Data Analytics and Condition Monitoring Methods for Nonstationary Batch Processes — Current Status and Future
-
摘要: 间歇过程作为制造业的重要生产方式之一, 其高效运行是智能制造的优先主题. 为了保障生产过程的高效运行, 面向间歇生产的过程数据解析与状态监控算法在最近三十年间得到大家的广泛关注, 发展速度稳步提升. 但由于间歇过程本身的多重时变大范围非平稳运行复杂特性, 以及对状态监控与故障诊断要求的提高, 现有的理论和方法仍面临着挑战. 本文从分析间歇过程的特性出发, 从数据解析的角度, 总结了近三十年来非平稳间歇过程高性能监控研究的发展. 一方面对间歇过程监控领域几种经典的方法体系进行了总结和梳理, 另一方面揭示了尚存在的问题以及未来可能的研究思路和发展脉络.Abstract: Batch process is an important class of manufacturing processes. Its condition operation has been given high priority for smart manufacturing, which closely depends on the automatic condition monitoring and fault diagnosis. Great efforts have been made in the research on data analytics and high-efficiency monitoring algorithms with significant development for batch processes during the past thirty years. However, due to its complex characteristics and increasing requirements on monitoring and diagnosis precision, there are still many challenging problems in this field. In this paper, starting from the nature of batch process and data analystics, we address the challenges in this field, review the development of monitoring and diagnosis strategies, analyze several classical algorithms, and discuss the future development of batch process high-efficiency monitoring.
-
Key words:
- Data analytics /
- intelligent manufacturing /
- batch process /
- nonstationary /
- process monitoring /
- fault diagnosis /
- machine learning
-
智能制造已成为公认的提升制造业整体竞争力的国家战略. 以德国工业4.0为代表的智能制造的技术基础是信息物理融合系统(CPS). CPS是美国基金会在2008年提出的, CPS是指将计算资源与物理资源紧密融合与协同, 使得系统的适应性、自治力、效率、功能、可靠性、安全性和可用性远超过今天的系统[1].
近年来, 人工智能的发展为智能制造提供了新的技术基础. 美国国家技术委员会的《国家人工智能研究与发展战略计划》 (2016.10)提出, AI改进制造过程调度, 增强制造过程的柔性, 改进产品质量、降低成本[2]. 2018年5月, 美国白宫举行“美国工业人工智能峰会”, 发表声明: 重点发展具有高影响、面向特定领域的AI, 应用于美国工业来增强美国劳动力素质, 提高他们的工作效率, 更好地服务客户[3]. 美国科学基金会关于“美国工业人工智能”发表声明: 人工智能可能使美国工业的各个环节产生变革, 为先进制造创造新的希望[4]. 美国2020和2021财务预算优先支持的研发领域指出: 支持智能和数字化制造, 特别是结合工业物联网、机器学习和AI的制造系统[5-6]. 德国继“工业4.0”平台之后, 2017年9月启动开发和应用“学习系统”计划, 使未来的工作和生产更加灵活和节省资源. 德国联邦政府人工智能战略提出, 促进AI的开发与应用面向经济, 经济是下一步AI研究的推动力[7]. 中国工程院制造强国战略研究(三期)的“新一代人工智能引领下的智能制造研究报告”提出: 新一代智能制造作为我国智能制造的第二阶段(2025-2035)的战略目标是使我国智能制造技术和应用水平走在世界前列[8].
虽然Science文章[9]指出, AI系统开发者普遍认识到, 机器学习将对工业产生广泛影响, 但是, “人工智能发展到深度学习没有考虑如何应用于制造过程”, “多尺度、多源信息获取、预报模型和资源计划决策与控制过程集成是智能制造中的挑战难题”[10]. 为了使工业人工智能在智能制造中发挥不可取代的作用, 加快我国制造业向数字化、网络化、智能化发展进程, 本文以制造与生产全流程智能化为应用场景, 提出了工业人工智能的涵义、研究方向和研究思路与方法.
1. 工业自动化与信息技术在工业革命中的作用
工业自动化与信息技术在工业革命中的作用如图1所示. 在第一次工业革命时, 出现了以蒸汽机为动力的机械生产设备. 例如, 1784年, 出现了机器织布机. 蒸汽代替了人的体力, 实现了生产动力的变革. 为了使织布机和其他机器保持恒定转速, 1788年, 吉姆斯·瓦特成功地改造了离心调速器. 离心调速器是一个比例控制器, 反馈控制实现了蒸汽机调速的自动化, 但是比例控制会产生稳态误差, 后来的调速器加入了积分作用[11-12]. 从此, 调速器成了蒸汽机不可分割的一部分. 蒸汽机与调速器的广泛应用推动了第一次工业革命. 工业革命往往伴随着动力的变革和使能技术的变革. 在第二次工业革命时, 电力代替了蒸汽成为工业生产的动力. PID 控制与逻辑控制应用于电力工业, 实现了传送带的自动化. 使传送带于1870年开始在辛辛那提屠宰场使用, 推动了基于劳动分工和以电为动力的大规模生产, 形成了第二次工业革命. 工业过程往往是由多个回路组成的复杂被控对象, 难以用精确数学模型描述. 大规模工业生产的需求、计算机和通讯技术的发展并与工业自动化技术相结合, 催生了一种专门的计算机控制系统—逻辑程序控制器(PLC). 1969年, 美国Modicon公司推出了084 PLC[13]. 该PLC控制系统可以将多个回路的传感器和执行机构通过设备网与控制系统连接起来, 可以方便地进行多个回路的控制、设备的顺序控制和监控. 1975年, Honeywell和Yokogawa公司研制了可以应用于大型工业过程的分布式控制系统(DCS)[14]. 以组态软件为基础的控制软件、过程监控软件的广泛应用使得生产线的自动化程度更高, 推动了第三次工业革命.
工业过程的运行优化需求使得实时优化(RTO)和模型预测控制(MPC)技术形成的工业过程运行优化软件广泛应用于可以建立数学模型的石化工业过程. 针对具体的难以建立数学模型的工业过程, 高技术公司开发的基于工艺模型的开环设定控制软件和基于数据驱动的智能运行优化控制技术的运行优化控制软件越来越多地应用于难以建立数学模型的冶金工业过程, 取得了显著的效果[15-16].
大规模的工业生产迫切需要生产企业的管理高效化. PLC和DCS与管理计算机、实时数据库和关系数据库相结合的计算机管控系统开始应用于工业生产中. 自动化技术与信息技术开始应用于企业管理. 20世纪60年代初, 计算机财务系统问世, 从此人工的管理方式开始逐渐被计算机管理系统代替. 20世纪60年代末70年代初, 财务系统扩充了物料计划功能, 发展成为物料需求计划系统(Material requirements planning, MRP). 20世纪70年代末80年代初, MRP系统中增加了车间报表管理系统、采购系统等, 于是发展成为MRPⅡ. 但是MRPⅡ不能配置资源, 因此配置资源计划系统(Distribution resource planning, DRP)出现了, 单一功能的制造过程管理系统(如质量管理系统)也相继出现. 到20世纪80年代末90年代初, MRPⅡ逐渐演变为企业资源计划(Enterprise resource planning, ERP), DRP演变为供应链管理(Supply chain management, SCM), 而车间层应用的专业化制造管理系统演变成集成的制造执行系统(Manufacturing execution system, MES)[17-18]. ERP和MES广泛应用于生产企业, 显著提高了企业的竞争力[19]. 三次工业革命实现了操作工作自动化、企业管理与决策的信息化.
