖锐, 因为在反傅里叶变换(Inverse FFT, IFFT)后对信号进行取模运算, 导致信号没有负值部分, 这会造成信号的失真. 通过分析, 发现信号在拍频时导致了频率的减半, 具体原因可以由式(4) 给出, 可以看出两个信号在进行拍频之后会形成一个高频和低频信号的乘积, 拍频后的低频信号频率为两个信号频率差的一半. 因而可以通过倍频的方法将信号频率调整为一致, 即对信号做一个平方, 本方案中利用积化和差公式将拍频信号倍频, 使得拍频信号与真实信号频率相同.

    $$ \cos \left ( a \right )+\cos \left ( b \right ) = 2\cos \left ( \frac{a+b}{2} \right) \cos \left ( \frac{a-b}{2} \right) $$ (4)

    之后对系统中可以复用的传感器数量进行理论计算, 第$ { N} $个端面的反射强度为:

    $$ P_{\rm{out}} = P_{\rm{in}}r_{\rm{m}}r_{ c1,N}^{2}(1-\alpha_{N})^{2}\prod\limits_{ n = 1}^{N-1} {r_{ c2,n}^{2}(1-\alpha_{n})^2} $$ (5)

    其中$ P_{\rm{in}} $表示输入到参考臂中的光, $ r_{\rm{m}} $表示光纤反射端面的反射率, $ P_{\rm{out}} $是反射面反射到探测器的能量. $ r_{ c1,N} $表示第$ {N} $个耦合器第1个端口的输出能量比, $ r_{c2,n} $表示第$ {n} $个耦合器第2个端口的输出能量比, 平方表示光在耦合器中传播一个来回, $ \alpha_{N} $表示第$N $个耦合器的插入损耗. 假设本系统中采用99 : 1的耦合器将光分配给系统中的传感器, 传感器法兰间的连接没有损耗, 所有FPI传感器端面都置于盐水(折射率近似为1.33)中, 端面的反射率$ r_{\rm{m}} $大概为0.0025, 进入传感臂的光功率为10 mW, 传感器中第500个传感器的反射能量为2.2×$ 10^{-10} $ mW, 如果参考臂的输入光功率为20 μW, 那么两束光相干后的光功率约为4.2 nW. 这个光强度大于探测器的噪声等效功率, 可以通过光电探测器探测得到.

    本方案中采用的方案为相干探测方案, 最大的传感长度需要综合考虑系统中光源的线宽、数据采集卡的采样率以及可调谐激光器的波长扫描速度; 根据光源线宽和相干长度之间的关系: $\Delta v = {c}/\left(2nL \right)$, 本方案中采用的可调谐激光器的线宽为60 kHz, 光源的相干长度为1.66 km. 按照本方案中设置的采样率(62.5 MHz)和波长扫描速度(80 nm/s), 为了利用参考干涉仪光谱实现等频率重采样, 参考干涉仪每个周期至少有5个采样点, 根据干涉光谱计算公式$ \Delta \lambda = \lambda^{2}/\left(2nL\right) $, 系统的最大传感距离为125 m.

    为了对系统的特性进行测试, 搭建了实验测试系统, 为了实现高的距离分辨力, 系统中采用的光频率扫描范围应该设置的尽可能大, 本文采用的可调谐激光器是等波长间隔扫描的, 然而干涉光谱在波长域并不是标准的正弦分布, 根据干涉仪的干涉光谱公式$ y = {\rm{cos}}(2\pi 2nl/\lambda) $, 波长位于正弦函数的分母上, 虽然波长相对于腔长较小, 得到的干涉光谱随波长是一个类正弦信号, 但是这也会导致FFT分析结果不准确, 尤其是在波长范围较大的情况下. 为了消除激光器非线性扫频的影响, 本方案中采用了附加干涉仪作为重采样的标准, 利用干涉光谱在频域是标准三角函数的特点, 三角函数在零点之间的间隔是确定的, 通过利用参考干涉仪的零点实现光谱的等频率间隔重采样.

    搭建了实验系统如图7所示的带有附加干涉仪的传感系统. 采用的光源为波长范围为1480 nm ~ 1640 nm, 品牌为Santec, 型号为TSL770的可调谐激光器, 调谐速度为0 ~ 200 nm/s. 系统中使用品牌为Conquer, 型号为KG-PR-200 M的光探测器, 探测带宽为200 MHz, 用于获取参考部分的干涉信号, 所选的PD的波长探测范围为850 nm ~ 1650 nm. 通过 Thorlabs品牌的PDB570C型号的BPD将传感部分的参考臂与传感臂的干涉光进行相干探测. 本方案中采用的BPD工作波长范围可以覆盖1200 nm ~ 1700 nm, 探测带宽可以覆盖0 ~ 400 MHz.

    图 7  实验搭建的FMCW系统
    Fig. 7  FMCW system configuration in experiment

    选用Advantech公司的PCIE-1840采集卡(Data acquisition, DAQ)作为信号采集器件将探测器得到的信号读入电脑中, 该采集卡可以实现4通道16位分辨率的信号采集, 每个通道的采样率可以达到125 MHz, 在本实验中将采集卡的采样率设置为62.5 MHz, 实验中可调谐激光器的波长范围为1530 nm ~ 1570 nm, 波长调谐速度为80 nm/s, 数据每次采样时间为0.5 s. 需要用到采集卡的三个通道, 一个通道用作采集卡的触发信号, 一个通道用于参考信号的采集, 一个通道用于传感信号的采集. 在利用参考干涉仪的光谱进行重采样时, 将参考信号作为参考时钟, 信号的等波数采样可以通过硬件法或者软件法实现. 硬件法是通过将PD探测得到的参考信号作为外部时钟信号输入到采集卡中. 软件法则是将PD探测到的参考采样信号和BPD探测到的传感信号同时输入到采集卡的信号通道中. 由于每次扫描产生的参考信号不能连续稳定存在, 因而不能作为一个可靠的外部时钟. 此外, 采集卡对外部时钟的频率是有限制的, 参考时钟的频率应该为10 MHz左右才可以满足外部时钟采集需求. 故采用了软件法对光谱进行重采样.

    为了实现对系统光谱的处理与单个传感器的光谱恢复, 基于LabView开发环境编写了用于数据处理的软件, 用于系统光谱的实时显示与处理. 图8给出了数据处理软件的前面板, 前面板包含多个用于设置采集系统的输入控件, 主要包括可调谐激光器的起始扫描波长、终止波长、扫描速度的输入, 采集卡的采样速率也可以通过输入控件进行设置, 信号通道下拉菜单可以对信号的输入通道进行选择. 此外, 为了提高数据的读取效率, 设置了用于调整采样段长与采样段数的输入控件. 为了直观地显示光谱信息, 图中右侧的4个波形图分别用于显示原始采样光谱、重采样后的光谱、重采样光谱的频谱特性图以及还原后传感器的干涉光谱. 理论上可以做到全部传感器光谱的显示, 由于目前复用规模较小, 为了清晰地显示单个光谱的变化情况, 显示面板中只显示了单个传感器光谱的恢复, 之后会考虑进行多个传感器光谱的同时处理, 利用还原光谱显示控件作为带通滤波的参数选择参考, 构建多个传感器光谱滤波参数数组, 实现多个传感器光谱同时恢复.

