-
摘要: 针对高聚集度Wigner-Ville distribution (WVD)时频分析方法存在严重的交叉项干扰问题, 利用广义Warblet变换(Generalized Warblet transform, GWT)不产生虚假频率分量的特点, 提出了WVD与GWT相结合的归一化广义Warblet-WVD (Normalized generalized Warblet-WVD, NGWT-WVD)算法. 该算法将GWT与WVD进行矩阵运算, 实现滤波效应, 抑制WVD产生的新交叉项以及混入自项的交叉项, 提高WVD的时频分析质量. 实验结果表明, NGWT-WVD方法有效地去除了多分量信号的交叉项干扰, 提高信号分析结果的时频聚集度, 还原多分量信号的真实时频分布. 采用NGWT-WVD方法处理金属疑似破裂样本信号, 获取破裂发生区间的时间和频率标志段, 为监测传感器设置有效门限值提供判据, 取得了良好效果.
-
关键词:
- 时频分析 /
- 交叉项干扰 /
- Wigner-Ville分布 /
- 广义Warblet变换 /
- 疑似金属破裂信号
Abstract: To solve the cross-terms interference of the high-aggregation Wigner-Ville distribution (WVD) time-frequency analysis method, a normalized generalized Warblet-WVD (NGWT-WVD) algorithm combining WVD and generalized Warblet transform (GWT) is proposed by using the characteristics of GWT without false frequency components. The algorithm can achieve the filtering effect by matrix operations on the GWT and WVD, and suppress new cross terms generated by WVD and cross terms mixed with its self terms. At the same time, it also improves the time-frequency analysis quality of WVD. The experimental results show that the NGWT-WVD method effectively removes the crossterm interference of multi-component signals and improves the time-frequency aggregation of the analysis results, the truly time-frequency distribution of the multi-component signal is restored. The NGWT-WVD method is used to process the sample signal suspected rupture of the metal, and the time and frequency flag segments of the rupture interval are obtained, which provides the basis for determining the effective threshold value of the monitoring sensor and achieves satisfactory results. -
表 1 各算法的时变功率谱误差比较
Table 1 Time-varying power spectrum error comparison of each algorithm
算法类型 ${ {z_1}( t )}$ ${{z_2}( t )}$ ${{z_3}( t )}$ ${{z_4}( t )}$ WVD 0.6061 0.3153 0.5139 0.5603 Gabor-WVD 0.3095 0.0854 0.0599 0.0736 GWT-WVD 0.2072 0.1084 0.1287 0.1394 VMD-WVD 0.0720 0.0274 0.0105 0.2375 NGWT-WVD 0.0210 0.0587 0.0099 0.0136 表 2 各算法的CM值比较
$(\times{10^{ - 3}})$ Table 2 CM value comparison of each algorithm
$(\times{10^{ - 3}})$ 算法类型 ${{z_1}( t )}$ ${{z_2}( t)}$ ${{z_3}( t )}$ ${{z_4}( t )}$ GWT 0.0079 0.0282 0.0167 0.0194 Gabor-WVD 0.0303 0.0852 0.0576 0.0554 GWT-WVD 0.0386 0.0921 0.0596 0.1164 WVD 0.0687 0.1821 0.0776 0.1008 VMD-WVD 0.0649 0.2143 0.1204 0.1526 NGWT-WVD 0.0722 0.2254 0.1336 0.1625 表 3 六种算法的CM值比较
$(\times{10^{ - 5}})$ Table 3 CM value comparison of six algorithms
$(\times{10^{ - 5}})$ 算法类型 CM 值 GWT 4.3669 Gabor-WVD 5.6375 GWT-WVD 7.5044 WVD 7.5046 VMD-WVD 17.6381 NGWT-WVD 20.8527 -
[1] Zhou J, Fang X, Tao L. A sparse analysis window for discrete Gabor Transform. Circuits Systems & Signal Processing, 2017, 36(10): 1−20 [2] Martin W, Flandrin P. Wigner-Ville spectral analysis of nonstationary processes. IEEE Transactions on Acoustics Speech & Signal Processing, 2003, 33(6): 1461−1470 [3] Cohen L. Time-Frequency Distribution-A Review. Proceedings of the IEEE, 1989, 77(7): 941−981 doi: 10.1109/5.30749 [4] Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1989, 11(7): 674−693 [5] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform. IEEE Transactions on Signal Processing, 2002, 44(4): 998−1001 [6] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and Non-stationary time series analysis. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903−995 [7] 郝国成, 龚婷, 董浩斌, Sibgatulin V. G, 陈忠昌, Kabanov A. 基于聚类经验模态分解的地球天然脉冲电磁场时频与能量谱分析: 以芦山Ms7.0地震为例. 