随着5G为代表的移动互联网、边缘计算与云计算的发展, 催生了工业互联网. 工业互联网为获得工业大数据创造了条件. 大数据驱动的人工智能技术的发展以及科学研究模式与方法的变化, 如CPS和汇聚研究[20]的出现, 促进了制造业向数字化、网络化和智能化发展. 第四次工业革命将实现制造业知识工作的自动化与智能化.
2. 制造与生产全流程智能化
2.1 制造与生产全流程决策、控制与运行管理现状分析
制造与生产全流程的决策、控制与运行管理的现状如图2所示. 由企业管理者通过ERP系统获得的企业资源信息, 凭经验和知识决策企业的包括产品质量、产量、能耗、物耗、成本在内的综合生产指标的目标值范围; 生产管理者通过MES系统获得的生产信息, 凭经验和知识决策制造与生产全流程的生产指标的目标值范围; 运行管理与工艺工程师通过管控系统获得的生产工况信息和感觉、视觉、听觉、触觉获得的生产信息, 凭经验和知识决策反映制造装备或工业过程产品加工的质量、效率、消耗的运行指标目标值范围; 操作者根据运行指标目标值范围和生产实际情况凭经验和知识决策控制系统指令; 控制系统控制制造与生产全流程的加工装备(过程), 使被控装备(过程)的输出跟踪控制指令, 从而将加工产品的质量、效率、消耗的运行指标和制造与生产全流程的生产指标控制在目标值范围内.
因此, 制造与生产全流程的决策、控制与运行管理是图3所示的人参与的信息物理系统. 操作者与知识工作者根据信息系统获得的生产信息和通过感觉、视觉、听觉、触觉获得的多源异构生产信息, 利用大脑的学习认知和分析决策能力, 依靠经验和知识决策企业综合生产指标、制造与生产全流程的生产指标、运行指标和控制系统指令. 由于人难以及时准确地感知动态变化的运行工况, 难以及时准确地处理异构信息, 人的决策行为制约发展[21]. 因此, 难以实现制造与生产全流程的全局优化.
2.2 制造与生产全流程智能化
制造与生产全流程智能化的涵义是以企业高效化与绿色化为目标, 以实现制造与生产全流程的管理与决策智能优化与加工装备(过程)智能自主控制为特征的制造模式. 如图4所示, 将操作者的知识工作实现自动化, 将控制系统和加工装备(过程)变革为智能自主控制系统; 将企业管理者和生产管理者的知识工作智能化; 将ERP和MES变革为人机合作的管理与决策智能化系统; 将企业资源计划系统、制造执行系统、装备(过程)控制系统组成企业三层结构变革为如图5所示的由人机合作的管理与决策智能化系统和智能自主控制系统组成的两层结构. 制造与生产全流程的决策、控制与运行管理将变革为如图6所示的CPS系统. 由图6可以看出, 制造与生产全流程的智能化将图3中的操作者与知识工作者的知识工作实现自动化和智能化. 因此, CPS系统中的知识工作者是规划者、管理者和决策者[22].
人机合作的管理与决策智能化系统实时感知市场信息、生产条件和制造流程生产状况; 以企业高效化和绿色化为目标, 实现企业综合生产指标、制造与生产全流程生产指标、运行指标、生产指令与控制指令集成优化决策; 计划与调度一体化决策, 远程与移动可视化监控决策过程动态性能, 自学习与自优化决策; 人与智能优化决策系统合作, 使决策者在动态变化环境下精准优化决策[23-24]. 智能自主控制系统使装备(过程)运行的决策与控制模式发生颠覆性改变: 决策模式由开环决策、事后校正转变为闭环反馈决策、实时预测自优化校正; 控制模式由开环设定、反馈控制转变为自适应闭环优化、自主协同控制. 智能自主控制系统感知生产条件的变化, 相互协同, 以管理与决策智能化系统的优化决策为目标, 实现制造与生产全流程全局优化.
3. 工业人工智能
制造与生产全流程智能化对以数学模型或因果关系数据驱动的建模、控制和优化的自动化科学与技术提出了挑战. 大数据驱动的人工智能技术为实现制造与生产全流程智能化提供了新的方法和技术. 为此, 本文简述人工智能技术的涵义、发展简史与发展方向.
3.1 人工智能的涵义、发展简史与发展方向
人工智能没有一个统一的明确定义, 但是可以分为强人工智能和弱人工智能. 强人工智能指具有与人一样的智慧和全面的智能. 一些人认为强人工智能无法真正实现. 当前的人工智能是弱人工智能或窄人工智能. 它可以下棋或者开车, 但是不能两者兼备, 缺乏通用性[25]. 强人工智能有两个特点: 1)针对人类能完成的任务; 2)具有与人一样的智慧、具有与人类一样的感知、认识、学习和推理的全面智能. 弱人工智能有两个特点: 1) 针对一个特定任务; 2) 要求比人做的好. 美国总统行政办公室《人工智能、自动化及经济报告》 (2016.12)指出, AI 是单一技术, 而是应用于特定任务的技术集合[26]; 斯坦福大学人工智能百年研究《人工智能和2030的生活》(2016.9)指出, 广义定义: 人工智能是一种致力于使机器智能化的活动, 而智能是指系统在其所处环境中具有预见和合适功能的品质; 学术研究角度的定义: 人工智能最初作为计算机科学中的一个分支, 研究人工合成智能的智能特性[27]. 德国人工智能战略概述(2018.7)指出, 作为一门科学学科, 人工智能指的是一个研发训练计算机(或机器)来执行以前只有人类才有能力的智能行为的方法的研究领域[28]. 无论是作为国家战略的人工智能定义还是学术定义, AI的研究和应用多年来始终秉持一个核心目标, 即, 使人的智能行为实现自动化或复制[29].
“人工智能”一词在1956年John McCarth组织的达特茅斯暑期研究项目的讨论会上提出, 探究机器可以在哪些方面模仿人的智能. 但是, 具有人工智能特征的技术想法早已存在: 18世纪, 托马斯·贝叶斯(Thomas Bayes)—推理事件的概率提供计算框架; 19世纪, 乔治·布尔(George Boole)提出逻辑推理可以像求解方程组那样被系统地执行; 20 世纪之交, 第一台电子计算机与感知和自主行动的第一代机器人的问世掀起了第一次人工智能的高潮. 阿兰·图灵(Alan Turning) 1950年发表“计算机和智能”设想, 提出建造计算机模拟人类智能的可能性, 怎样测试人工智能、机器怎样自主学习. 日本等国开始研发具有模拟人类智能的计算机. 随后几十年, 人工智能的研究几经起伏, 研究出现难题远超预期, 因此, 人工智能的研究处于低潮.
在20世纪90年代后期, 人们的研究开始转向弱人工智能, 即关注人工智能在特定领域的应用研究, 人工智能的研究进入加速阶段. 其中, 最重要的两个领域分别是图像识别和医疗诊断. 在1997年, IBM开发的计算机“深蓝”战胜了国际象棋世界冠军Gamy Kasparov. 苹果Siri、IBM回答计算机Waston回答游戏节目获胜. 在本世纪, 美国国防高级研究计划局成功举办了无人驾驶汽车大赛.