    图 8  数据采集处理软件前面板
    Fig. 8  Front panel of the data processing software

    图9给出了数据采集处理软件的后面板, 后面板中对数据的主要操作包括采集卡配置、信号重采样、FFT频谱分析、IFFT光谱还原以及光谱存储几个部分, 这3个过程都涉及到大量的数据操作, 开始时采用了LabView内置的VI函数对光谱数据进行处理, 由于光谱数据量较大, 处理效率较低. 之后改用LabView内置的MATLAB脚本VI函数作为数据处理函数, 大大地提高了数据处理速度. 本实验中利用参考干涉仪作为参考时钟对传感光谱进行等频率重采样, 为了方便信号采样, 将时钟信号减去基值后通过比较器将波形从正弦波转换为方波, 当方波两个相邻采样点出现正负跳变时, 采集一个传感信号点, 通过该种方法可以实现快速的传感光谱重采样. 利用FFT对重采样的信号进行频谱特征分析, 之后通过矩形窗截取传感光谱的特征频谱, 实现传感器光谱的恢复.

    图 9  数据处理软件后面板
    Fig. 9  Back panel of the data processing software

    在所设计的大容量传感器复用系统中进行了应变和盐度实验. 本文侧重于分布式干涉式光纤传感器的实现, 因而选取了应变模拟压力的测量效果, 海洋的压力通过增敏结构以应变的形式传递到光纤传感器结构上. 在系统中接入了3个传感器, 传感器1和传感器3为常见的基于单模−空心−单模结构的光纤FPI应变传感器, 该传感器通过在单模光纤中间熔接一段空心光纤制作; 传感器2为利用单模光纤错位熔接制作的双FPI级联的温盐传感器, 该传感器的制作方法可以参考本课题组的论文[12]. 首先将传感器接入到FMCW系统中, 经过采集软件的重采样之后, 得到的复合光谱如图10所示.

    图 10  重采样后的复合传感光谱
    Fig. 10  Composite sensing spectrum after resampling

    之后用FFT分析了复合光谱的频率特性, 图11展示出了光谱的频谱特性, 子图中给出了接入3个传感器的频谱情况, 对应整体频谱中蓝色椭圆圈出的部分. 可以看出, 由于本方案中采用的波长扫描范围较大, 所以光谱的频率分辨力较高, 可以区分同一传感器内的不同反射端面. 图中紫色的特征峰值是由于光纤法兰连接处的反射造成的. 可以明显地看出, 传感器3的光强远大于传感器1和传感器2的光强, 这是为了能够区分传感器位置. 传感器3接入的光为95%, 传感器3的反射光强度接近前两个传感器的20倍, 且3个传感器是等间隔分布的, 通过这种方法可以快速地找出系统中3个传感器的特征频率. 图中绿色的特征频率是由于传感器以及法兰之间的反射光拍频形成的.

    图 11  重采样光谱的频谱图
    Fig. 11  Frequency spectrum of the resampled spectrum

    图12给出了传感器的应力测试系统, 通过三维位移滑台用于固定光纤, 铁架台用于悬挂光纤, 将砝码悬挂在光纤自由端, 用于给传感结构施加定量的应力. 在弹性范围内, 光纤的应力和所施加的质量之间存在线性对应关系. 因为砝码的质量精度可以做到很高, 本文采用砝码悬挂法对光纤实现精确的应变控制.

    图 12  光纤应力特性测试装置
    Fig. 12  Strain characteristic test device of the optical fiber

    对传感器中传感器1进行应力测试后, 从数据处理软件上得到了不同应变下的光谱, 对光谱数据进行了处理. 对获取的干涉光谱进行平滑与寻峰操作, 得到了不同质量下的干涉峰值, 对不同质量下的干涉峰值进行拟合, 得到的拟合结果如图13(a)所示, 可以看出, 随着所施加砝码质量的增加, 干涉光谱的峰值波长表现出红移响应, 传感器的灵敏度可以达到23.35 pm/g, 拟合线性度可以达到0.997. 图13(b)给出了传感器1在同一质量下连续监测38次的波长变化情况, 测量标准差(Standard deviation, SD)可以达到40.85 pm, 这可能是由于环境波动以及光源抖动等因素造成的.

    图 13  应力传感器响应特性((a)不同质量下谐振波长拟合效果; (b)固定质量下传感器波长监测)
    Fig. 13  Responses of the strain sensor ((a) Wavelength fitting result under different weights; (b) Wavelength record under a fixed weight)

    之后对双FPI级联的温盐传感器的盐度(折射率)响应特性进行测试, 将传感器2放置于设计的盐度传感平台上. 通过胶头滴管向传感平台一侧滴加盐水, 通过吸水纸从另一侧吸收盐水, 将待测浓度的盐水进行3次冲刷用于减小浓度差的影响. 本方案中采用吸水纸的原因在于盐水的表面张力相对于有机溶液较大, 盐水无法可靠浸入传感结构(或者传感器的响应时间较长), 影响测试结果的准确性. 在实际应用中不需要更换液体, 只需要保证待测液体浸入到传感器即可, 可以考虑事先将传感器结构浸泡于有机溶液中. 由于本传感器结构较小, 浸泡需要的有机溶剂较少, 对实际测量产生的影响可以忽略, 测试环境由图14给出. 盐度测试采用的是海洋国家计量中心生产的中国系列标准海水.

    图 14  传感器盐度特性测试装置
    Fig. 14  Salinity characteristic test device of the sensor

    图15给出了传感器的光谱情况, 图15(a)表示传感器的原始光谱, 这包含两个FPI传感器的混叠光谱, 通过带通滤波器将两个传感器的光谱进行恢复, 对盐度敏感的传感器光谱在图15(b)中给出, 对温度敏感的传感器光谱在图15(c)中给出. 可以看出, 使用带通滤波器可以很好地区分两个传感器光谱.

    图 15  传感器2的光谱分解效果
    Fig. 15  Spectrum decomposition of sensor2

    本实验中仅对盐度响应特性进行测试, 对不同盐度下的响应光谱进行了分析. 分析结果在图16中给出, 对光谱的特征峰值与盐水浓度进行了线性拟合, 光谱随着盐度的增加表现出右移响应. 传感器的盐度灵敏度可以达到242.58 pm/‰, 拟合线性度可以达到0.9996, 传感器的盐度和波长之间具有很好的响应特性. 该传感器的盐度灵敏度与文献[17]基本是一致的, 可以认为传感器的性能不受到复用系统影响. 传感器随盐度变化的波长移动量达到9.7 nm, 光谱移动量接近光谱周期的2倍, 采用光谱峰值追踪法无法进行有效的光谱处理. 本次实验中, 结合经验法对光谱进行寻峰, 之后的实验可以考虑采用干涉光谱腔长解调技术对光谱进行解调[12], 就可以实现大动态范围、高分辨力的光谱解调.

    图 16  传感器2盐度响应特性拟合
    Fig. 16  Salinity response characteristic fitting result of sensor 2

    图17给出了传感器在同一盐度下光谱特征峰值连续监测的效果, 通过计算得到该传感器的波长标准差为20.68 pm, 对应盐度的标准差为0.085‰. 连续监测结果表明, 传感器在该复用系统中仍然可以实现较好的传感效果.