地学前缘, 2015, 22(4): 231−238Hao Guo-Cheng, Gong Ting, Dong Hao-Bin, Sibgatulin V G, Chen Zhong-Chang, Kabanov A. Time-frequency and energy spectrum analysis of Earth’s natural pulsed electromagnetic field based on ensemble empirical mode decomposition: A Case Study of Lushan Ms7.0 Earthquake. Earth Science Frontiers, 2015, 22(4): 231−238 [8] 杨默涵, 陈万忠, 李明阳. 基于总体经验模态分解的多类特征的运动想象脑电识别方法研究. 自动化学报, 2017, 43(05): 743−752Yang Mo-Han, Chen Wan-Zhong, Li Ming-Yang. Multiple Feature Extraction Based on Ensemble Empirical Mode Decomposition For Motor Imagery EEG Recognition Tasks. Acta Automatica Sinica, 2017, 43(05): 743−752 [9] Yang Y, Peng Z K, Meng G, Vadursi M. Characterize highly oscillating frequency modulation using generalized Warblet transform. Mechanical Systems & Signal Processing, 2012, 26(1): 128−140 [10] 贾亚飞, 朱永利, 王刘旺. 基于VMD和Wigner-Ville分布的局放信号时频分析. 系统仿真学报, 2018, v. 30(02): 226−235Jia Ya-Fei, Zhu Yong-Li, Wang LiuWang. Time-frequency analysis of partial discharge signal based on VMD and Wigner-Ville distribution. Journal of System Simulation, 2018, v. 30(02): 226−235 [11] Hao G C, Bai Y X, Liu H, Zhao J, Zeng Z X. The Earth’s natural pulse electromagnetic fields for earthquake timefrequency characteristics: Insights from the EEMD-WVD method. Island Arc, 2018, 27(4): e12256. doi: 10.1111/iar.12256 [12] 王旭, 岳应娟, 蔡艳平. 柴油机振动信号快速稀疏分解与二维特征编码. 振动. 测试与诊断, 2019, 39(01): 120−128+231Wang Xu, Yue Ying-Juan, Cai Yan-Ping. Fast sparse decomposition and two-dimensional feature encoding recognition method of diesel engine vibration signal. Journal of Vibration Measurement and Diagnosis, 2019, 39(01): 120−128+231 [13] 王勇, 姜义成. 一种抑制时频分布交叉项的新方法. 电子学报, 2008, 36(s1): 161−165Wang Yong, Jiang Yi-Cheng. A new method for restrain the cross-terms of time-frequency distribution. Acta Electronica Sinica, 2008, 36(12A): 161−165. [14] 李秀坤, 吴玉双. 多分量线性调频信号的Wigner-Ville分布交叉项去除. 电子学报, 2017, 45(2): 315−320 doi: 10.3969/j.issn.0372-2112.2017.02.008Li Xiu-Kun, Wu Yu-Shuang. Cross-term removal of WignerVille distribution for multi-component LFM signals. Acta Electronica Sinica, 2017, 45(2): 315−320. doi: 10.3969/j.issn.0372-2112.2017.02.008 [15] 陈彦江, 王凯, 马裕超, 郝朝伟. 基于Wigner-Ville分布交叉项的独塔自锚式悬索桥损伤识别试验研究. 振动与冲击, 2016, 35(6): 161−168Chen Yan-Jiang, Wang Kai, Ma Yu-Chao, Hao Chao-Wei. Experimental study of single-tower self-anchored suspension bridge damage identification based on cross terms of Wigner-Ville distribution. Journal of vibration and shock, 2016, 35(6): 161−168 [16] 郝国成, 谈帆, 程卓, 王巍, 冯思权, 张伟民. 强鲁棒性和高锐化聚集度的BGabor-NSPWVD时频分析算法. 自动化学报, 2019, 45(3): 566−576Hao Guo-Cheng, Tan Fan, Cheng Zhuo, Wang Wei, Feng SiQuan, Zhang Wei-Min. Time-frequency analysis of BGaborNSPWVD algorithm with strong robustness and high sharpening concentration. Acta Automation Sinica, 2019, 45(3): 566−576. [17] 粟嘉, 陶海红, 饶炫, 谢坚. 时频面滑窗掩膜的多分量信号高效重构算法. 电子与信息学报, 2015, 37(4): 804−810 doi: 10.11999/JEIT140511Su Jia, Tao Hai-Hong, Rao Xuan, Xie Jian. An efficient multi-component signals reconstruction algorithm using masking technique based on sliding window in timefrequency plane. Journal of Electronics & Information Technology, 2015, 37(4): 804−810 doi: 10.11999/JEIT140511 [18] Shafi I, Ahmad J, Shah S I, Kashif F. M. Quantitative evaluation of concentrated time-frequency distributions. In: Proceedings of the 2009 Signal Processing Conference. Glasgow, UK: IEEE, 2009. 1176−1180 [19] 王民, 王松顺. 硬质合金顶锤和压缸的破裂特征、破坏因素的分析和提高使用寿命的途径. 硬质合金, 1994, 11(04): 231−240Wang Ming, Wang Song-Shun. The breaking characteristic and breakdown factors analysis of cemented carbide anvil and pressure die and the way of raise their sevice life. Hard alloy, 1994, 11(04): 231−240. [20] 李孟源. 声发射检测及信号处理. 北京: 科学出版社, 2010. 161−165Li Meng-Yuan. Acoustic Emission Detection and Signal Processing. Beijing: Science Press, 2010. 161−165