2010年以后, 三大因素促使人工智能发展浪潮. 第一个因素来自政府、电子商务、商业、社交媒体、科学和政府提供可用的大数据; 第二个因素是强大的计算能力使大数据的应用成为可能; 第三个因素是高科技产业, 特别是互联网公司, 增加在人工智能领域的投资, 将机器学习应用到公司所有产品中, 如搜索、广告、油管或是谷歌应用商店等取得了明显的效果. 特别是, 深度学习技术快速发展. 深度学习应用于图像识别领域, 使图像的识别结果的错误率从模式识别技术的最好结果—错误率26 % (2011年)降低到3.5 % (2015年), 低于人类识别图像的最好结果—错误率5 %; 基于深度学习的博弈游戏技术阿尔法狗打败人类围棋冠军表明, 在博弈游戏领域, 人工智能技术超过人[2, 27].
目前, 大数据驱动的人工智能技术通过训练大数据、学习过程和学习函数获得准确度很高的结果, 但无法解释结果为什么准确. 人工智能技术的发展方向为可解释的AI (XAI), 通过训练大数据、新的学习过程和可解释的模型获得可解释的准确结果[30]. 基于统计的、无模型的机器学习方法存在严重的理论局限, 难以用于推理和回溯, 难以作为强人工智能的基础[31]. 实现类人智能和强人工智能需要在机器学习系统中加入“实际模型的导引”[32]. 人工智能技术领域的另一个发展方向是建立智能系统[27]. 美国国际战略研究所 《美国机器智能国家战略报告》 (2018.3)指出, 很难估计计算机控制系统在不久的将来可以实现哪些功能. 机器智能系统在企业、政府、和全球居民的日常生活中占据越来越重要的角色[33].
3.2 自动化与人工智能的相互关系
虽然深度学习和游戏博弈技术适用于完备的信息空间, 但是人工智能技术的发展方向—可解释人工智能和智能系统为研究制造业知识工作自动化与智能化提供了新的方法和技术. 将人工智能技术、工业自动化技术、工业互联网与制造业的领域知识工作相结合, 以研发补充和增强知识工作者能力的AI算法和AI系统为目标, 发展工业人工智能技术, 使实现制造业智能化成为可能.
虽然对自动化和人工智能的界定并不明确, 且随时间推移不断变化, 但自动化的研究和应用始终秉持一个核心目标—减少和减轻人的体力和脑力劳动, 提高工作效率、效益和效果. 人工智能的研究和应用秉持的核心目标—使人的智能行为实现自动化或复制. 自动化与人工智能的实现手段都是通过算法和系统, 它们的共同点是通过机器延伸和增加人类的感知、认知、决策、执行的功能, 增加人类认识世界和改造世界的能力, 完成人类无法完成的特定任务或比人类更有效地完成特定任务. 它们的不同点在于研究对象和研究方法不同. 自动化是针对通过机理分析、采用微分方程或代数方程可以建立数学模型的研究对象, 利用输入输出表示的因果关系小数据, 建立建模、控制与优化的理论和技术. 人工智能是针对机理不清、难以建立数学模型但对象的输入输出是处于完备信息空间的大数据的研究对象, 采用基于统计的、无模型的机器学习方法, 建立建模、控制与优化的理论和技术. 人工智能在短期内的核心经济成效是将以前无法实现自动化的任务实现自动化[34].
3.3 工业人工智能的涵义、研究方向和研究思路与方法
目前, 制造与生产全流程的决策、控制与运行管理中仍然依靠人凭经验和知识来完成的工作涉及到工业自动化和人工智能技术难以应用的复杂系统, 即机理不清, 难以建立数学模型, 输入与输出相关信息处于开放环境、不确定的变化中, 信息难以获取及感知, 决策目标多尺度多冲突. 当前, 学术界与产业界开始了工业人工智能的研究[22, 35-40]. 虽然对工业人工智能的界定并不明确且随时间的推移不断变化, 工业人工智能研究与应用的核心目标是: 针对产品与工艺设计、经营管理与决策、制造流程运行管理与控制等工业生产活动中目前只能依靠人的感知、认知、分析与决策能力和经验与知识来完成的影响经济效益的知识工作, 实现知识工作的自动化与智能化, 来显著提高社会经济效益. 工业人工智能的实质是将人工智能技术与具体的工业场景相结合, 实现设计模式创新、生产智能决策、资源优化配置等创新应用. 使工业系统具备自感知、自学习、自执行、自决策、自适应的能力, 以适应变幻不定的工业环境, 并完成多样化的工业任务, 最终达到提升企业洞察力, 提高生产效率或设备产品性能[41].
工业自动化与工业人工智能在工业生产活动中的发展目标对比分析如下: 针对制造与生产流程中的装备或工业过程, 工业自动化的研究目标是实现装备和工业过程的自动控制和控制系统设定值的优化, 研发控制技术及软件和运行优化技术及软件. 针对产品与工艺设计、生产管理与决策, 工业自动化的研究目标是实现设计、生产管理与决策的信息化, 研发设计软件、ERP、MES等工业软件. 针对仍然依靠人来控制和管理的装备与工业过程, 工业人工智能的研究目标是实现装备和工业过程控制与运行的集成优化, 研发补充和增加人能力的AI算法和AI系统、制造与生产全流程的运行管理与控制一体化软件. 针对依靠知识工作者来完成的产品与工艺设计、生产管理与决策, 工业人工智能的研究目标是实现知识工作自动化与智能化, 研制大数据驱动的运行工况的识别、预测与决策的AI算法和AI系统、人机合作的管理与决策智能化软件、产品与工艺设计过程中补充和增强知识工作者能力的AI系统.
结合制造业的发展现状和实现智能化的需求和工业人工智能的发展目标, 工业人工智能的研究方向为: 1) 复杂工业环境下运行工况的多尺度多源信息的智能感知与识别; 2) 复杂工业环境下基于5G的多源信息快速可靠的传输技术; 3) 系统辨识与深度学习相结合的复杂工业系统智能建模、数字孪生与可视化技术; 4) 关键工艺参数与生产指标的预测与追溯; 5) 复杂工业系统的智能自主控制技术; 6) 人机合作的智能优化决策; 7) 智能优化决策与控制一体化技术; 8) “端-边-云”协同实现工业人工智能算法的实现技术.
为了取得工业人工智能的研究成果, 需要我们借鉴人工智能取得重大进展的研究经验以及数据驱动的人工智能、移动互联网、边缘计算和云计算驱动的工业互联网时代改变科研的进行方式和研究思维方式, 例如信息物理融合系统CPS[1]、会聚研究[20]. 汇聚研究是一种新的研究范式和研究思维方式, 其特点是: 问题驱动—具有挑战性的科学研究难题或社会需求中的重大挑战难题; 跨学科合作研究—整合来自不同学科的知识、方法和专业知识, 形成新的框架来促进科学发现和创新. 学科方法和技术的结合是解决复杂问题的唯一或最佳方案, 团队科学正在成为一种更典型的研究模式[42]. 为此提出如下研究思路与方法:
1) 需求驱动, 找准问题, 即知识工作者通过感知、认知、决策、执行来完成的影响效益的知识工作, 选好应用场景; 2) 确定研究目标, 即以最优秀的知识工作者为参考目标, 达到与超越最优秀的知识工作者的工作效果; 3) 采用CPS思想, 研制面向特定应用领域的工业人工智能系统, 使系统的适应性、自主性、效率、功能、可靠性、安全性和感知与认知的准确性、决策与控制的精准优化远超今天的系统; 4) 基础研究、研发、实验与工业应用相结合. 5) 采用汇聚研究的思想, 将基于机理分析的模型与工业大数据紧密融合与协同, 模型驱动的自动化与数据驱动的人工智能技术紧密融合与协同, 移动互联网、边缘计算、云计算等与计算机管控系统紧密融合与协同, 工业互联网的研究与面向各种制造流程的AI算法和AI系统研究紧密融合与协同, 汇聚各学科研究力量, 长期持续开展学科交叉和跨学科合作研究.