    图 17  传感器2盐度光谱的连续监测效果
    Fig. 17  Continuous wavelength record of the salinity spectrum of sensor 2

    本文提出了一种基于FMCW原理的干涉式光纤传感器的复用方法, 利用传感器的反射端面和参考臂形成的Mach-Zehnder干涉光谱之间的拍频实现传感器光谱还原, 搭建了用于大容量传感器复用的实验系统, 编写了用于数据采集与处理的软件, 实现了数据的实时采集以及对系统内单个传感器光谱的还原, 测试了系统中传感器的温度和盐度响应特性, 实验结果表明, 该复用系统在实现大容量传感器复用的同时不影响单个传感器的传感性能. 所提出的复用方法可以用于基于光纤传感器阵列的海洋参数立体剖面监测以及多点温度监测等应用场合.

  • 图  1  “多重时变”本质特性示意图

    Fig.  1  The characteristics of the batch process

    图  2  间歇过程的三维数据表示[16]

    Fig.  2  Batch process data in three dimensions[16]

    图  3  将三维数据展开成二维数据的6种方式

    Fig.  3  Unfold the three dimensions data into two dimensions using six different manners

    图  4  不等长操作时段的间歇过程示意图

    Fig.  4  An example of the batch process with uneven-length batches

    图  5  间歇过程多模态切换示意图

    Fig.  5  Normal shift of operation phases in batch process

    图  6  两模态间歇过程时段分析结果

    Fig.  6  Analysis result of batch process with two operation phases

    表  1  时段划分方法总结对比

    Table  1  The comparison of different phase partition methods

    时段划分方法 划分依据 优点 缺点
    过程机理法[45, 48, 72] 利用实际间歇工业过程运行机理的变化来划分过程运行时段, 要求一定的专家经验和过程知识. 如果间歇生产过程相对简单或者工程师对此比较熟悉, 则可以比较容易地获取过程机理知识实现时段划分. 工业生产过程往往机理复杂, 很难在短时间内获取相关的知识和经验, 从而极大地限制和约束了其顺利实施施和推广应用.
    特征分析方法[7375] 时段的切换对应引起相应测量变量的变化. 对某些过程变量或从中提取的特征变量进行分析, 借助其沿时间轴上的变化判断时段信息. 指示变量方法是其中一种典型代表. 当时段发生切换或者变化, 过程特性变化, 相应的某些过程变量或是特征变量亦发生显著变化, 可用于指示不同时段. 算法较为简单. 并不是每个工业过程中都存在并能找到这样的“指示”变量.
    k-means[6266] 通过相似度度量, 分析不同时间点上的潜在相关特性的相似与不同, 如果时间片具有相似特性则被归到同一类中, 具有显著差异则被分到不同类中. 该方法能够自动划分不同的多个时段, 不需借助任何过程机理和知识. 分类的结果决定于过程相关性在时间方向上的变化规律. 没有考虑间歇过程时段运行的时序性, 因此划分结果中会出现时间上不连续的具有相似过程相关性的时间片被分在同一个聚类中. 时段划分结果可读性有所欠缺, 需要针对划分结果进行进一步的后续处理. 此外, 该划分方法根据距离定义衡量过程相关特性的相似度, 聚类的结果受到相似性衡量指标的影响, 而该指标并不能与过程监测的目的直接相关.
    MPPCA[7475] 一种优化策略, 通过对不同时间点进行不断尝试, 分析在该点的划分所得到的局部模型是否能够改善原有模型对数据的重构精度, 以此来确定该点的划分是否合适. 无需过程先验知识条件, 自动划分的各个时段时间连续, 解释性较强. 易陷入局部最优, 导致时段划分结果不能更好的反映过程特性变化.
    SSPP[7677] 自动地按照间歇生产过程运行时间顺序捕捉潜在过程特性的发展变化, 通过评估时段划分对监测统计量的影响确定合适的时段划分点. 无需过程先验知识条件, 深入考虑了间歇过程潜在特性的时变性和实际过程运行的时序性以及时段划分结果对于之后监测性能的影响. 对过程时段特性变化的实时捕捉具有一定的时间延迟.
    下载: 导出CSV

    表  2  多向分析方法与子时段分析方法对比

    Table  2  The comparison of multi-way methods and phase partition methods

    方法 优点 缺点
    多向分析法 分析方法相对简单, 直接针对展开的二维数据矩阵进行分析, 可借用传统的连续过程方法. 针对整个过程只需要建立一个模型. 无法有效分析过程特性时间上的变化规律.
    子时段分析方法 1)可以更细致地揭示过程运行的潜在特征, 更好地体现过程运行的局部特征, 促进对复杂工业过程的了解;
    2)在每个子时段可以很容易建立统计分析模型, 结构简单, 模型实用;
    3)基于子时段可以很容易建立过程监测模型并实现在线应用而无需预估未知数据;
    4)可以提高在线故障检测的精度和灵敏度, 并有利于后续准确的故障隔离和诊断;
    5)可以深入分析质量指标和每个时段的具体关系, 找出影响质量的关键时段和预测变量等关键性因素, 有利于产品质量的进一步改进.
    需要进行时段划分, 分析过程特性在同一个操作周次内的变化.
    下载: 导出CSV
  • [1] 赵春晖, 陆宁云. 间歇过程统计监测与质量分析. 北京: 科学出版社, 2014.

    Zhao Chun-Hui, Lu Ning-Yun. Statistical Monitoring and Quality Analysis of Batch Process. Beijing: Science Press, 2014.
    [2] Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40(8): 1361−1375 doi: 10.1002/aic.690400809
    [3] Bhatia T, Biegler L T. Dynamic optimization in the design and scheduling of multiproduct batch plants. Industrial & Engineering Chemistry Research, 1996, 35(7): 2234−2246
    [4] Méndez C A, Cerdá J, Grossmann I E, Harjunkoski I, Fahl M. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers & Chemical Engineering, 2006, 30(6-7): 913−946
    [5] Lane S, Martin E B, Kooijmans R, Morris A J. Performance monitoring of a multi-product semi-batch process. Journal of Process Control, 2001, 11(1): 1−11 doi: 10.1016/S0959-1524(99)00063-3
    [6] Edgar T F, Butler S W, Campbell W J, Pfeiffer C, Bode C, Hwang S B, et al. Automatic control in microelectronics manufacturing: Practices, challenges, and possibilities. Automatica, 2000, 36(11): 1567−1603 doi: 10.1016/S0005-1098(00)00084-4
    [7] 赵春晖, 王福利. 工业过程运行状态智能监控: 数据驱动方法. 北京: 化学工业出版社, 2019.

    Zhao Chun-Hui, Wang Fu-Li. Intelligent Monitoring of Industrial Process Operation Status: Data-driven Methods. Beijing: Chemical Industry Press, 2019.
    [8] Engle R F, Granger C W J. Cointegration and error correction: Representation, estimation and testing. Econometrica, 1987, 55: 251−276 doi: 10.2307/1913236
    [9] Khediri I B, Limam M, Weihs C. Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring. Computers & Industrial Engineering, 2011, 61(3): 437−446
    [10] Liu J L, Chen D S. Nonstationary fault detection and diagnosis for multimode processes. AIChE Journal, 2010, 56(1): 207−219
    [11] Ündey C, Ertunč S, Mistretta T, Looze B. Applied advanced process analytics in biopharmaceutical manufacturing: Challenges and prospects in real-time monitoring and control. Journal of Process Control, 2010, 20(9): 1009−1018 doi: 10.1016/j.jprocont.2010.05.008
    [12] Qin S J. Process data analytics in the era of big data. AIChE Journal, 2014, 60(9): 3092−3100 doi: 10.1002/aic.14523
    [13] Chiang L, Lu B, Castillo I. Big data analytics in chemical engineering. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 63−85 doi: 10.1146/annurev-chembioeng-060816-101555
    [14] He Q P, Wang J. Statistical process monitoring as a big data analytics tool for smart manufacturing. Journal of Process Control, 2018, 67: 35−43 doi: 10.1016/j.jprocont.2017.06.012
    [15] 卢静宜, 曹志兴, 高福荣. 批次过程控制—回顾与展望. 自动化学报, 2017, 43(6): 933−943

    Lu Jing-Yi, Cao Zhi-Xing, Gao Fu-Rong. Batch process control—overview and outlook. Acta Automatica Sinica, 2017, 43(6): 933−943
    [16] 赵春晖. 多时段间歇过程统计建模、在线监测及质量预报 [博士学位论文], 东北大学, 中国, 2009

    Zhao Chun-Hui. Statistical Modeling, Online Monitoring and Quality Prediction for Multiphase Batch Processes [Ph.D. dissertation], Northeastern University, China, 2009
    [17] Shewhart W A. Statistical Method from the Viewpoint of Quality Control. New York, USA: John Dover, 1986.
    [18] Page E S. Continuous inspection schemes. Biometrika, 1954, 41(1-2): 100−115 doi: 10.1093/biomet/41.1-2.100
    [19] Page E S. Cumulative sum charts. Technometrics, 1961, 3(1): 1−9 doi: 10.1080/00401706.1961.10489922
    [20] Roberts S W. Control chart tests based on geometric moving average. Technometrics, 1959, 1(3): 239−250 doi: 10.1080/00401706.1959.10489860
    [21] Zhao C H, Sun Y X. Multispace total projiection to latent structures and its application to online proceess monitoring, IEEE Transacttions on Control Systeme Technology, 2014, 22(3): 868-883
    [22] Dunteman G H. Principal Component Analysis. London, UK: SAGE Publication LTD, 1989.
    [23] Jackson J E. A User′s Guide to Principal Components. New York, USA: Wiley, 1991.
    [24] Geladi P, Kowalski B R. Partial least-squares regression: A tutorial. Analytica Chimica Acta, 1986, 185: 1−17 doi: 10.1016/0003-2670(86)80028-9
    [25] Höskuldsson A. PLS regression methods. Journal of Chemometrics, 1988, 2(3): 211−228 doi: 10.1002/cem.1180020306
    [26] 王惠文. 偏最小二乘回归方法及其应用. 北京: 国防工业出版社, 1999.