4. 结论
通过对工业自动化和信息技术在工业革命中的作用以及制造与生产全流程智能化的分析, 可以看到三次工业革命实现了操作工作自动化、企业管理与决策信息化. 第四次工业革命将实现知识工作的自动化与智能化. 为此, 需要将人工智能技术、工业自动化技术、工业互联网与制造业的领域知识工作紧密融合与协同, 以实现制造业智能化为目标, 研发补充和增强知识工作者能力的AI算法和AI系统, 发展工业人工智能技术. 本文通过对工业自动化和工业人工智能的相互关系的对比分析, 提出了工业人工智能的涵义、研究方向和研究思路与方法.
为了使我国在工业人工智能和工业互联网的研究与应用走在世界前列, 需要一大批具有跨学科研究能力的创新型工程科技人才. 这就需要重新审视和考虑现行的专业人才培养模式、研究经费资助机制、评价机制、产学研合作机制等, 并进行必要的改革.
-
表 1 时段划分方法总结对比
Table 1 The comparison of different phase partition methods
时段划分方法 划分依据 优点 缺点 过程机理法[45, 48, 72] 利用实际间歇工业过程运行机理的变化来划分过程运行时段, 要求一定的专家经验和过程知识. 如果间歇生产过程相对简单或者工程师对此比较熟悉, 则可以比较容易地获取过程机理知识实现时段划分. 工业生产过程往往机理复杂, 很难在短时间内获取相关的知识和经验, 从而极大地限制和约束了其顺利实施施和推广应用. 特征分析方法[73—75] 时段的切换对应引起相应测量变量的变化. 对某些过程变量或从中提取的特征变量进行分析, 借助其沿时间轴上的变化判断时段信息. 指示变量方法是其中一种典型代表. 当时段发生切换或者变化, 过程特性变化, 相应的某些过程变量或是特征变量亦发生显著变化, 可用于指示不同时段. 算法较为简单. 并不是每个工业过程中都存在并能找到这样的“指示”变量. k-means[62—66] 通过相似度度量, 分析不同时间点上的潜在相关特性的相似与不同, 如果时间片具有相似特性则被归到同一类中, 具有显著差异则被分到不同类中. 该方法能够自动划分不同的多个时段, 不需借助任何过程机理和知识. 分类的结果决定于过程相关性在时间方向上的变化规律. 没有考虑间歇过程时段运行的时序性, 因此划分结果中会出现时间上不连续的具有相似过程相关性的时间片被分在同一个聚类中. 时段划分结果可读性有所欠缺, 需要针对划分结果进行进一步的后续处理. 此外, 该划分方法根据距离定义衡量过程相关特性的相似度, 聚类的结果受到相似性衡量指标的影响, 而该指标并不能与过程监测的目的直接相关. MPPCA[74—75] 一种优化策略, 通过对不同时间点进行不断尝试, 分析在该点的划分所得到的局部模型是否能够改善原有模型对数据的重构精度, 以此来确定该点的划分是否合适. 无需过程先验知识条件, 自动划分的各个时段时间连续, 解释性较强. 易陷入局部最优, 导致时段划分结果不能更好的反映过程特性变化. SSPP[76—77] 自动地按照间歇生产过程运行时间顺序捕捉潜在过程特性的发展变化, 通过评估时段划分对监测统计量的影响确定合适的时段划分点. 无需过程先验知识条件, 深入考虑了间歇过程潜在特性的时变性和实际过程运行的时序性以及时段划分结果对于之后监测性能的影响. 对过程时段特性变化的实时捕捉具有一定的时间延迟. 表 2 多向分析方法与子时段分析方法对比
Table 2 The comparison of multi-way methods and phase partition methods
方法 优点 缺点 多向分析法 分析方法相对简单, 直接针对展开的二维数据矩阵进行分析, 可借用传统的连续过程方法. 针对整个过程只需要建立一个模型. 无法有效分析过程特性时间上的变化规律. 子时段分析方法 1)可以更细致地揭示过程运行的潜在特征, 更好地体现过程运行的局部特征, 促进对复杂工业过程的了解;
2)在每个子时段可以很容易建立统计分析模型, 结构简单, 模型实用;
3)基于子时段可以很容易建立过程监测模型并实现在线应用而无需预估未知数据;
4)可以提高在线故障检测的精度和灵敏度, 并有利于后续准确的故障隔离和诊断;
5)可以深入分析质量指标和每个时段的具体关系, 找出影响质量的关键时段和预测变量等关键性因素, 有利于产品质量的进一步改进.需要进行时段划分, 分析过程特性在同一个操作周次内的变化. -
[1] 赵春晖, 陆宁云. 间歇过程统计监测与质量分析. 北京: 科学出版社, 2014.Zhao Chun-Hui, Lu Ning-Yun. Statistical Monitoring and Quality Analysis of Batch Process. Beijing: Science Press, 2014. [2] Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40(8): 1361−1375 doi: 10.1002/aic.690400809 [3] Bhatia T, Biegler L T. Dynamic optimization in the design and scheduling of multiproduct batch plants. Industrial & Engineering Chemistry Research, 1996, 35(7): 2234−2246 [4] Méndez C A, Cerdá J, Grossmann I E, Harjunkoski I, Fahl M. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Computers & Chemical Engineering, 2006, 30(6-7): 913−946 [5] Lane S, Martin E B, Kooijmans R, Morris A J. Performance monitoring of a multi-product semi-batch process. Journal of Process Control, 2001, 11(1): 1−11 doi: 10.1016/S0959-1524(99)00063-3 [6] Edgar T F, Butler S W, Campbell W J, Pfeiffer C, Bode C, Hwang S B, et al. Automatic control in microelectronics manufacturing: Practices, challenges, and possibilities. Automatica, 2000, 36(11): 1567−1603 doi: 10.1016/S0005-1098(00)00084-4 [7] 赵春晖, 王福利. 工业过程运行状态智能监控: 数据驱动方法. 北京: 化学工业出版社, 2019.Zhao Chun-Hui, Wang Fu-Li. Intelligent Monitoring of Industrial Process Operation Status: Data-driven Methods. Beijing: Chemical Industry Press, 2019. [8] Engle R F, Granger C W J. Cointegration and error correction: Representation, estimation and testing. Econometrica, 1987, 55: 251−276 doi: 10.2307/1913236 [9] Khediri I B, Limam M, Weihs C. Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring. Computers & Industrial Engineering, 2011, 61(3): 437−446 [10] Liu J L, Chen D S. Nonstationary fault detection and diagnosis for multimode processes. AIChE Journal, 2010, 56(1): 207−219 [11] Ündey C, Ertunč S, Mistretta T, Looze B. Applied advanced process analytics in biopharmaceutical manufacturing: Challenges and prospects in real-time monitoring and control. Journal of Process Control, 2010, 20(9): 1009−1018 doi: 10.1016/j.jprocont.2010.05.008 [12] Qin S J. Process data analytics in the era of big data. AIChE Journal, 2014, 60(9): 3092−3100 doi: 10.1002/aic.14523 [13] Chiang L, Lu B, Castillo I. Big data analytics in chemical engineering. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 63−85 doi: 10.1146/annurev-chembioeng-060816-101555 [14] He Q P, Wang J. Statistical process monitoring as a big data analytics tool for smart manufacturing. Journal of Process Control, 2018, 67: 35−43 doi: 10.1016/j.jprocont.2017.06.012 [15] 卢静宜, 曹志兴, 高福荣. 批次过程控制—回顾与展望. 自动化学报, 2017, 43(6): 933−943Lu Jing-Yi, Cao Zhi-Xing, Gao Fu-Rong. Batch process control—overview and outlook. Acta Automatica Sinica, 2017, 43(6): 933−943 [16] 赵春晖. 多时段间歇过程统计建模、在线监测及质量预报 [博士学位论文], 东北大学, 中国, 2009Zhao Chun-Hui. Statistical Modeling, Online Monitoring and Quality Prediction for Multiphase Batch Processes [Ph.D. dissertation], Northeastern University, China, 2009 [17] Shewhart W A. Statistical Method from the Viewpoint of Quality Control. New York, USA: John Dover, 1986. [18] Page E S. Continuous inspection schemes. Biometrika, 1954, 41(1-2): 100−115 doi: 10.1093/biomet/41.1-2.100 [19] Page E S. Cumulative sum charts. Technometrics, 1961, 3(1): 1−9 doi: 10.1080/00401706.1961.10489922 [20] Roberts S W. Control chart tests based on geometric moving average. Technometrics, 1959, 1(3): 239−250 doi: 10.1080/00401706.1959.10489860 [21] Zhao C H, Sun Y X. Multispace total projiection to latent structures and its application to online proceess monitoring, IEEE Transacttions on Control Systeme Technology, 2014, 22(3): 868-883 [22] Dunteman G H. Principal Component Analysis. London, UK: SAGE Publication LTD, 1989. [23] Jackson J E. A User′s Guide to Principal Components. New York, USA: Wiley, 1991. [24] Geladi P, Kowalski B R. Partial least-squares regression: A tutorial. Analytica Chimica Acta, 1986, 185: 1−17 doi: 10.1016/0003-2670(86)80028-9 [25] Höskuldsson A. PLS regression methods. Journal of Chemometrics, 1988, 2(3): 211−228 doi: 10.1002/cem.1180020306 [26] 王惠文. 偏最小二乘回归方法及其应用. 