    Wang Hui-Wen. Partial Least-Squares Regression-Method and Applications. Beijing: National Defense Industry Press, 1999.
    [27] Dayal B S, MacGregor J F. Improved PLS algorithms. Journal of Chemometrics, 1997, 11(1): 73−85 doi: 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-#
    [28] Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36(3): 287−314 doi: 10.1016/0165-1684(94)90029-9
    [29] Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7): 1483−1492 doi: 10.1162/neco.1997.9.7.1483
    [30] Hyvärinen A, Oja E. Independent component analysis: Algorithms and applications. Neural Networks, 2000, 13(4-5): 411−430 doi: 10.1016/S0893-6080(00)00026-5
    [31] Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49(4): 969−976 doi: 10.1002/aic.690490414
    [32] Smilde A, Bro R, Geladi P. Multi-Way Analysis, Applications in the Chemical Science. New York, USA: Wiley, 2003.
    [33] Bro R. PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 149−171 doi: 10.1016/S0169-7439(97)00032-4
    [34] Tucker L R. The extension of factor analysis to three-dimensional matrices. Contributions to Mathematical Psychology. New York, USA: Holt, Rinehart and Winston, 1964. 110−162
    [35] Bro R. Multiway calibration. Multilinear PLS. Journal of Chemometrics, 1996, 10(1): 47−61 doi: 10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO;2-C
    [36] Sanchez E, Kowalski B R. Tensorial resolution: A direct trilinear decomposition. Journal of Chemometrics, 1990, 4(1): 29−45 doi: 10.1002/cem.1180040105
    [37] Louwerse D J, Smilde A K. Multivariate statistical process control of batch processes based on three-way models. Chemical Engineering Science, 2000, 55(7): 1225−1235 doi: 10.1016/S0009-2509(99)00408-X
    [38] Smilde A K. Comments on three-way analyses used for batch process data. Journal of Chemometrics, 2001, 15(1): 19−27 doi: 10.1002/1099-128X(200101)15:1<19::AID-CEM599>3.0.CO;2-F
    [39] Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40(8): 1361−1375 doi: 10.1002/aic.690400809
    [40] Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 97−108 doi: 10.1016/0169-7439(95)00043-7
    [41] Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995, 37(1): 41−59 doi: 10.1080/00401706.1995.10485888
    [42] Wold S, Kettaneh N, Fridén H, Holmberg A. Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1-2): 331−340 doi: 10.1016/S0169-7439(98)00162-2
    [43] Wold S, Geladi P, Esbensen K, Öhman J. Multi-way principal components-and PLS-analysis. Journal of Chemometrics, 1987, 1(1): 41−56 doi: 10.1002/cem.1180010107
    [44] Wold S, Sjöström M. Chemometrics, present and future success. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1-2): 3−14 doi: 10.1016/S0169-7439(98)00075-6
    [45] Dong D, McAvoy T J. Multi-stage batch process monitoring. In: Proceedings of 1995 American Control Conference (ACC). Seattle, USA: IEEE, 1995. 1857−1861
    [46] Zheng L L, McAvoy T J, Huang Y B, Chen G. Application of multivariate statistical analysis in batch processes. Industrial & Engineering Chemistry Research, 2001, 40(7): 1641−1649
    [47] Ündey C, Tatara E, Činar A. Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations. Journal of Biotechnology, 2004, 108(1): 61−77 doi: 10.1016/j.jbiotec.2003.10.004
    [48] Ündey C, Činar A. Statistical monitoring of multistage, multiphase batch processes. IEEE Control Systems Magazine, 2002, 22(5): 40−52 doi: 10.1109/MCS.2002.1035216
    [49] Ündey C, Ertunč S, Činar A. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis. Industrial & Engineering Chemistry Research, 2003, 42(20): 4645−4658
    [50] Zamprogna E, Barolo M, Seborg D E. Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis. Journal of Process Control, 2005, 15(1): 39−52 doi: 10.1016/j.jprocont.2004.04.006
    [51] Zamprogna E, Barolo M, Seborg D E. Estimating product composition profiles in batch distillation via partial least squares regression. Control Engineering Practice, 2004, 12(7): 917−929 doi: 10.1016/j.conengprac.2003.11.005
    [52] Kourti T, Nomikos P, MacGregor J F. Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS. Journal of Process Control, 1995, 5(4): 277−284 doi: 10.1016/0959-1524(95)00019-M
    [53] Martin E B, Morris A J, Papazoglou M C, Kiparissides C. Batch process monitoring for consistent production. Computers & Chemical Engineering, 1996, 20(Suppl 1): S599−S604
    [54] Martin E B, Morris A J. An overview of multivariate statistical process control in continuous and batch process performance monitoring. Transactions of the Institute of Measurement and Control, 1996, 18(1): 51−60 doi: 10.1177/014233129601800107
    [55] Lane S, Martin E B, Kooijmans R, Morris A J. Performance monitoring of a multi-product semi-batch process. Journal of Process Control, 2001, 11(1): 1−11 doi: 10.1016/S0959-1524(99)00063-3
    [56] Meng X, Morris A J, Martin E B. On-line monitoring of batch processes using a PARAFAC representation. Journal of Chemometrics, 2003, 17(1): 65−81 doi: 10.1002/cem.776
    [57] Lee J M, Yoo C K, Lee I B. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis. Journal of Biotechnology, 2004, 110(2): 119−136 doi: 10.1016/j.jbiotec.2004.01.016
    [58] Albazzaz H, Wang X Z. Statistical process control charts for batch operations based on independent component analysis. Industrial & Engineering Chemistry Research, 2004, 43(21): 6731−6741
    [59] Lee J M, Yoo C K, Lee I B. On-line batch process monitoring using different unfolding method and independent component analysis. Journal of Chemical Engineering of Japan, 2003, 36(11): 1384−1396 doi: 10.1252/jcej.36.1384
    [60] Albert S, Kinley R D. Multivariate statistical monitoring of batch processes: An industrial case study of fermentation supervision. Trends in Biotechnology, 2001, 19(2): 53−62 doi: 10.1016/S0167-7799(00)01528-6
    [61] Wong C W L, Escott R, Martin E B, Morris A J. The integration of spectroscopic and process data for enhanced process performance monitoring. The Canadian Journal of Chemical Engineering, 2008, 86(5): 905−923 doi: 10.1002/cjce.20096
    [62] Lu N Y, Gao F R, Wang F L. A sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE Journal, 2004, 50(1): 255−259 doi: 10.1002/aic.10024
    [63] Lu N Y, Gao F R. Stage-based process analysis and quality prediction for batch processes. Industrial & Engineering Chemistry Research, 2005, 44(10): 3547−3555
    [64] Lu N Y, Gao F R. Stage-based online quality control for batch processes. Industrial & Engineering Chemistry Research, 2006, 45(7): 2272−2280
    [65] Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9): 728−741 doi: 10.1016/j.jprocont.2007.02.005
    [66] Zhao C H, Wang F L, Mao Z H, Lu N Y, Jia M X. Improved knowledge extraction and phase-based quality prediction for batch processes. Industrial & Engineering Chemistry Research, 2008, 47(3): 825−834
    [67] Zhao C H, Sun Y X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring. Chemometrics and Intelligent Laboratory Systems, 2013, 125: 109−120 doi: 10.1016/j.chemolab.2013.03.017
    [68] Zhao C H. A quality-relevant sequential phase partition approach for regression modeling and quality prediction analysis in manufacturing processes. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 983−991 doi: 10.1109/TASE.2013.2287347
    [69] Qin Y, Zhao C H, Gao F R. An Iterative Two-Step Sequential Phase Partition (ITSPP) method for batch process modeling and online monitoring. AIChE Journal, 2016, 62(7): 2358−2373 doi: 10.1002/aic.15205
    [70] Zhang S M, Zhao C H. Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3773−3783 doi: 10.1109/TIE.2018.2853603
    [71] Zhao C H. An iterative within-phase relative analysis algorithm for relative sub-phase modeling and process monitoring. Chemometrics and Intelligent Laboratory Systems, 2014, 134: 67−78 doi: 10.1016/j.chemolab.2014.03.010
    [72] Kosanovich K A, Piovoso M J, Dahl K S, MacGregor J F, Nomikos P. Multi-way PCA applied to an industrial batch process. In: Proceedings of 1994 American Control Conference (ACC). Baltimore, USA: IEEE, 1994. 1294−1298
    [73] Kosanovich K A, Dahl K S, Piovoso M J. Improved process understanding using multiway principal component analysis. Industrial & Engineering Chemistry Research, 1996, 35(1): 138−146
    [74] Lennox B, Hiden H G, Montague G A, Kornfeld G, Goulding P R. Application of multivariate statistical process control to batch operations. Computers & Chemical Engineering, 2000, 24(2-7): 291−296
    [75] Doan X T, Srinivasan R, Bapat P M, Wangikar P P. Detection of phase shifts in batch fermentation via statistical analysis of the online measurements: A case study with rifamycin B fermentation. Journal of Biotechnology, 2007, 132(2): 156−166 doi: 10.1016/j.jbiotec.2007.06.013
    [76] Camacho J, Picó J. Online monitoring of batch processes using multi-phase principal component analysis. Journal of Process Control, 2006, 16(10): 1021−1035 doi: 10.1016/j.jprocont.2006.07.005
    [77] Camacho J, Picó J. Multi-phase principal component analysis for batch processes modelling. Chemometrics and Intelligent Laboratory Systems, 2006, 81(2): 127−136 doi: 10.1016/j.chemolab.2005.11.003
    [78] Martin E B, Morris A J. Enhanced bio-manufacturing through advanced multivariate statistical technologies. Journal of Biotechnology, 2002, 99(3): 223−235 doi: 10.1016/S0168-1656(02)00212-2
    [79] Duchesne C, MacGregor J F. Multivariate analysis and optimization of process variable trajectories for batch processes. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 125−137 doi: 10.1016/S0169-7439(00)00064-2
    [80] Rothwell S G, Martin E B, Morris A J. Comparison of methods for dealing with uneven length batches. IFAC Proceedings Volumes, 1998, 31(8): 387−392 doi: 10.1016/S1474-6670(17)40216-3
    [81] Kassidas A, MacGregor J F, Taylor P A. Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 1998, 44(4): 864−875 doi: 10.1002/aic.690440412
    [82] Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 2003, 17(1): 93−109 doi: 10.1002/cem.778
    [83] Yu W K, Zhao C H, Zhang S M. A two-step parallel phase partition algorithm for monitoring multiphase batch processes with limited batches. IFAC-PapersOnLine, 2017, 50(1): 2750−2755 doi: 10.1016/j.ifacol.2017.08.582
    [84] Itakura F. Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1975, 23(1): 67−72 doi: 10.1109/TASSP.1975.1162641
    [85] Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43−49 doi: 10.1109/TASSP.1978.1163055
    [86] Tomasi G, van den Berg F, Andersson C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 2004, 18(5): 231−241 doi: 10.1002/cem.859
    [87] Nielsen N P V, Carstensen J M, Smedsgaard J. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of Chromatography A, 1998, 805(1-2): 17−35 doi: 10.1016/S0021-9673(98)00021-1
    [88] Kourti T, Lee J, MacGregor J F. Experiences with industrial applications of projection methods for multivariate statistical process control. Computers & Chemical Engineering, 1996, 20(1): S745−S750
    [89] Tates A A, Louwerse D J, Smilde A K, Koot G L M, Berndt H. Monitoring a PVC batch process with multivariate statistical process control charts. Industrial & Engineering Chemistry Research, 1999, 38(12): 4769−4776
    [90] Neogi D, Schlags C E. Multivariate statistical analysis of an emulsion batch process. Industrial & Engineering Chemistry Research, 1998, 37(10): 3971−3979
    [91] Kaistha N, Moore C F. Extraction of event times in batch profiles for time synchronization and quality predictions. Industrial & Engineering Chemistry Research, 2001, 40(1): 252−260
    [92] Lu N, Gao F, Yang Y, Wang F. PCA-based modeling and on-line monitoring strategy for uneven-length batch processes. Industrial & Engineering Chemistry Research, 2004, 43(13): 3343−3352
    [93] Zhao C H, Mo S Y, Gao F R, Lu N Y, Yao Y. Statistical analysis and online monitoring for handling multiphase batch processes with varying durations. Journal of Process Control, 2011, 21(6): 817−829 doi: 10.1016/j.jprocont.2011.04.005
    [94] Li W Q, Zhao C H, Gao F R. Sequential time slice alignment based unequal-length phase identification and modeling for fault detection of irregular batches. Industrial & Engineering Chemistry Research, 2015, 54(41): 10020−10030
    [95] Zhang S M, Zhao C H, Wang S, Wang F L. Pseudo time-slice construction using a variable moving window k nearest neighbor rule for sequential uneven phase division and batch process monitoring. Industrial & Engineering Chemistry Research, 2017, 56(3): 728−740
    [96] Lu N Y, Yang Y, Wang F L, Gao F R. A stage-based monitoring method for batch processes with limited reference data. IFAC Proceedings Volumes, 2004, 37(9): 787−792 doi: 10.1016/S1474-6670(17)31906-7
    [97] Zhao C H, Wang F L, Mao Z Z, Lu N Y, Jia M X. Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data. Industrial & Engineering Chemistry Research, 2008, 47(9): 3104−3113
    [98] Wang Y, Mao Z, Jia M. Feature-points-based Multimodel Single Dynamic Kernel Principle Component Analysis (M-SDKPCA) modeling and online monitoring strategy for uneven-length batch processes. Industrial & Engineering Chemistry Research, 2013, 52(34): 12059−12071
    [99] Luo L J, Bao S Y, Mao J F, Tang D. Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations. Industrial & Engineering Chemistry Research, 2016, 55(7): 2035−2048
    [100] Tulsyan A, Garvin C, Undey C. Industrial batch process monitoring with limited data. Journal of Process Control, 2019, 77: 114−133 doi: 10.1016/j.jprocont.2019.03.002
    [101] Zhao C H, Wang F L, Gao F R, Lu N Y, Jia M X. Adaptive monitoring method for batch processes based on phase dissimilarity updating with limited modeling data. Industrial & Engineering Chemistry Research, 2007, 46(14): 4943−4953
    [102] Kuzborskij I, Orabona F, Caputo B. From N to N+1: Multiclass transfer incremental learning. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013. 3358−3365
    [103] Chen C L P, Liu Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10−24 doi: 10.1109/TNNLS.2017.2716952
    [104] Yu W K, Zhao C H. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081−5091 doi: 10.1109/TIE.2019.2931255
    [105] Zhao C H, Wang W, Qin Y, Gao F R. Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring. Industrial & Engineering Chemistry Research, 2015, 54(12): 3154−3166
    [106] Zhao C H. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring. AIChE Journal, 2014, 60(2): 559−573 doi: 10.1002/aic.14282
    [107] Zhang S M, Zhao C H, Gao F R. Two-directional concurrent strategy of mode identification and sequential phase division for multimode and multiphase batch process monitoring with uneven lengths. Chemical Engineering Science, 2018, 178: 104−117 doi: 10.1016/j.ces.2017.12.025
    [108] Zhao C H. Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring. Journal of Process Control, 2014, 24(6): 856−870 doi: 10.1016/j.jprocont.2014.04.001
    [109] Kramer M A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 1991, 37(2): 233−243 doi: 10.1002/aic.690370209
    [110] Dong D, McAvoy T J. Batch tracking via nonlinear principal component analysis. AIChE Journal, 1996, 42(8): 2199−2208 doi: 10.1002/aic.690420810
    [111] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504−507 doi: 10.1126/science.1127647
    [112] Yu W K, Zhao C H. Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net. IEEE Transactions on Control Systems Technology, 2020, 28(3): 1083−1091 doi: 10.1109/TCST.2019.2897946
    [113] Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59(1): 223−234 doi: 10.1016/j.ces.2003.09.012
    [114] Kruger U, Antory D, Hahn J, Irwin G W, McCullough G. Introduction of a nonlinearity measure for principal component models. Computers & Chemical Engineering, 2005, 29(11-12): 2355−2362
    [115] Zhang S M, Wang F L, Zhao L P, Wang S, Chang Y Q. A novel strategy of the data characteristics test for selecting a process monitoring method automatically. Industrial & Engineering Chemistry Research, 2016, 55(6): 1642−1654
    [116] Li W Q, Zhao C H, Gao F R. Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2683−2692 doi: 10.1109/TIE.2017.2745452
    [117] Yan W W, Guo P J, Gong L, Li Z K. Nonlinear and robust statistical process monitoring based on variant autoencoders. Chemometrics and Intelligent Laboratory Systems, 2016, 158: 31−40 doi: 10.1016/j.chemolab.2016.08.007
    [118] Zhang X, Yan W W, Zhao X, Shao H H. Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis. Process Biochemistry, 2007, 42(8): 1200−1210 doi: 10.1016/j.procbio.2007.05.016
    [119] Zhao C H, Gao F R, Wang F L. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-Principal Component Analysis (KICA-PCA). Industrial & Engineering Chemistry Research, 2009, 48(20): 9163−9174
    [120] Rashid M M, Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach. Industrial & Engineering Chemistry Research, 2012, 51(33): 10910−10920
    [121] Onel M, Kieslich C A, Guzman Y A, Floudas C A, Pistikopoulos E N. Big data approach to batch process monitoring: Simultaneous fault detection and diagnosis using nonlinear support vector machine-based feature selection. Computers & Chemical Engineering, 2018, 115: 46−63
    [122] 刘育明. 动态过程数据的多变量统计监控方法研究 [博士学位论文], 浙江大学, 中国, 2006

    Liu Yu-Ming. Multivariate Statistical Monitoring Methods for Dynamic Process Data [Ph.D. dissertation], Zhejiang University, China, 2006
    [123] Wang Y J, Sun F M, Li B. Multiscale neighborhood normalization-based multiple dynamic PCA monitoring method for batch processes with frequent operations. IEEE Transactions on Automation Science and Engineering, 2018, 15(3): 1053−1064 doi: 10.1109/TASE.2017.2713800
    [124] Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67: 1−11 doi: 10.1016/j.jprocont.2017.05.002
    [125] Dong Y N, Qin S J. Regression on dynamic PLS structures for supervised learning of dynamic data. Journal of Process Control, 2018, 68: 64−72 doi: 10.1016/j.jprocont.2018.04.006
    [126] Chen J H, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 2002, 57(1): 63−75 doi: 10.1016/S0009-2509(01)00366-9
    [127] Hu K L, Yuan J Q. Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding. Chemometrics and Intelligent Laboratory Systems, 2008, 90(2): 195−203 doi: 10.1016/j.chemolab.2007.10.002
    [128] Stubbs S, Zhang J, Morris J. Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach. Computers & Chemical Engineering, 2012, 41: 77−87
    [129] Lu Q G, Jiang B B, Gopaluni R B, Loewen P D, Braatz R D. Sparse canonical variate analysis approach for process monitoring. Journal of Process Control, 2018, 71: 90−102 doi: 10.1016/j.jprocont.2018.09.009
    [130] 邹筱瑜, 王福利, 常玉清, 郑伟. 基于两层分块GMM-PRS的流程工业过程运行状态评价. 自动化学报, 2019, 45(11): 2071−2081