北京: 国防工业出版社, 1999.Wang Hui-Wen. Partial Least-Squares Regression-Method and Applications. Beijing: National Defense Industry Press, 1999. [27] Dayal B S, MacGregor J F. Improved PLS algorithms. Journal of Chemometrics, 1997, 11(1): 73−85 doi: 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-# [28] Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36(3): 287−314 doi: 10.1016/0165-1684(94)90029-9 [29] Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9(7): 1483−1492 doi: 10.1162/neco.1997.9.7.1483 [30] Hyvärinen A, Oja E. Independent component analysis: Algorithms and applications. Neural Networks, 2000, 13(4-5): 411−430 doi: 10.1016/S0893-6080(00)00026-5 [31] Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49(4): 969−976 doi: 10.1002/aic.690490414 [32] Smilde A, Bro R, Geladi P. Multi-Way Analysis, Applications in the Chemical Science. New York, USA: Wiley, 2003. [33] Bro R. PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 149−171 doi: 10.1016/S0169-7439(97)00032-4 [34] Tucker L R. The extension of factor analysis to three-dimensional matrices. Contributions to Mathematical Psychology. New York, USA: Holt, Rinehart and Winston, 1964. 110−162 [35] Bro R. Multiway calibration. Multilinear PLS. Journal of Chemometrics, 1996, 10(1): 47−61 doi: 10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO;2-C [36] Sanchez E, Kowalski B R. Tensorial resolution: A direct trilinear decomposition. Journal of Chemometrics, 1990, 4(1): 29−45 doi: 10.1002/cem.1180040105 [37] Louwerse D J, Smilde A K. Multivariate statistical process control of batch processes based on three-way models. Chemical Engineering Science, 2000, 55(7): 1225−1235 doi: 10.1016/S0009-2509(99)00408-X [38] Smilde A K. Comments on three-way analyses used for batch process data. Journal of Chemometrics, 2001, 15(1): 19−27 doi: 10.1002/1099-128X(200101)15:1<19::AID-CEM599>3.0.CO;2-F [39] Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40(8): 1361−1375 doi: 10.1002/aic.690400809 [40] Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 97−108 doi: 10.1016/0169-7439(95)00043-7 [41] Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995, 37(1): 41−59 doi: 10.1080/00401706.1995.10485888 [42] Wold S, Kettaneh N, Fridén H, Holmberg A. Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1-2): 331−340 doi: 10.1016/S0169-7439(98)00162-2 [43] Wold S, Geladi P, Esbensen K, Öhman J. Multi-way principal components-and PLS-analysis. Journal of Chemometrics, 1987, 1(1): 41−56 doi: 10.1002/cem.1180010107 [44] Wold S, Sjöström M. Chemometrics, present and future success. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1-2): 3−14 doi: 10.1016/S0169-7439(98)00075-6 [45] Dong D, McAvoy T J. Multi-stage batch process monitoring. In: Proceedings of 1995 American Control Conference (ACC). Seattle, USA: IEEE, 1995. 1857−1861 [46] Zheng L L, McAvoy T J, Huang Y B, Chen G. Application of multivariate statistical analysis in batch processes. Industrial & Engineering Chemistry Research, 2001, 40(7): 1641−1649 [47] Ündey C, Tatara E, Činar A. Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations. Journal of Biotechnology, 2004, 108(1): 61−77 doi: 10.1016/j.jbiotec.2003.10.004 [48] Ündey C, Činar A. Statistical monitoring of multistage, multiphase batch processes. IEEE Control Systems Magazine, 2002, 22(5): 40−52 doi: 10.1109/MCS.2002.1035216 [49] Ündey C, Ertunč S, Činar A. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis. Industrial & Engineering Chemistry Research, 2003, 42(20): 4645−4658 [50] Zamprogna E, Barolo M, Seborg D E. Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis. Journal of Process Control, 2005, 15(1): 39−52 doi: 10.1016/j.jprocont.2004.04.006 [51] Zamprogna E, Barolo M, Seborg D E. Estimating product composition profiles in batch distillation via partial least squares regression. Control Engineering Practice, 2004, 12(7): 917−929 doi: 10.1016/j.conengprac.2003.11.005 [52] Kourti T, Nomikos P, MacGregor J F. Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS. Journal of Process Control, 1995, 5(4): 277−284 doi: 10.1016/0959-1524(95)00019-M [53] Martin E B, Morris A J, Papazoglou M C, Kiparissides C. Batch process monitoring for consistent production. Computers & Chemical Engineering, 1996, 20(Suppl 1): S599−S604 [54] Martin E B, Morris A J. An overview of multivariate statistical process control in continuous and batch process performance monitoring. Transactions of the Institute of Measurement and Control, 1996, 18(1): 51−60 doi: 10.1177/014233129601800107 [55] Lane S, Martin E B, Kooijmans R, Morris A J. Performance monitoring of a multi-product semi-batch process. Journal of Process Control, 2001, 11(1): 1−11 doi: 10.1016/S0959-1524(99)00063-3 [56] Meng X, Morris A J, Martin E B. On-line monitoring of batch processes using a PARAFAC representation. Journal of Chemometrics, 2003, 17(1): 65−81 doi: 10.1002/cem.776 [57] Lee J M, Yoo C K, Lee I B. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis. Journal of Biotechnology, 2004, 110(2): 119−136 doi: 10.1016/j.jbiotec.2004.01.016 [58] Albazzaz H, Wang X Z. Statistical process control charts for batch operations based on independent component analysis. Industrial & Engineering Chemistry Research, 2004, 43(21): 6731−6741 [59] Lee J M, Yoo C K, Lee I B. On-line batch process monitoring using different unfolding method and independent component analysis. Journal of Chemical Engineering of Japan, 2003, 36(11): 1384−1396 doi: 10.1252/jcej.36.1384 [60] Albert S, Kinley R D. Multivariate statistical monitoring of batch processes: An industrial case study of fermentation supervision. Trends in Biotechnology, 2001, 19(2): 53−62 doi: 10.1016/S0167-7799(00)01528-6 [61] Wong C W L, Escott R, Martin E B, Morris A J. The integration of spectroscopic and process data for enhanced process performance monitoring. The Canadian Journal of Chemical Engineering, 2008, 86(5): 905−923 doi: 10.1002/cjce.20096 [62] Lu N Y, Gao F R, Wang F L. A sub-PCA modeling and on-line monitoring strategy for batch processes. AIChE Journal, 2004, 50(1): 255−259 doi: 10.1002/aic.10024 [63] Lu N Y, Gao F R. Stage-based process analysis and quality prediction for batch processes. Industrial & Engineering Chemistry Research, 2005, 44(10): 3547−3555 [64] Lu N Y, Gao F R. Stage-based online quality control for batch processes. Industrial & Engineering Chemistry Research, 2006, 45(7): 2272−2280 [65] Zhao C H, Wang F L, Lu N Y, Jia M X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes. Journal of Process Control, 2007, 17(9): 728−741 doi: 10.1016/j.jprocont.2007.02.005 [66] Zhao C H, Wang F L, Mao Z H, Lu N Y, Jia M X. Improved knowledge extraction and phase-based quality prediction for batch processes. Industrial & Engineering Chemistry Research, 2008, 47(3): 825−834 [67] Zhao C H, Sun Y X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring. Chemometrics and Intelligent Laboratory Systems, 2013, 125: 109−120 doi: 10.1016/j.chemolab.2013.03.017 [68] Zhao C H. A quality-relevant sequential phase partition approach for regression modeling and quality prediction analysis in manufacturing processes. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 983−991 doi: 10.1109/TASE.2013.2287347 [69] Qin Y, Zhao C H, Gao F R. An Iterative Two-Step Sequential Phase Partition (ITSPP) method for batch process modeling and online monitoring. AIChE Journal, 2016, 62(7): 2358−2373 doi: 10.1002/aic.15205 [70] Zhang S M, Zhao C H. Slow-feature-analysis-based batch process monitoring with comprehensive interpretation of operation condition deviation and dynamic anomaly. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3773−3783 doi: 10.1109/TIE.2018.2853603 [71] Zhao C H. An iterative within-phase relative analysis algorithm for relative sub-phase modeling and process monitoring. Chemometrics and Intelligent Laboratory Systems, 2014, 134: 67−78 doi: 10.1016/j.chemolab.2014.03.010 [72] Kosanovich K A, Piovoso M J, Dahl K S, MacGregor J F, Nomikos P. Multi-way PCA applied to an industrial batch process. In: Proceedings of 1994 American Control Conference (ACC). Baltimore, USA: IEEE, 1994. 1294−1298 [73] Kosanovich K A, Dahl K S, Piovoso M J. Improved process understanding using multiway principal component analysis. Industrial & Engineering Chemistry Research, 1996, 35(1): 138−146 [74] Lennox B, Hiden H G, Montague G A, Kornfeld G, Goulding P R. Application of multivariate statistical process control to batch operations. Computers & Chemical Engineering, 2000, 24(2-7): 291−296 [75] Doan X T, Srinivasan R, Bapat P M, Wangikar P P. Detection of phase shifts in batch fermentation via statistical analysis of the online measurements: A case study with rifamycin B fermentation. Journal of Biotechnology, 2007, 132(2): 156−166 doi: 10.1016/j.jbiotec.2007.06.013 [76] Camacho J, Picó J. Online monitoring of batch processes using multi-phase principal component analysis. Journal of Process Control, 2006, 16(10): 1021−1035 doi: 10.1016/j.jprocont.2006.07.005 [77] Camacho J, Picó J. Multi-phase principal component analysis for batch processes modelling. Chemometrics and Intelligent Laboratory Systems, 2006, 81(2): 127−136 doi: 10.1016/j.chemolab.2005.11.003 [78] Martin E B, Morris A J. Enhanced bio-manufacturing through advanced multivariate statistical technologies. Journal of Biotechnology, 2002, 99(3): 223−235 doi: 10.1016/S0168-1656(02)00212-2 [79] Duchesne C, MacGregor J F. Multivariate analysis and optimization of process variable trajectories for batch processes. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 125−137 doi: 10.1016/S0169-7439(00)00064-2 [80] Rothwell S G, Martin E B, Morris A J. Comparison of methods for dealing with uneven length batches. IFAC Proceedings Volumes, 1998, 31(8): 387−392 doi: 10.1016/S1474-6670(17)40216-3 [81] Kassidas A, MacGregor J F, Taylor P A. Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 1998, 44(4): 864−875 doi: 10.1002/aic.690440412 [82] Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 2003, 17(1): 93−109 doi: 10.1002/cem.778 [83] Yu W K, Zhao C H, Zhang S M. A two-step parallel phase partition algorithm for monitoring multiphase batch processes with limited batches. IFAC-PapersOnLine, 2017, 50(1): 2750−2755 doi: 10.1016/j.ifacol.2017.08.582 [84] Itakura F. Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1975, 23(1): 67−72 doi: 10.1109/TASSP.1975.1162641 [85] Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43−49 doi: 10.1109/TASSP.1978.1163055 [86] Tomasi G, van den Berg F, Andersson C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 2004, 18(5): 231−241 doi: 10.1002/cem.859 [87] Nielsen N P V, Carstensen J M, Smedsgaard J. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of Chromatography A, 1998, 805(1-2): 17−35 doi: 10.1016/S0021-9673(98)00021-1 [88] Kourti T, Lee J, MacGregor J F. Experiences with industrial applications of projection methods for multivariate statistical process control. Computers & Chemical Engineering, 1996, 20(1): S745−S750 [89] Tates A A, Louwerse D J, Smilde A K, Koot G L M, Berndt H. Monitoring a PVC batch process with multivariate statistical process control charts. Industrial & Engineering Chemistry Research, 1999, 38(12): 4769−4776 [90] Neogi D, Schlags C E. Multivariate statistical analysis of an emulsion batch process. Industrial & Engineering Chemistry Research, 1998, 37(10): 3971−3979 [91] Kaistha N, Moore C F. Extraction of event times in batch profiles for time synchronization and quality predictions. Industrial & Engineering Chemistry Research, 2001, 40(1): 252−260 [92] Lu N, Gao F, Yang Y, Wang F. PCA-based modeling and on-line monitoring strategy for uneven-length batch processes. Industrial & Engineering Chemistry Research, 2004, 43(13): 3343−3352 [93] Zhao C H, Mo S Y, Gao F R, Lu N Y, Yao Y. Statistical analysis and online monitoring for handling multiphase batch processes with varying durations. Journal of Process Control, 2011, 21(6): 817−829 doi: 10.1016/j.jprocont.2011.04.005 [94] Li W Q, Zhao C H, Gao F R. Sequential time slice alignment based unequal-length phase identification and modeling for fault detection of irregular batches. Industrial & Engineering Chemistry Research, 2015, 54(41): 10020−10030 [95] Zhang S M, Zhao C H, Wang S, Wang F L. Pseudo time-slice construction using a variable moving window k nearest neighbor rule for sequential uneven phase division and batch process monitoring. Industrial & Engineering Chemistry Research, 2017, 56(3): 728−740 [96] Lu N Y, Yang Y, Wang F L, Gao F R. A stage-based monitoring method for batch processes with limited reference data. IFAC Proceedings Volumes, 2004, 37(9): 787−792 doi: 10.1016/S1474-6670(17)31906-7 [97] Zhao C H, Wang F L, Mao Z Z, Lu N Y, Jia M X. Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data. Industrial & Engineering Chemistry Research, 2008, 47(9): 3104−3113 [98] Wang Y, Mao Z, Jia M. Feature-points-based Multimodel Single Dynamic Kernel Principle Component Analysis (M-SDKPCA) modeling and online monitoring strategy for uneven-length batch processes. Industrial & Engineering Chemistry Research, 2013, 52(34): 12059−12071 [99] Luo L J, Bao S Y, Mao J F, Tang D. Phase partition and phase-based process monitoring methods for multiphase batch processes with uneven durations. Industrial & Engineering Chemistry Research, 2016, 55(7): 2035−2048 [100] Tulsyan A, Garvin C, Undey C. Industrial batch process monitoring with limited data. Journal of Process Control, 2019, 77: 114−133 doi: 10.1016/j.jprocont.2019.03.002 [101] Zhao C H, Wang F L, Gao F R, Lu N Y, Jia M X. Adaptive monitoring method for batch processes based on phase dissimilarity updating with limited modeling data. Industrial & Engineering Chemistry Research, 2007, 46(14): 4943−4953 [102] Kuzborskij I, Orabona F, Caputo B. From N to N+1: Multiclass transfer incremental learning. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013. 3358−3365 [103] Chen C L P, Liu Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10−24 doi: 10.1109/TNNLS.2017.2716952 [104] Yu W K, Zhao C H. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081−5091 doi: 10.1109/TIE.2019.2931255 [105] Zhao C H, Wang W, Qin Y, Gao F R. Comprehensive subspace decomposition with analysis of between-mode relative changes for multimode process monitoring. Industrial & Engineering Chemistry Research, 2015, 54(12): 3154−3166 [106] Zhao C H. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring. AIChE Journal, 2014, 60(2): 559−573 doi: 10.1002/aic.14282 [107] Zhang S M, Zhao C H, Gao F R. Two-directional concurrent strategy of mode identification and sequential phase division for multimode and multiphase batch process monitoring with uneven lengths. Chemical Engineering Science, 2018, 178: 104−117 doi: 10.1016/j.ces.2017.12.025 [108] Zhao C H. Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring. Journal of Process Control, 2014, 24(6): 856−870 doi: 10.1016/j.jprocont.2014.04.001 [109] Kramer M A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 1991, 37(2): 233−243 doi: 10.1002/aic.690370209 [110] Dong D, McAvoy T J. Batch tracking via nonlinear principal component analysis. AIChE Journal, 1996, 42(8): 2199−2208 doi: 10.1002/aic.690420810 [111] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504−507 doi: 10.1126/science.1127647 [112] Yu W K, Zhao C H. Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net. IEEE Transactions on Control Systems Technology, 2020, 28(3): 1083−1091 doi: 10.1109/TCST.2019.2897946 [113] Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59(1): 223−234 doi: 10.1016/j.ces.2003.09.012 [114] Kruger U, Antory D, Hahn J, Irwin G W, McCullough G. Introduction of a nonlinearity measure for principal component models. Computers & Chemical Engineering, 2005, 29(11-12): 2355−2362 [115] Zhang S M, Wang F L, Zhao L P, Wang S, Chang Y Q. A novel strategy of the data characteristics test for selecting a process monitoring method automatically. Industrial & Engineering Chemistry Research, 2016, 55(6): 1642−1654 [116] Li W Q, Zhao C H, Gao F R. Linearity evaluation and variable subset partition based hierarchical process modeling and monitoring. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2683−2692 doi: 10.1109/TIE.2017.2745452 [117] Yan W W, Guo P J, Gong L, Li Z K. Nonlinear and robust statistical process monitoring based on variant autoencoders. Chemometrics and Intelligent Laboratory Systems, 2016, 158: 31−40 doi: 10.1016/j.chemolab.2016.08.007 [118] Zhang X, Yan W W, Zhao X, Shao H H. Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis. Process Biochemistry, 2007, 42(8): 1200−1210 doi: 10.1016/j.procbio.2007.05.016 [119] Zhao C H, Gao F R, Wang F L. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-Principal Component Analysis (KICA-PCA). Industrial & Engineering Chemistry Research, 2009, 48(20): 9163−9174 [120] Rashid M M, Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity approach. Industrial & Engineering Chemistry Research, 2012, 51(33): 10910−10920 [121] Onel M, Kieslich C A, Guzman Y A, Floudas C A, Pistikopoulos E N. Big data approach to batch process monitoring: Simultaneous fault detection and diagnosis using nonlinear support vector machine-based feature selection. Computers & Chemical Engineering, 2018, 115: 46−63 [122] 刘育明. 动态过程数据的多变量统计监控方法研究 [博士学位论文], 浙江大学, 中国, 2006Liu Yu-Ming. Multivariate Statistical Monitoring Methods for Dynamic Process Data [Ph.D. dissertation], Zhejiang University, China, 2006 [123] Wang Y J, Sun F M, Li B. Multiscale neighborhood normalization-based multiple dynamic PCA monitoring method for batch processes with frequent operations. IEEE Transactions on Automation Science and Engineering, 2018, 15(3): 1053−1064 doi: 10.1109/TASE.2017.2713800 [124] Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67: 1−11 doi: 10.1016/j.jprocont.2017.05.002 [125] Dong Y N, Qin S J. Regression on dynamic PLS structures for supervised learning of dynamic data. Journal of Process Control, 2018, 68: 64−72 doi: 10.1016/j.jprocont.2018.04.006 [126] Chen J H, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 2002, 57(1): 63−75 doi: 10.1016/S0009-2509(01)00366-9 [127] Hu K L, Yuan J Q. Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding. Chemometrics and Intelligent Laboratory Systems, 2008, 90(2): 195−203 doi: 10.1016/j.chemolab.2007.10.002 [128] Stubbs S, Zhang J, Morris J. Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach. Computers & Chemical Engineering, 2012, 41: 77−87 [129] Lu Q G, Jiang B B, Gopaluni R B, Loewen P D, Braatz R D. Sparse canonical variate analysis approach for process monitoring. Journal of Process Control, 2018, 71: 90−102 doi: 10.1016/j.jprocont.2018.09.009 [130] 邹筱瑜, 王福利, 常玉清, 郑伟. 基于两层分块GMM-PRS的流程工业过程运行状态评价. 自动化学报, 2019, 45(11): 2071−2081Zou Xiao-Yu, Wang Fu-Li, Chang Yu-Qing, Zheng Wei. Plant-wide process operating performance assessment based on two-level multi-block GMM-PRS. Acta Automatica Sinica, 2019, 45(11): 2071−2081 [131] Fan L, Kodamana H, Huang B. Semi-supervised dynamic latent variable modeling: I/O probabilistic slow feature analysis approach. AIChE Journal, 2019, 65(3): 964−979 doi: 10.1002/aic.16481 [132] Shang C, Huang B, Yang F, Huang D X. Slow feature analysis for monitoring and diagnosis of control performance. Journal of Process Control, 2016, 39: 21−34 doi: 10.1016/j.jprocont.2015.12.004 [133] Zhang S M, Zhao C H, Huang B. Simultaneous static and dynamic analysis for fine-scale identification of process operation statuses. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5320−5329 doi: 10.1109/TII.2019.2896987 [134] Zou X Y, Zhao C H. Concurrent assessment of process operating performance with joint static and dynamic analysis. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2776−2786 doi: 10.1109/TII.2019.2934757 [135] Li W Q, Zhao C H, Huang B. Distributed dynamic modeling and monitoring for large-scale industrial processes under closed-loop control. Industrial & Engineering Chemistry Research, 2018, 57(46): 15759−15772 [136] Zhao C H, Huang B. A Full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis. AIChE Journal, 2018, 64(5): 1662−1681 doi: 10.1002/aic.16048 [137] Choi S W, Morris J, Lee I B. Dynamic model-based batch process monitoring. Chemical Engineering Science, 2008, 63(3): 622−636 doi: 10.1016/j.ces.2007.09.046 [138] Zheng J L, Zhao C H. Online monitoring of performance variations and process dynamic anomalies with performance-relevant full decomposition of slow feature analysis. Journal of Process Control, 2019, 80: 89−102 doi: 10.1016/j.jprocont.2019.05.004 [139] Yu W K, Zhao C H. Recursive exponential slow feature analysis for fine-scale adaptive processes monitoring with comprehensive operation status identification. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3311−3323 doi: 10.1109/TII.2018.2878405 [140] Zhao C H, Sun H. Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4749−4758 doi: 10.1109/TIE.2018.2864703 [141] Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York: USA: Wiley, 1973 [142] Yu W K, Zhao C H. Sparse exponential discriminant analysis and its application to fault diagnosis. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5931−5940 doi: 10.1109/TIE.2017.2782232 [143] Yu W K, Zhao C H. Online fault diagnosis in industrial processes using multimodel exponential discriminant analysis algorithm. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1317−1325 doi: 10.1109/TCST.2017.2789188 [144] Chai Z, Zhao C H. A fine-grained adversarial network method for cross-domain industrial fault diagnosis. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1432−1442 doi: 10.1109/TASE.2019.2957232 [145] Chiang L H, Kotanchek M E, Kordon A K. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Computers & Chemical Engineering, 2004, 28(8): 1389−1401 [146] Chai Z, Zhao C H. Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault classification. IEEE Transactions on Industrial Informatics, 2020, 16(1): 54−66 doi: 10.1109/TII.2019.2915559 [147] Yu W K, Zhao C H. Online fault diagnosis for industrial processes with Bayesian network-based probabilistic ensemble learning strategy. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1922−1932 doi: 10.1109/TASE.2019.2915286 [148] Westerhuis J A, Gurden S P, Smilde A K. Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1): 95−114 doi: 10.1016/S0169-7439(00)00062-9 [149] Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Industrial & Engineering Chemistry Research, 2010, 49(71): 7849−7857 [150] Dunia R, Qin S J. Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal, 1998, 44(8): 1813−1831 doi: 10.1002/aic.690440812 [151] Zhao C H, Sun Y X. Subspace decomposition approach of fault deviations and its application to fault reconstruction. Control Engineering Practice, 2013, 21(10): 1396−1409 doi: 10.1016/j.conengprac.2013.06.008 [152] Zhao C H, Gao F R. Online fault prognosis with relative deviation analysis and vector autoregressive modeling. Chemical Engineering Science, 2015, 138: 531−543 doi: 10.1016/j.ces.2015.08.037 [153] Zhao C H, Gao F R. Subspace decomposition-based reconstruction modeling for fault diagnosis in multiphase batch processes. Industrial & Engineering Chemistry Research, 2013, 52(41): 14613−14626 [154] Zhao C H, Zhang W D. Reconstruction based fault diagnosis using concurrent phase partition and analysis of relative changes for multiphase batch processes with limited fault batches. Chemometrics and Intelligent Laboratory Systems, 2014, 130: 135−150 doi: 10.1016/j.chemolab.2013.10.014 [155] Sun H, Zhang S M, Zhao C H, Gao F R. A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information. Industrial & Engineering Chemistry Research, 2017, 56(24): 6993−7008 [156] Wu J, Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis. Computers & Chemical Engineering, 2018, 115: 185−197 [157] Peng K X, Zhang K, You B, Dong J, Wang Z D. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2615−2624 [158] Zhao X Q, Wang T. Tensor dynamic neighborhood preserving embedding algorithm for fault diagnosis of batch process. Chemometrics and Intelligent Laboratory Systems, 2017, 162: 94−103 doi: 10.1016/j.chemolab.2017.01.007 [159] Yang C M, Hou J. Fed-batch fermentation penicillin process fault diagnosis and detection based on support vector machine. Neurocomputing, 2016, 190: 117−123 doi: 10.1016/j.neucom.2016.01.027 [160] Cerrada M, Zurita G, Cabrera D, Sánchez R V, Artés M, Li C. Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 2016, 70-71: 87−103 doi: 10.1016/j.ymssp.2015.08.030 [161] Zou X Y, Wang F L, Chang Y Q. Assessment of operating performance using cross-domain feature transfer learning. Control Engineering Practice, 2019, 89: 143−153 doi: 10.1016/j.conengprac.2019.05.007 [162] 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述. 自动化学报, 2013, 39(11): 1933−1943 doi: 10.3724/SP.J.1004.2013.01933Zhou Dong-Hua, Liu Yang, He Xiao. Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 2013, 39(11): 1933−1943 doi: 10.3724/SP.J.1004.2013.01933 [163] Zou X Y, Zhao C H. Meticulous assessment of operating performance for processes with a hybrid of stationary and nonstationary variables. Industrial & Engineering Chemistry Research, 2019, 58(3): 1341−1351 [164] Zhao C H, Gao F R. Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis. IEEE Transactions on Control Systems Technology, 2016, 24(3): 928−939 doi: 10.1109/TCST.2015.2464331 [165] Qin Y, Zhao C H, Gao F R. An intelligent non-optimality self-recovery method based on reinforcement learning with small data in big data era. Chemometrics and Intelligent Laboratory Systems, 2018, 176: 89−100 doi: 10.1016/j.chemolab.2018.03.010 [166] Sutton R S, Barto A G. Reinforcement Learning: An Introduction (Second edition). Cambridge: MIT Press, 2018. [167] Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits and Systems Magazine, 2009, 9(3): 32−50 doi: 10.1109/MCAS.2009.933854 [168] Wu H, Zhao J S. Deep convolutional neural network model based chemical process fault diagnosis. Computers & Chemical Engineering, 2018, 115: 185−197 [169] Wang H, Yuan Z L, Chen Y B, Shen B Y, Wu A X. An industrial missing values processing method based on generating model. Computer Networks, 2019, 158: 61−68 doi: 10.1016/j.comnet.2019.02.007 [170] Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168−3176 doi: 10.1109/TII.2019.2902129 -