    Zou Xiao-Yu, Wang Fu-Li, Chang Yu-Qing, Zheng Wei. Plant-wide process operating performance assessment based on two-level multi-block GMM-PRS. Acta Automatica Sinica, 2019, 45(11): 2071−2081
    [131] Fan L, Kodamana H, Huang B. Semi-supervised dynamic latent variable modeling: I/O probabilistic slow feature analysis approach. AIChE Journal, 2019, 65(3): 964−979 doi: 10.1002/aic.16481
    [132] Shang C, Huang B, Yang F, Huang D X. Slow feature analysis for monitoring and diagnosis of control performance. Journal of Process Control, 2016, 39: 21−34 doi: 10.1016/j.jprocont.2015.12.004
    [133] Zhang S M, Zhao C H, Huang B. Simultaneous static and dynamic analysis for fine-scale identification of process operation statuses. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5320−5329 doi: 10.1109/TII.2019.2896987
    [134] Zou X Y, Zhao C H. Concurrent assessment of process operating performance with joint static and dynamic analysis. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2776−2786 doi: 10.1109/TII.2019.2934757
    [135] Li W Q, Zhao C H, Huang B. Distributed dynamic modeling and monitoring for large-scale industrial processes under closed-loop control. Industrial & Engineering Chemistry Research, 2018, 57(46): 15759−15772
    [136] Zhao C H, Huang B. A Full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis. AIChE Journal, 2018, 64(5): 1662−1681 doi: 10.1002/aic.16048
    [137] Choi S W, Morris J, Lee I B. Dynamic model-based batch process monitoring. Chemical Engineering Science, 2008, 63(3): 622−636 doi: 10.1016/j.ces.2007.09.046
    [138] Zheng J L, Zhao C H. Online monitoring of performance variations and process dynamic anomalies with performance-relevant full decomposition of slow feature analysis. Journal of Process Control, 2019, 80: 89−102 doi: 10.1016/j.jprocont.2019.05.004
    [139] Yu W K, Zhao C H. Recursive exponential slow feature analysis for fine-scale adaptive processes monitoring with comprehensive operation status identification. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3311−3323 doi: 10.1109/TII.2018.2878405
    [140] Zhao C H, Sun H. Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4749−4758 doi: 10.1109/TIE.2018.2864703
    [141] Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: USA: Wiley, 1973
    [142] Yu W K, Zhao C H. Sparse exponential discriminant analysis and its application to fault diagnosis. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5931−5940 doi: 10.1109/TIE.2017.2782232
    [143] Yu W K, Zhao C H. Online fault diagnosis in industrial processes using multimodel exponential discriminant analysis algorithm. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1317−1325 doi: 10.1109/TCST.2017.2789188
    [144] Chai Z, Zhao C H. A fine-grained adversarial network method for cross-domain industrial fault diagnosis. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1432−1442 doi: 10.1109/TASE.2019.2957232
    [145] Chiang L H, Kotanchek M E, Kordon A K. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Computers & Chemical Engineering, 2004, 28(8): 1389−1401
    [146] Chai Z, Zhao C H. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification. IEEE Transactions on Industrial Informatics, 2020, 16(1): 54−66 doi: 10.1109/TII.2019.2915559
    [147] Yu W K, Zhao C H. Online fault diagnosis for industrial processes with Bayesian network-based probabilistic ensemble learning strategy. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1922−1932 doi: 10.1109/TASE.2019.2915286
    [148] Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95−114 doi: 10.1016/S0169-7439(00)00062-9
    [149] Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial & Engineering Chemistry Research, 2010, 49(71): 7849−7857
    [150] Dunia R, Qin S J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal, 1998, 44(8): 1813−1831 doi: 10.1002/aic.690440812
    [151] Zhao C H, Sun Y X. Subspace decomposition approach of fault deviations and its application to fault reconstruction. Control Engineering Practice, 2013, 21(10): 1396−1409 doi: 10.1016/j.conengprac.2013.06.008
    [152] Zhao C H, Gao F R. Online fault prognosis with relative deviation analysis and vector autoregressive modeling. Chemical Engineering Science, 2015, 138: 531−543 doi: 10.1016/j.ces.2015.08.037
    [153] Zhao C H, Gao F R. Subspace decomposition-based reconstruction modeling for fault diagnosis in multiphase batch processes. Industrial & Engineering Chemistry Research, 2013, 52(41): 14613−14626
    [154] Zhao C H, Zhang W D. Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 135−150 doi: 10.1016/j.chemolab.2013.10.014
    [155] Sun H, Zhang S M, Zhao C H, Gao F R. A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information. Industrial & Engineering Chemistry Research, 2017, 56(24): 6993−7008
    [156] Wu J, Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis. Computers & Chemical Engineering, 2018, 115: 185−197
    [157] Peng K X, Zhang K, You B, Dong J, Wang Z D. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2615−2624
    [158] Zhao X Q, Wang T. Tensor dynamic neighborhood preserving embedding algorithm for fault diagnosis of batch process. Chemometrics and Intelligent Laboratory Systems, 2017, 162: 94−103 doi: 10.1016/j.chemolab.2017.01.007
    [159] Yang C M, Hou J. Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine. Neurocomputing, 2016, 190: 117−123 doi: 10.1016/j.neucom.2016.01.027
    [160] Cerrada M, Zurita G, Cabrera D, Sánchez R V, Artés M, Li C. Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 2016, 70-71: 87−103 doi: 10.1016/j.ymssp.2015.08.030
    [161] Zou X Y, Wang F L, Chang Y Q. Assessment of operating performance using cross-domain feature transfer learning. Control Engineering Practice, 2019, 89: 143−153 doi: 10.1016/j.conengprac.2019.05.007
    [162] 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933−1943 doi: 10.3724/SP.J.1004.2013.01933

    Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933−1943 doi: 10.3724/SP.J.1004.2013.01933
    [163] Zou X Y, Zhao C H. Meticulous assessment of operating performance for processes with a hybrid of stationary and nonstationary variables. Industrial & Engineering Chemistry Research, 2019, 58(3): 1341−1351
    [164] Zhao C H, Gao F R. Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis. IEEE Transactions on Control Systems Technology, 2016, 24(3): 928−939 doi: 10.1109/TCST.2015.2464331
    [165] Qin Y, Zhao C H, Gao F R. An intelligent non-optimality self-recovery method based on reinforcement learning with small data in big data era. Chemometrics and Intelligent Laboratory Systems, 2018, 176: 89−100 doi: 10.1016/j.chemolab.2018.03.010
    [166] Sutton R S, Barto A G. Reinforcement Learning: An Introduction (Second edition). Cambridge: MIT Press, 2018.
    [167] Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits and Systems Magazine, 2009, 9(3): 32−50 doi: 10.1109/MCAS.2009.933854
    [168] Wu H, Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis. Computers & Chemical Engineering, 2018, 115: 185−197
    [169] Wang H, Yuan Z L, Chen Y B, Shen B Y, Wu A X. An industrial missing values processing method based on generating model. Computer Networks, 2019, 158: 61−68 doi: 10.1016/j.comnet.2019.02.007
    [170] Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168−3176 doi: 10.1109/TII.2019.2902129
  • 期刊类型引用(34)

    1. 杨诚,何清波,贾民平,李志农,彭志科. 流形正则化支持高阶张量机及其在行星齿轮箱半监督故障诊断中的应用. 振动工程学报. 2025(01): 78-87 . 百度学术
    2. 褚菲,郝莉莉,王福利. 复杂工业过程运行状态评价方法回顾与展望. 控制与决策. 2024(03): 705-718 . 百度学术
    3. 王一航,冯良骏,赵春晖. 面向锂电池少量循环的二维支持域直推式健康状态预测. 控制理论与应用. 2024(03): 474-483 . 百度学术
    4. 王敏,冯智彬,吴德浩,张景欣,周东华. 非平稳过程异常监测方法:综述与展望. 中国科学:信息科学. 2024(08): 1807-1826 . 百度学术
    5. 赵健程,赵春晖. 面向全量测点耦合结构分析与估计的工业过程监测方法. 自动化学报. 2024(08): 1517-1538 . 本站查看
    6. 李季,王建林,何睿,周新杰,王雯,赵利强. 基于DBSVDD-RVR的多模态间歇过程质量变量在线软测量. 化工学报. 2024(09): 3231-3241 . 百度学术
    7. 周文伟,孙步功,石林榕. 基于MW-MKEPLS的多重时变间歇生产过程质量预测. 自动化与仪表. 2024(10): 51-55+65 . 百度学术
    8. 翟鸿儒,姚爱琴,孙运强,赵文强,石喜玲. 基于TPE-Informer的列车风源系统故障预警研究. 国外电子测量技术. 2024(09): 111-120 . 百度学术
    9. 董洁,李大业,尉艳梅,彭开香,杨慧. 一种面向复杂非平稳工业过程的质量相关分布式故障检测方法. 工程科学与技术. 2024(06): 15-24 . 百度学术
    10. 赵春晖,陈旭. 从分解视角出发:基于多元统计方法的工业时序建模与过程监测综述. 控制与决策. 2024(11): 3521-3546 . 百度学术
    11. 柴铮,汪嘉业,赵春晖,丁进良,孙优贤. 面向工业监控典型监督任务的深度迁移学习方法:现状、挑战与展望. 中国科学:信息科学. 2023(05): 821-840 . 百度学术
    12. 张景欣,周东华,陈茂银,吴德浩. 数据驱动的多工况过程异常监测方法:综述与展望. 中国科学:信息科学. 2023(11): 2087-2106 . 百度学术
    13. 郑忠,张诗雨,王永周,张开,张开天,郭亮,高小强. 炼钢厂生产调度排程的建模方法研究进展评述. 钢铁. 2023(11): 69-83 . 百度学术
    14. 赵宇,李艳婷,吴振宇,周笛,胡洁. 面向多模式多元未知分布的协方差过程监控. 中国机械工程. 2023(22): 2721-2736+2757 . 百度学术
    15. 易永率,赵海涛. 基于属性描述的多单元过程零样本故障诊断. 华东理工大学学报(自然科学版). 2023(06): 845-853 . 百度学术
    16. 刘淞华,何冰冰,郎恂,陈启明,张榆锋,苏宏业. 中值互补集合经验模态分解. 自动化学报. 2023(12): 2544-2556 . 本站查看
    17. 宋冰,郭涛,侍洪波,谭帅,陶阳,马浴阳. 基于双子空间并行回归的化工过程质量相关故障检测方法. 化工学报. 2023(11): 4600-4610 . 百度学术
    18. 柴天佑,刘强,丁进良,卢绍文,宋延杰,张艺洁. 工业互联网驱动的流程工业智能优化制造新模式研究展望. 中国科学:技术科学. 2022(01): 14-25 . 百度学术
    19. 李宇斌,于涛. 基于瞬时频率响应函数的间歇过程时段划分. 计算机与现代化. 2022(02): 65-69+78 . 百度学术
    20. 纪成,顾俊发,王健红,王璟德,孙巍. 基于长短时记忆神经网络和支持向量数据描述的间歇过程监测方法. 化学工业与工程. 2022(02): 32-36 . 百度学术
    21. 胡磊,刘强,吴永建,范自柱. 间歇过程动态潜结构阶段划分与在线监控. 控制理论与应用. 2022(02): 307-316 . 百度学术
    22. 杨明毅,王军义,白鑫林,徐志刚,余廷江,陈舒渤. 基于互信息和MPCA的单基药塑化过程监测方法. 应用化工. 2022(01): 290-296 . 百度学术
    23. 高学金,何紫鹤,高慧慧,齐咏生. 基于联合典型变量矩阵的多阶段发酵过程质量相关故障监测. 化工学报. 2022(03): 1300-1314 . 百度学术
    24. 董峰,李昭,李凌涵,张淑美. 多模态动态核主成分分析的气液两相流状态监测. 自动化学报. 2022(03): 762-773 . 本站查看
    25. 唐鹏,彭开香,董洁. 一种新颖的深度因果图建模及其故障诊断方法. 自动化学报. 2022(06): 1616-1624 . 本站查看
    26. 张敏,李贤均,王瑞琦,张则强. 一种基于时空融合特征的间歇过程弱故障识别方法. 工业工程与管理. 2022(03): 64-73 . 百度学术
    27. 马亮,彭开香,董洁. 工业过程故障根源诊断与传播路径识别技术综述. 自动化学报. 2022(07): 1650-1663 . 本站查看
    28. 武文韬,张淑美,谭超,董峰. 气水两相流多传感器信息提取与流动状态监测. 工程热物理学报. 2022(10): 2681-2686 . 百度学术
    29. 赵春晖,胡赟昀,郑嘉乐,陈军豪. 数据驱动的燃煤发电装备运行工况监控——现状与展望. 自动化学报. 2022(11): 2611-2633 . 本站查看
    30. 赵小强,张妍. 基于NPE-ELM的间歇过程质量相关故障检测. 控制工程. 2022(12): 2284-2292 . 百度学术
    31. 赵小强,徐蓉蓉. 改进价值函数的多阶段间歇过程故障检测. 电子测量与仪器学报. 2022(12): 45-54 . 百度学术
    32. 姚红娟,赵小强,李炜,惠永永. 基于双权重多邻域保持嵌入的间歇过程故障检测. 控制与决策. 2021(12): 3023-3030 . 百度学术
    33. 赵小强,牟淼. 基于GSFA-GNPE的动态-静态联合指标间歇过程监控. 上海交通大学学报. 2021(11): 1417-1428 . 百度学术
    34. 姜庆超,颜学峰. 基于局部-整体相关特征的多单元化工过程分层监测. 自动化学报. 2020(09): 1770-1782 . 本站查看

    其他类型引用(37)

  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  6220
  • HTML全文浏览量:  8581
  • PDF下载量:  574
  • 被引次数: 71
出版历程
  • 收稿日期:  2019-08-25
  • 录用日期:  2019-12-02
  • 网络出版日期:  2019-12-31
  • 刊出日期:  2020-10-29

目录

/

返回文章
返回